|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org> | 
|  | */ | 
|  |  | 
|  | #include <linux/elf.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/moduleloader.h> | 
|  | #include <linux/sort.h> | 
|  |  | 
|  | static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc, | 
|  | enum aarch64_insn_register reg) | 
|  | { | 
|  | u32 adrp, add; | 
|  |  | 
|  | adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP); | 
|  | add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K, | 
|  | AARCH64_INSN_VARIANT_64BIT, | 
|  | AARCH64_INSN_ADSB_ADD); | 
|  |  | 
|  | return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) }; | 
|  | } | 
|  |  | 
|  | struct plt_entry get_plt_entry(u64 dst, void *pc) | 
|  | { | 
|  | struct plt_entry plt; | 
|  | static u32 br; | 
|  |  | 
|  | if (!br) | 
|  | br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16, | 
|  | AARCH64_INSN_BRANCH_NOLINK); | 
|  |  | 
|  | plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16); | 
|  | plt.br = cpu_to_le32(br); | 
|  |  | 
|  | return plt; | 
|  | } | 
|  |  | 
|  | static bool plt_entries_equal(const struct plt_entry *a, | 
|  | const struct plt_entry *b) | 
|  | { | 
|  | u64 p, q; | 
|  |  | 
|  | /* | 
|  | * Check whether both entries refer to the same target: | 
|  | * do the cheapest checks first. | 
|  | * If the 'add' or 'br' opcodes are different, then the target | 
|  | * cannot be the same. | 
|  | */ | 
|  | if (a->add != b->add || a->br != b->br) | 
|  | return false; | 
|  |  | 
|  | p = ALIGN_DOWN((u64)a, SZ_4K); | 
|  | q = ALIGN_DOWN((u64)b, SZ_4K); | 
|  |  | 
|  | /* | 
|  | * If the 'adrp' opcodes are the same then we just need to check | 
|  | * that they refer to the same 4k region. | 
|  | */ | 
|  | if (a->adrp == b->adrp && p == q) | 
|  | return true; | 
|  |  | 
|  | return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) == | 
|  | (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp))); | 
|  | } | 
|  |  | 
|  | u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs, | 
|  | void *loc, const Elf64_Rela *rela, | 
|  | Elf64_Sym *sym) | 
|  | { | 
|  | struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ? | 
|  | &mod->arch.core : &mod->arch.init; | 
|  | struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr; | 
|  | int i = pltsec->plt_num_entries; | 
|  | int j = i - 1; | 
|  | u64 val = sym->st_value + rela->r_addend; | 
|  |  | 
|  | if (is_forbidden_offset_for_adrp(&plt[i].adrp)) | 
|  | i++; | 
|  |  | 
|  | plt[i] = get_plt_entry(val, &plt[i]); | 
|  |  | 
|  | /* | 
|  | * Check if the entry we just created is a duplicate. Given that the | 
|  | * relocations are sorted, this will be the last entry we allocated. | 
|  | * (if one exists). | 
|  | */ | 
|  | if (j >= 0 && plt_entries_equal(plt + i, plt + j)) | 
|  | return (u64)&plt[j]; | 
|  |  | 
|  | pltsec->plt_num_entries += i - j; | 
|  | if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries)) | 
|  | return 0; | 
|  |  | 
|  | return (u64)&plt[i]; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ARM64_ERRATUM_843419 | 
|  | u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs, | 
|  | void *loc, u64 val) | 
|  | { | 
|  | struct mod_plt_sec *pltsec = !within_module_init((unsigned long)loc, mod) ? | 
|  | &mod->arch.core : &mod->arch.init; | 
|  | struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr; | 
|  | int i = pltsec->plt_num_entries++; | 
|  | u32 br; | 
|  | int rd; | 
|  |  | 
|  | if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries)) | 
|  | return 0; | 
|  |  | 
|  | if (is_forbidden_offset_for_adrp(&plt[i].adrp)) | 
|  | i = pltsec->plt_num_entries++; | 
|  |  | 
|  | /* get the destination register of the ADRP instruction */ | 
|  | rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, | 
|  | le32_to_cpup((__le32 *)loc)); | 
|  |  | 
|  | br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4, | 
|  | AARCH64_INSN_BRANCH_NOLINK); | 
|  |  | 
|  | plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd); | 
|  | plt[i].br = cpu_to_le32(br); | 
|  |  | 
|  | return (u64)&plt[i]; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define cmp_3way(a, b)	((a) < (b) ? -1 : (a) > (b)) | 
|  |  | 
|  | static int cmp_rela(const void *a, const void *b) | 
