blob: d320adbd47f439e3d14c5e50d1f62b365df2746e [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Ampere Computing SoC's SMPro Hardware Monitoring Driver
*
* Copyright (c) 2022, Ampere Computing LLC
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/kernel.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
/* Logical Power Sensor Registers */
#define SOC_TEMP 0x10
#define SOC_VRD_TEMP 0x11
#define DIMM_VRD_TEMP 0x12
#define CORE_VRD_TEMP 0x13
#define CH0_DIMM_TEMP 0x14
#define CH1_DIMM_TEMP 0x15
#define CH2_DIMM_TEMP 0x16
#define CH3_DIMM_TEMP 0x17
#define CH4_DIMM_TEMP 0x18
#define CH5_DIMM_TEMP 0x19
#define CH6_DIMM_TEMP 0x1A
#define CH7_DIMM_TEMP 0x1B
#define RCA_VRD_TEMP 0x1C
#define CORE_VRD_PWR 0x20
#define SOC_PWR 0x21
#define DIMM_VRD1_PWR 0x22
#define DIMM_VRD2_PWR 0x23
#define CORE_VRD_PWR_MW 0x26
#define SOC_PWR_MW 0x27
#define DIMM_VRD1_PWR_MW 0x28
#define DIMM_VRD2_PWR_MW 0x29
#define RCA_VRD_PWR 0x2A
#define RCA_VRD_PWR_MW 0x2B
#define MEM_HOT_THRESHOLD 0x32
#define SOC_VR_HOT_THRESHOLD 0x33
#define CORE_VRD_VOLT 0x34
#define SOC_VRD_VOLT 0x35
#define DIMM_VRD1_VOLT 0x36
#define DIMM_VRD2_VOLT 0x37
#define RCA_VRD_VOLT 0x38
#define CORE_VRD_CURR 0x39
#define SOC_VRD_CURR 0x3A
#define DIMM_VRD1_CURR 0x3B
#define DIMM_VRD2_CURR 0x3C
#define RCA_VRD_CURR 0x3D
struct smpro_hwmon {
struct regmap *regmap;
};
struct smpro_sensor {
const u8 reg;
const u8 reg_ext;
const char *label;
};
static const struct smpro_sensor temperature[] = {
{
.reg = SOC_TEMP,
.label = "temp1 SoC"
},
{
.reg = SOC_VRD_TEMP,
.reg_ext = SOC_VR_HOT_THRESHOLD,
.label = "temp2 SoC VRD"
},
{
.reg = DIMM_VRD_TEMP,
.label = "temp3 DIMM VRD"
},
{
.reg = CORE_VRD_TEMP,
.label = "temp4 CORE VRD"
},
{
.reg = CH0_DIMM_TEMP,
.reg_ext = MEM_HOT_THRESHOLD,
.label = "temp5 CH0 DIMM"
},
{
.reg = CH1_DIMM_TEMP,
.reg_ext = MEM_HOT_THRESHOLD,
.label = "temp6 CH1 DIMM"
},
{
.reg = CH2_DIMM_TEMP,
.reg_ext = MEM_HOT_THRESHOLD,
.label = "temp7 CH2 DIMM"
},
{
.reg = CH3_DIMM_TEMP,
.reg_ext = MEM_HOT_THRESHOLD,
.label = "temp8 CH3 DIMM"
},
{
.reg = CH4_DIMM_TEMP,
.reg_ext = MEM_HOT_THRESHOLD,
.label = "temp9 CH4 DIMM"
},
{
.reg = CH5_DIMM_TEMP,
.reg_ext = MEM_HOT_THRESHOLD,
.label = "temp10 CH5 DIMM"
},
{
.reg = CH6_DIMM_TEMP,
.reg_ext = MEM_HOT_THRESHOLD,
.label = "temp11 CH6 DIMM"
},
{
.reg = CH7_DIMM_TEMP,
.reg_ext = MEM_HOT_THRESHOLD,
.label = "temp12 CH7 DIMM"
},
{
.reg = RCA_VRD_TEMP,
.label = "temp13 RCA VRD"
},
};
static const struct smpro_sensor voltage[] = {
{
.reg = CORE_VRD_VOLT,
.label = "vout0 CORE VRD"
},
{
.reg = SOC_VRD_VOLT,
.label = "vout1 SoC VRD"
},
{
.reg = DIMM_VRD1_VOLT,
.label = "vout2 DIMM VRD1"
},
{
.reg = DIMM_VRD2_VOLT,
.label = "vout3 DIMM VRD2"
},
{
.reg = RCA_VRD_VOLT,
.label = "vout4 RCA VRD"
},
};
static const struct smpro_sensor curr_sensor[] = {
{
.reg = CORE_VRD_CURR,
.label = "iout1 CORE VRD"
},
{
.reg = SOC_VRD_CURR,
.label = "iout2 SoC VRD"
},
{
.reg = DIMM_VRD1_CURR,
.label = "iout3 DIMM VRD1"
},
{
.reg = DIMM_VRD2_CURR,
.label = "iout4 DIMM VRD2"
},
{
.reg = RCA_VRD_CURR,
.label = "iout5 RCA VRD"
},
};
static const struct smpro_sensor power[] = {
{
.reg = CORE_VRD_PWR,
.reg_ext = CORE_VRD_PWR_MW,
.label = "power1 CORE VRD"
},
{
.reg = SOC_PWR,
.reg_ext = SOC_PWR_MW,
.label = "power2 SoC"
},
{
.reg = DIMM_VRD1_PWR,
.reg_ext = DIMM_VRD1_PWR_MW,
.label = "power3 DIMM VRD1"
},
{
.reg = DIMM_VRD2_PWR,
.reg_ext = DIMM_VRD2_PWR_MW,
.label = "power4 DIMM VRD2"
},
{
.reg = RCA_VRD_PWR,
.reg_ext = RCA_VRD_PWR_MW,
.label = "power5 RCA VRD"
},
};
static int smpro_read_temp(struct device *dev, u32 attr, int channel, long *val)
{
struct smpro_hwmon *hwmon = dev_get_drvdata(dev);
unsigned int value;
int ret;
switch (attr) {
case hwmon_temp_input:
ret = regmap_read(hwmon->regmap, temperature[channel].reg, &value);
if (ret)
return ret;
break;
case hwmon_temp_crit:
ret = regmap_read(hwmon->regmap, temperature[channel].reg_ext, &value);
if (ret)
return ret;
break;
default:
return -EOPNOTSUPP;
}
*val = sign_extend32(value, 8) * 1000;
return 0;
}
static int smpro_read_in(struct device *dev, u32 attr, int channel, long *val)
{
struct smpro_hwmon *hwmon = dev_get_drvdata(dev);
unsigned int value;
int ret;
switch (attr) {
case hwmon_in_input:
ret = regmap_read(hwmon->regmap, voltage[channel].reg, &value);
if (ret < 0)
return ret;
/* 15-bit value in 1mV */
*val = value & 0x7fff;
return 0;
default:
return -EOPNOTSUPP;
}
}
static int smpro_read_curr(struct device *dev, u32 attr, int channel, long *val)
{
struct smpro_hwmon *hwmon = dev_get_drvdata(dev);
unsigned int value;
int ret;
switch (attr) {
case hwmon_curr_input:
ret = regmap_read(hwmon->regmap, curr_sensor[channel].reg, &value);
if (ret < 0)
return ret;
/* Scale reported by the hardware is 1mA */
*val = value & 0x7fff;
return 0;
default:
return -EOPNOTSUPP;
}
}
static int smpro_read_power(struct device *dev, u32 attr, int channel, long *val_pwr)
{
struct smpro_hwmon *hwmon = dev_get_drvdata(dev);
unsigned int val = 0, val_mw = 0;
int ret;
switch (attr) {
case hwmon_power_input:
ret = regmap_read(hwmon->regmap, power[channel].reg, &val);
if (ret)
return ret;
ret = regmap_read(hwmon->regmap, power[channel].reg_ext, &val_mw);
if (ret)
return ret;
/* 10-bit value */
*val_pwr = (val & 0x3ff) * 1000000 + (val_mw & 0x3ff) * 1000;
return 0;
default:
return -EOPNOTSUPP;
}
}
static int smpro_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_temp:
return smpro_read_temp(dev, attr, channel, val);
case hwmon_in:
return smpro_read_in(dev, attr, channel, val);
case hwmon_power:
return smpro_read_power(dev, attr, channel, val);
case hwmon_curr:
return smpro_read_curr(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static int smpro_read_string(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_label:
*str = temperature[channel].label;
return 0;
default:
break;
}
break;
case hwmon_in:
switch (attr) {
case hwmon_in_label:
*str = voltage[channel].label;
return 0;
default:
break;
}
break;
case hwmon_curr:
switch (attr) {
case hwmon_curr_label:
*str = curr_sensor[channel].label;
return 0;
default:
break;
}
break;
case hwmon_power:
switch (attr) {
case hwmon_power_label:
*str = power[channel].label;
return 0;
default:
break;
}
break;
default:
break;
}
return -EOPNOTSUPP;
}
static umode_t smpro_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct smpro_hwmon *hwmon = data;
unsigned int value;
int ret;
switch (type) {
case hwmon_temp:
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_label:
case hwmon_temp_crit:
ret = regmap_read(hwmon->regmap, temperature[channel].reg, &value);
if (ret || value == 0xFFFF)
return 0;
break;
default:
break;
}
break;
default:
break;
}
return 0444;
}
static const struct hwmon_channel_info * const smpro_info[] = {
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_CRIT,
HWMON_T_INPUT | HWMON_T_LABEL),
HWMON_CHANNEL_INFO(in,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL,
HWMON_I_INPUT | HWMON_I_LABEL),
HWMON_CHANNEL_INFO(power,
HWMON_P_INPUT | HWMON_P_LABEL,
HWMON_P_INPUT | HWMON_P_LABEL,
HWMON_P_INPUT | HWMON_P_LABEL,
HWMON_P_INPUT | HWMON_P_LABEL,
HWMON_P_INPUT | HWMON_P_LABEL),
HWMON_CHANNEL_INFO(curr,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL,
HWMON_C_INPUT | HWMON_C_LABEL),
NULL
};
static const struct hwmon_ops smpro_hwmon_ops = {
.is_visible = smpro_is_visible,
.read = smpro_read,
.read_string = smpro_read_string,
};
static const struct hwmon_chip_info smpro_chip_info = {
.ops = &smpro_hwmon_ops,
.info = smpro_info,
};
static int smpro_hwmon_probe(struct platform_device *pdev)
{
struct smpro_hwmon *hwmon;
struct device *hwmon_dev;
hwmon = devm_kzalloc(&pdev->dev, sizeof(struct smpro_hwmon), GFP_KERNEL);
if (!hwmon)
return -ENOMEM;
hwmon->regmap = dev_get_regmap(pdev->dev.parent, NULL);
if (!hwmon->regmap)
return -ENODEV;
hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev, "smpro_hwmon",
hwmon, &smpro_chip_info, NULL);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static struct platform_driver smpro_hwmon_driver = {
.probe = smpro_hwmon_probe,
.driver = {
.name = "smpro-hwmon",
},
};
module_platform_driver(smpro_hwmon_driver);
MODULE_AUTHOR("Thu Nguyen <thu@os.amperecomputing.com>");
MODULE_AUTHOR("Quan Nguyen <quan@os.amperecomputing.com>");
MODULE_DESCRIPTION("Ampere Altra SMPro hwmon driver");
MODULE_LICENSE("GPL");