|  | { | 
|  | const Elf64_Rela *x = a, *y = b; | 
|  | int i; | 
|  |  | 
|  | /* sort by type, symbol index and addend */ | 
|  | i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info)); | 
|  | if (i == 0) | 
|  | i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info)); | 
|  | if (i == 0) | 
|  | i = cmp_3way(x->r_addend, y->r_addend); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | static bool duplicate_rel(const Elf64_Rela *rela, int num) | 
|  | { | 
|  | /* | 
|  | * Entries are sorted by type, symbol index and addend. That means | 
|  | * that, if a duplicate entry exists, it must be in the preceding | 
|  | * slot. | 
|  | */ | 
|  | return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0; | 
|  | } | 
|  |  | 
|  | static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num, | 
|  | Elf64_Word dstidx, Elf_Shdr *dstsec) | 
|  | { | 
|  | unsigned int ret = 0; | 
|  | Elf64_Sym *s; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | u64 min_align; | 
|  |  | 
|  | switch (ELF64_R_TYPE(rela[i].r_info)) { | 
|  | case R_AARCH64_JUMP26: | 
|  | case R_AARCH64_CALL26: | 
|  | if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * We only have to consider branch targets that resolve | 
|  | * to symbols that are defined in a different section. | 
|  | * This is not simply a heuristic, it is a fundamental | 
|  | * limitation, since there is no guaranteed way to emit | 
|  | * PLT entries sufficiently close to the branch if the | 
|  | * section size exceeds the range of a branch | 
|  | * instruction. So ignore relocations against defined | 
|  | * symbols if they live in the same section as the | 
|  | * relocation target. | 
|  | */ | 
|  | s = syms + ELF64_R_SYM(rela[i].r_info); | 
|  | if (s->st_shndx == dstidx) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Jump relocations with non-zero addends against | 
|  | * undefined symbols are supported by the ELF spec, but | 
|  | * do not occur in practice (e.g., 'jump n bytes past | 
|  | * the entry point of undefined function symbol f'). | 
|  | * So we need to support them, but there is no need to | 
|  | * take them into consideration when trying to optimize | 
|  | * this code. So let's only check for duplicates when | 
|  | * the addend is zero: this allows us to record the PLT | 
|  | * entry address in the symbol table itself, rather than | 
|  | * having to search the list for duplicates each time we | 
|  | * emit one. | 
|  | */ | 
|  | if (rela[i].r_addend != 0 || !duplicate_rel(rela, i)) | 
|  | ret++; | 
|  | break; | 
|  | case R_AARCH64_ADR_PREL_PG_HI21_NC: | 
|  | case R_AARCH64_ADR_PREL_PG_HI21: | 
|  | if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) || | 
|  | !cpus_have_const_cap(ARM64_WORKAROUND_843419)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Determine the minimal safe alignment for this ADRP | 
|  | * instruction: the section alignment at which it is | 
|  | * guaranteed not to appear at a vulnerable offset. | 
|  | * | 
|  | * This comes down to finding the least significant zero | 
|  | * bit in bits [11:3] of the section offset, and | 
|  | * increasing the section's alignment so that the | 
|  | * resulting address of this instruction is guaranteed | 
|  | * to equal the offset in that particular bit (as well | 
|  | * as all less significant bits). This ensures that the | 
|  | * address modulo 4 KB != 0xfff8 or 0xfffc (which would | 
|  | * have all ones in bits [11:3]) | 
|  | */ | 
|  | min_align = 2ULL << ffz(rela[i].r_offset | 0x7); | 
|  |  | 
|  | /* | 
|  | * Allocate veneer space for each ADRP that may appear | 
|  | * at a vulnerable offset nonetheless. At relocation | 
|  | * time, some of these will remain unused since some | 
|  | * ADRP instructions can be patched to ADR instructions | 
|  | * instead. | 
|  | */ | 
|  | if (min_align > SZ_4K) | 
|  | ret++; | 
|  | else | 
|  | dstsec->sh_addralign = max(dstsec->sh_addralign, | 
|  | min_align); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) && | 
|  | cpus_have_const_cap(ARM64_WORKAROUND_843419)) | 
|  | /* | 
|  | * Add some slack so we can skip PLT slots that may trigger | 
|  | * the erratum due to the placement of the ADRP instruction. | 
|  | */ | 
|  | ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry))); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela, | 
|  | Elf64_Word dstidx) | 
|  | { | 
|  |  | 
|  | Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info); | 
|  |  | 
|  | if (s->st_shndx == dstidx) | 
|  | return false; | 
|  |  | 
|  | return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 || | 
|  | ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26; | 
|  | } | 
|  |  | 
|  | /* Group branch PLT relas at the front end of the array. */ | 
|  | static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela, | 
|  | int numrels, Elf64_Word dstidx) | 
|  | { | 
|  | int i = 0, j = numrels - 1; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE)) | 
|  | return 0; | 
|  |  | 
|  | while (i < j) { | 
|  | if (branch_rela_needs_plt(syms, &rela[i], dstidx)) | 
|  | i++; | 
|  | else if (branch_rela_needs_plt(syms, &rela[j], dstidx)) | 
|  | swap(rela[i], rela[j]); | 
|  | else | 
|  | j--; | 
|  | } | 
|  |  | 
|  | return i; | 
|  | } | 
|  |  | 
|  | int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, | 
|  | char *secstrings, struct module *mod) | 
|  | { | 
|  | unsigned long core_plts = 0; | 
|  | unsigned long init_plts = 0; | 
|  | Elf64_Sym *syms = NULL; | 
|  | Elf_Shdr *pltsec, *tramp = NULL; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Find the empty .plt section so we can expand it to store the PLT | 
|  | * entries. Record the symtab address as well. | 
|  | */ | 
|  | for (i = 0; i < ehdr->e_shnum; i++) { | 
|  | if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt")) | 
|  | mod->arch.core.plt_shndx = i; | 
|  | else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt")) | 
|  | mod->arch.init.plt_shndx = i; | 
|  | else if (!strcmp(secstrings + sechdrs[i].sh_name, | 
|  | ".text.ftrace_trampoline")) | 
|  | tramp = sechdrs + i; | 
|  | else if (sechdrs[i].sh_type == SHT_SYMTAB) | 
|  | syms = (Elf64_Sym *)sechdrs[i].sh_addr; | 
|  | } | 
|  |  | 
|  | if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) { | 
|  | pr_err("%s: module PLT section(s) missing\n", mod->name); | 
|  | return -ENOEXEC; | 
|  | } | 
|  | if (!syms) { | 
|  | pr_err("%s: module symtab section missing\n", mod->name); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ehdr->e_shnum; i++) { | 
|  | Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset; | 
|  | int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela); | 
|  | Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info; | 
|  |  | 
|  | if (sechdrs[i].sh_type != SHT_RELA) | 
|  | continue; | 
|  |  | 
|  | /* ignore relocations that operate on non-exec sections */ | 
|  | if (!(dstsec->sh_flags & SHF_EXECINSTR)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * sort branch relocations requiring a PLT by type, symbol index | 
|  | * and addend | 
|  | */ | 
|  | nents = partition_branch_plt_relas(syms, rels, numrels, | 
|  | sechdrs[i].sh_info); | 
|  | if (nents) | 
|  | sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL); | 
|  |  | 
|  | if (!module_init_layout_section(secstrings + dstsec->sh_name)) | 
|  | core_plts += count_plts(syms, rels, numrels, | 
|  | sechdrs[i].sh_info, dstsec); | 
|  | else | 
|  | init_plts += count_plts(syms, rels, numrels, | 
|  | sechdrs[i].sh_info, dstsec); | 
|  | } | 
|  |  | 
|  | pltsec = sechdrs + mod->arch.core.plt_shndx; | 
|  | pltsec->sh_type = SHT_NOBITS; | 
|  | pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC; | 
|  | pltsec->sh_addralign = L1_CACHE_BYTES; | 
|  | pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry); | 
|  | mod->arch.core.plt_num_entries = 0; | 
|  | mod->arch.core.plt_max_entries = core_plts; | 
|  |  | 
|  | pltsec = sechdrs + mod->arch.init.plt_shndx; | 
|  | pltsec->sh_type = SHT_NOBITS; | 
|  | pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC; | 
|  | pltsec->sh_addralign = L1_CACHE_BYTES; | 
|  | pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry); | 
|  | mod->arch.init.plt_num_entries = 0; | 
|  | mod->arch.init.plt_max_entries = init_plts; | 
|  |  | 
|  | if (tramp) { | 
|  | tramp->sh_type = SHT_NOBITS; | 
|  | tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC; | 
|  | tramp->sh_addralign = __alignof__(struct plt_entry); | 
|  | tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } |