blob: 15049c6aab3724dbd68f9689475b3eb0926497d7 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* V4L2 Capture CSI Subdev for Freescale i.MX6UL/L / i.MX7 SOC
*
* Copyright (c) 2019 Linaro Ltd
*
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/math.h>
#include <linux/mfd/syscon.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mc.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#define IMX7_CSI_PAD_SINK 0
#define IMX7_CSI_PAD_SRC 1
#define IMX7_CSI_PADS_NUM 2
/* csi control reg 1 */
#define BIT_SWAP16_EN BIT(31)
#define BIT_EXT_VSYNC BIT(30)
#define BIT_EOF_INT_EN BIT(29)
#define BIT_PRP_IF_EN BIT(28)
#define BIT_CCIR_MODE BIT(27)
#define BIT_COF_INT_EN BIT(26)
#define BIT_SF_OR_INTEN BIT(25)
#define BIT_RF_OR_INTEN BIT(24)
#define BIT_SFF_DMA_DONE_INTEN BIT(22)
#define BIT_STATFF_INTEN BIT(21)
#define BIT_FB2_DMA_DONE_INTEN BIT(20)
#define BIT_FB1_DMA_DONE_INTEN BIT(19)
#define BIT_RXFF_INTEN BIT(18)
#define BIT_SOF_POL BIT(17)
#define BIT_SOF_INTEN BIT(16)
#define BIT_MCLKDIV(n) ((n) << 12)
#define BIT_MCLKDIV_MASK (0xf << 12)
#define BIT_HSYNC_POL BIT(11)
#define BIT_CCIR_EN BIT(10)
#define BIT_MCLKEN BIT(9)
#define BIT_FCC BIT(8)
#define BIT_PACK_DIR BIT(7)
#define BIT_CLR_STATFIFO BIT(6)
#define BIT_CLR_RXFIFO BIT(5)
#define BIT_GCLK_MODE BIT(4)
#define BIT_INV_DATA BIT(3)
#define BIT_INV_PCLK BIT(2)
#define BIT_REDGE BIT(1)
#define BIT_PIXEL_BIT BIT(0)
/* control reg 2 */
#define BIT_DMA_BURST_TYPE_RFF_INCR4 (1 << 30)
#define BIT_DMA_BURST_TYPE_RFF_INCR8 (2 << 30)
#define BIT_DMA_BURST_TYPE_RFF_INCR16 (3 << 30)
#define BIT_DMA_BURST_TYPE_RFF_MASK (3 << 30)
/* control reg 3 */
#define BIT_FRMCNT(n) ((n) << 16)
#define BIT_FRMCNT_MASK (0xffff << 16)
#define BIT_FRMCNT_RST BIT(15)
#define BIT_DMA_REFLASH_RFF BIT(14)
#define BIT_DMA_REFLASH_SFF BIT(13)
#define BIT_DMA_REQ_EN_RFF BIT(12)
#define BIT_DMA_REQ_EN_SFF BIT(11)
#define BIT_STATFF_LEVEL(n) ((n) << 8)
#define BIT_STATFF_LEVEL_MASK (0x7 << 8)
#define BIT_HRESP_ERR_EN BIT(7)
#define BIT_RXFF_LEVEL(n) ((n) << 4)
#define BIT_RXFF_LEVEL_MASK (0x7 << 4)
#define BIT_TWO_8BIT_SENSOR BIT(3)
#define BIT_ZERO_PACK_EN BIT(2)
#define BIT_ECC_INT_EN BIT(1)
#define BIT_ECC_AUTO_EN BIT(0)
/* csi status reg */
#define BIT_ADDR_CH_ERR_INT BIT(28)
#define BIT_FIELD0_INT BIT(27)
#define BIT_FIELD1_INT BIT(26)
#define BIT_SFF_OR_INT BIT(25)
#define BIT_RFF_OR_INT BIT(24)
#define BIT_DMA_TSF_DONE_SFF BIT(22)
#define BIT_STATFF_INT BIT(21)
#define BIT_DMA_TSF_DONE_FB2 BIT(20)
#define BIT_DMA_TSF_DONE_FB1 BIT(19)
#define BIT_RXFF_INT BIT(18)
#define BIT_EOF_INT BIT(17)
#define BIT_SOF_INT BIT(16)
#define BIT_F2_INT BIT(15)
#define BIT_F1_INT BIT(14)
#define BIT_COF_INT BIT(13)
#define BIT_HRESP_ERR_INT BIT(7)
#define BIT_ECC_INT BIT(1)
#define BIT_DRDY BIT(0)
/* csi image parameter reg */
#define BIT_IMAGE_WIDTH(n) ((n) << 16)
#define BIT_IMAGE_HEIGHT(n) (n)
/* csi control reg 18 */
#define BIT_CSI_HW_ENABLE BIT(31)
#define BIT_MIPI_DATA_FORMAT_RAW8 (0x2a << 25)
#define BIT_MIPI_DATA_FORMAT_RAW10 (0x2b << 25)
#define BIT_MIPI_DATA_FORMAT_RAW12 (0x2c << 25)
#define BIT_MIPI_DATA_FORMAT_RAW14 (0x2d << 25)
#define BIT_MIPI_DATA_FORMAT_YUV422_8B (0x1e << 25)
#define BIT_MIPI_DATA_FORMAT_MASK (0x3f << 25)
#define BIT_DATA_FROM_MIPI BIT(22)
#define BIT_MIPI_YU_SWAP BIT(21)
#define BIT_MIPI_DOUBLE_CMPNT BIT(20)
#define BIT_MASK_OPTION_FIRST_FRAME (0 << 18)
#define BIT_MASK_OPTION_CSI_EN (1 << 18)
#define BIT_MASK_OPTION_SECOND_FRAME (2 << 18)
#define BIT_MASK_OPTION_ON_DATA (3 << 18)
#define BIT_BASEADDR_CHG_ERR_EN BIT(9)
#define BIT_BASEADDR_SWITCH_SEL BIT(5)
#define BIT_BASEADDR_SWITCH_EN BIT(4)
#define BIT_PARALLEL24_EN BIT(3)
#define BIT_DEINTERLACE_EN BIT(2)
#define BIT_TVDECODER_IN_EN BIT(1)
#define BIT_NTSC_EN BIT(0)
#define CSI_MCLK_VF 1
#define CSI_MCLK_ENC 2
#define CSI_MCLK_RAW 4
#define CSI_MCLK_I2C 8
#define CSI_CSICR1 0x00
#define CSI_CSICR2 0x04
#define CSI_CSICR3 0x08
#define CSI_STATFIFO 0x0c
#define CSI_CSIRXFIFO 0x10
#define CSI_CSIRXCNT 0x14
#define CSI_CSISR 0x18
#define CSI_CSIDBG 0x1c
#define CSI_CSIDMASA_STATFIFO 0x20
#define CSI_CSIDMATS_STATFIFO 0x24
#define CSI_CSIDMASA_FB1 0x28
#define CSI_CSIDMASA_FB2 0x2c
#define CSI_CSIFBUF_PARA 0x30
#define CSI_CSIIMAG_PARA 0x34
#define CSI_CSICR18 0x48
#define CSI_CSICR19 0x4c
#define IMX7_CSI_VIDEO_NAME "imx-capture"
/* In bytes, per queue */
#define IMX7_CSI_VIDEO_MEM_LIMIT SZ_512M
#define IMX7_CSI_VIDEO_EOF_TIMEOUT 2000
#define IMX7_CSI_DEF_MBUS_CODE MEDIA_BUS_FMT_UYVY8_2X8
#define IMX7_CSI_DEF_PIX_FORMAT V4L2_PIX_FMT_UYVY
#define IMX7_CSI_DEF_PIX_WIDTH 640
#define IMX7_CSI_DEF_PIX_HEIGHT 480
enum imx_csi_model {
IMX7_CSI_IMX7 = 0,
IMX7_CSI_IMX8MQ,
};
struct imx7_csi_pixfmt {
/* the in-memory FourCC pixel format */
u32 fourcc;
/*
* the set of equivalent media bus codes for the fourcc.
* NOTE! codes pointer is NULL for in-memory-only formats.
*/
const u32 *codes;
int bpp; /* total bpp */
bool yuv;
};
struct imx7_csi_vb2_buffer {
struct vb2_v4l2_buffer vbuf;
struct list_head list;
};
static inline struct imx7_csi_vb2_buffer *
to_imx7_csi_vb2_buffer(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
return container_of(vbuf, struct imx7_csi_vb2_buffer, vbuf);
}
struct imx7_csi_dma_buf {
void *virt;
dma_addr_t dma_addr;
unsigned long len;
};
struct imx7_csi {
struct device *dev;
/* Resources and locks */
void __iomem *regbase;
int irq;
struct clk *mclk;
spinlock_t irqlock; /* Protects last_eof */
/* Media and V4L2 device */
struct media_device mdev;
struct v4l2_device v4l2_dev;
struct v4l2_async_notifier notifier;
struct media_pipeline pipe;
struct v4l2_subdev *src_sd;
bool is_csi2;
/* V4L2 subdev */
struct v4l2_subdev sd;
struct media_pad pad[IMX7_CSI_PADS_NUM];
/* Video device */
struct video_device *vdev; /* Video device */
struct media_pad vdev_pad; /* Video device pad */
struct v4l2_pix_format vdev_fmt; /* The user format */
const struct imx7_csi_pixfmt *vdev_cc;
struct v4l2_rect vdev_compose; /* The compose rectangle */
struct mutex vdev_mutex; /* Protect vdev operations */
struct vb2_queue q; /* The videobuf2 queue */
struct list_head ready_q; /* List of queued buffers */
spinlock_t q_lock; /* Protect ready_q */
/* Buffers and streaming state */
struct imx7_csi_vb2_buffer *active_vb2_buf[2];
struct imx7_csi_dma_buf underrun_buf;
bool is_streaming;
int buf_num;
u32 frame_sequence;
bool last_eof;
struct completion last_eof_completion;
enum imx_csi_model model;
};
static struct imx7_csi *
imx7_csi_notifier_to_dev(struct v4l2_async_notifier *n)
{
return container_of(n, struct imx7_csi, notifier);
}
/* -----------------------------------------------------------------------------
* Hardware Configuration
*/
static u32 imx7_csi_reg_read(struct imx7_csi *csi, unsigned int offset)
{
return readl(csi->regbase + offset);
}
static void imx7_csi_reg_write(struct imx7_csi *csi, unsigned int value,
unsigned int offset)
{
writel(value, csi->regbase + offset);
}
static u32 imx7_csi_irq_clear(struct imx7_csi *csi)
{
u32 isr;
isr = imx7_csi_reg_read(csi, CSI_CSISR);
imx7_csi_reg_write(csi, isr, CSI_CSISR);
return isr;
}
static void imx7_csi_init_default(struct imx7_csi *csi)
{
imx7_csi_reg_write(csi, BIT_SOF_POL | BIT_REDGE | BIT_GCLK_MODE |
BIT_HSYNC_POL | BIT_FCC | BIT_MCLKDIV(1) |
BIT_MCLKEN, CSI_CSICR1);
imx7_csi_reg_write(csi, 0, CSI_CSICR2);
imx7_csi_reg_write(csi, BIT_FRMCNT_RST, CSI_CSICR3);
imx7_csi_reg_write(csi, BIT_IMAGE_WIDTH(IMX7_CSI_DEF_PIX_WIDTH) |
BIT_IMAGE_HEIGHT(IMX7_CSI_DEF_PIX_HEIGHT),
CSI_CSIIMAG_PARA);
imx7_csi_reg_write(csi, BIT_DMA_REFLASH_RFF, CSI_CSICR3);
}
static void imx7_csi_hw_enable_irq(struct imx7_csi *csi)
{
u32 cr1 = imx7_csi_reg_read(csi, CSI_CSICR1);
cr1 |= BIT_RFF_OR_INT;
cr1 |= BIT_FB1_DMA_DONE_INTEN;
cr1 |= BIT_FB2_DMA_DONE_INTEN;
imx7_csi_reg_write(csi, cr1, CSI_CSICR1);
}
static void imx7_csi_hw_disable_irq(struct imx7_csi *csi)
{
u32 cr1 = imx7_csi_reg_read(csi, CSI_CSICR1);
cr1 &= ~BIT_RFF_OR_INT;
cr1 &= ~BIT_FB1_DMA_DONE_INTEN;
cr1 &= ~BIT_FB2_DMA_DONE_INTEN;
imx7_csi_reg_write(csi, cr1, CSI_CSICR1);
}
static void imx7_csi_hw_enable(struct imx7_csi *csi)
{
u32 cr = imx7_csi_reg_read(csi, CSI_CSICR18);
cr |= BIT_CSI_HW_ENABLE;
imx7_csi_reg_write(csi, cr, CSI_CSICR18);
}
static void imx7_csi_hw_disable(struct imx7_csi *csi)
{
u32 cr = imx7_csi_reg_read(csi, CSI_CSICR18);
cr &= ~BIT_CSI_HW_ENABLE;
imx7_csi_reg_write(csi, cr, CSI_CSICR18);
}
static void imx7_csi_dma_reflash(struct imx7_csi *csi)
{
u32 cr3;
cr3 = imx7_csi_reg_read(csi, CSI_CSICR3);
cr3 |= BIT_DMA_REFLASH_RFF;
imx7_csi_reg_write(csi, cr3, CSI_CSICR3);
}
static void imx7_csi_rx_fifo_clear(struct imx7_csi *csi)
{
u32 cr1 = imx7_csi_reg_read(csi, CSI_CSICR1) & ~BIT_FCC;
imx7_csi_reg_write(csi, cr1, CSI_CSICR1);
imx7_csi_reg_write(csi, cr1 | BIT_CLR_RXFIFO, CSI_CSICR1);
imx7_csi_reg_write(csi, cr1 | BIT_FCC, CSI_CSICR1);
}
static void imx7_csi_dmareq_rff_enable(struct imx7_csi *csi)
{
u32 cr3 = imx7_csi_reg_read(csi, CSI_CSICR3);
cr3 |= BIT_DMA_REQ_EN_RFF;
cr3 |= BIT_HRESP_ERR_EN;
cr3 &= ~BIT_RXFF_LEVEL_MASK;
cr3 |= BIT_RXFF_LEVEL(2);
imx7_csi_reg_write(csi, cr3, CSI_CSICR3);
}
static void imx7_csi_dmareq_rff_disable(struct imx7_csi *csi)
{
u32 cr3 = imx7_csi_reg_read(csi, CSI_CSICR3);
cr3 &= ~BIT_DMA_REQ_EN_RFF;
cr3 &= ~BIT_HRESP_ERR_EN;
imx7_csi_reg_write(csi, cr3, CSI_CSICR3);
}
static void imx7_csi_update_buf(struct imx7_csi *csi, dma_addr_t dma_addr,
int buf_num)
{
if (buf_num == 1)
imx7_csi_reg_write(csi, dma_addr, CSI_CSIDMASA_FB2);
else
imx7_csi_reg_write(csi, dma_addr, CSI_CSIDMASA_FB1);
}
static struct imx7_csi_vb2_buffer *imx7_csi_video_next_buf(struct imx7_csi *csi);
static void imx7_csi_setup_vb2_buf(struct imx7_csi *csi)
{
struct imx7_csi_vb2_buffer *buf;
struct vb2_buffer *vb2_buf;
int i;
for (i = 0; i < 2; i++) {
dma_addr_t dma_addr;
buf = imx7_csi_video_next_buf(csi);
if (buf) {
csi->active_vb2_buf[i] = buf;
vb2_buf = &buf->vbuf.vb2_buf;
dma_addr = vb2_dma_contig_plane_dma_addr(vb2_buf, 0);
} else {
csi->active_vb2_buf[i] = NULL;
dma_addr = csi->underrun_buf.dma_addr;
}
imx7_csi_update_buf(csi, dma_addr, i);
}
}
static void imx7_csi_dma_unsetup_vb2_buf(struct imx7_csi *csi,
enum vb2_buffer_state return_status)
{
struct imx7_csi_vb2_buffer *buf;
int i;
/* return any remaining active frames with return_status */
for (i = 0; i < 2; i++) {
buf = csi->active_vb2_buf[i];
if (buf) {
struct vb2_buffer *vb = &buf->vbuf.vb2_buf;
vb->timestamp = ktime_get_ns();
vb2_buffer_done(vb, return_status);
csi->active_vb2_buf[i] = NULL;
}
}
}
static void imx7_csi_free_dma_buf(struct imx7_csi *csi,
struct imx7_csi_dma_buf *buf)
{
if (buf->virt)
dma_free_coherent(csi->dev, buf->len, buf->virt, buf->dma_addr);
buf->virt = NULL;
buf->dma_addr = 0;
}
static int imx7_csi_alloc_dma_buf(struct imx7_csi *csi,
struct imx7_csi_dma_buf *buf, int size)
{
imx7_csi_free_dma_buf(csi, buf);
buf->len = PAGE_ALIGN(size);
buf->virt = dma_alloc_coherent(csi->dev, buf->len, &buf->dma_addr,
GFP_DMA | GFP_KERNEL);
if (!buf->virt)
return -ENOMEM;
return 0;
}
static int imx7_csi_dma_setup(struct imx7_csi *csi)
{
int ret;
ret = imx7_csi_alloc_dma_buf(csi, &csi->underrun_buf,
csi->vdev_fmt.sizeimage);
if (ret < 0) {
v4l2_warn(&csi->sd, "consider increasing the CMA area\n");
return ret;
}
csi->frame_sequence = 0;
csi->last_eof = false;
init_completion(&csi->last_eof_completion);
imx7_csi_setup_vb2_buf(csi);
return 0;
}
static void imx7_csi_dma_cleanup(struct imx7_csi *csi,
enum vb2_buffer_state return_status)
{
imx7_csi_dma_unsetup_vb2_buf(csi, return_status);
imx7_csi_free_dma_buf(csi, &csi->underrun_buf);
}
static void imx7_csi_dma_stop(struct imx7_csi *csi)
{
unsigned long timeout_jiffies;
unsigned long flags;
int ret;
/* mark next EOF interrupt as the last before stream off */
spin_lock_irqsave(&csi->irqlock, flags);
csi->last_eof = true;
spin_unlock_irqrestore(&csi->irqlock, flags);
/*
* and then wait for interrupt handler to mark completion.
*/
timeout_jiffies = msecs_to_jiffies(IMX7_CSI_VIDEO_EOF_TIMEOUT);
ret = wait_for_completion_timeout(&csi->last_eof_completion,
timeout_jiffies);
if (ret == 0)
v4l2_warn(&csi->sd, "wait last EOF timeout\n");
imx7_csi_hw_disable_irq(csi);
}
static void imx7_csi_configure(struct imx7_csi *csi,
struct v4l2_subdev_state *sd_state)
{
struct v4l2_pix_format *out_pix = &csi->vdev_fmt;
int width = out_pix->width;
u32 stride = 0;
u32 cr3 = BIT_FRMCNT_RST;
u32 cr1, cr18;
cr18 = imx7_csi_reg_read(csi, CSI_CSICR18);
cr18 &= ~(BIT_CSI_HW_ENABLE | BIT_MIPI_DATA_FORMAT_MASK |
BIT_DATA_FROM_MIPI | BIT_MIPI_DOUBLE_CMPNT |
BIT_BASEADDR_CHG_ERR_EN | BIT_BASEADDR_SWITCH_SEL |
BIT_BASEADDR_SWITCH_EN | BIT_DEINTERLACE_EN);
if (out_pix->field == V4L2_FIELD_INTERLACED) {
cr18 |= BIT_DEINTERLACE_EN;
stride = out_pix->width;
}
if (!csi->is_csi2) {
cr1 = BIT_SOF_POL | BIT_REDGE | BIT_GCLK_MODE | BIT_HSYNC_POL
| BIT_FCC | BIT_MCLKDIV(1) | BIT_MCLKEN;
cr18 |= BIT_BASEADDR_SWITCH_EN | BIT_BASEADDR_SWITCH_SEL |
BIT_BASEADDR_CHG_ERR_EN;
if (out_pix->pixelformat == V4L2_PIX_FMT_UYVY ||
out_pix->pixelformat == V4L2_PIX_FMT_YUYV)
width *= 2;
} else {
const struct v4l2_mbus_framefmt *sink_fmt;
sink_fmt = v4l2_subdev_get_pad_format(&csi->sd, sd_state,
IMX7_CSI_PAD_SINK);
cr1 = BIT_SOF_POL | BIT_REDGE | BIT_HSYNC_POL | BIT_FCC
| BIT_MCLKDIV(1) | BIT_MCLKEN;
cr18 |= BIT_DATA_FROM_MIPI;
switch (sink_fmt->code) {
case MEDIA_BUS_FMT_Y8_1X8:
case MEDIA_BUS_FMT_SBGGR8_1X8:
case MEDIA_BUS_FMT_SGBRG8_1X8:
case MEDIA_BUS_FMT_SGRBG8_1X8:
case MEDIA_BUS_FMT_SRGGB8_1X8:
cr18 |= BIT_MIPI_DATA_FORMAT_RAW8;
break;
case MEDIA_BUS_FMT_Y10_1X10:
case MEDIA_BUS_FMT_SBGGR10_1X10:
case MEDIA_BUS_FMT_SGBRG10_1X10:
case MEDIA_BUS_FMT_SGRBG10_1X10:
case MEDIA_BUS_FMT_SRGGB10_1X10:
cr3 |= BIT_TWO_8BIT_SENSOR;
cr18 |= BIT_MIPI_DATA_FORMAT_RAW10;
break;
case MEDIA_BUS_FMT_Y12_1X12:
case MEDIA_BUS_FMT_SBGGR12_1X12:
case MEDIA_BUS_FMT_SGBRG12_1X12:
case MEDIA_BUS_FMT_SGRBG12_1X12:
case MEDIA_BUS_FMT_SRGGB12_1X12:
cr3 |= BIT_TWO_8BIT_SENSOR;
cr18 |= BIT_MIPI_DATA_FORMAT_RAW12;
break;
case MEDIA_BUS_FMT_Y14_1X14:
case MEDIA_BUS_FMT_SBGGR14_1X14:
case MEDIA_BUS_FMT_SGBRG14_1X14:
case MEDIA_BUS_FMT_SGRBG14_1X14:
case MEDIA_BUS_FMT_SRGGB14_1X14:
cr3 |= BIT_TWO_8BIT_SENSOR;
cr18 |= BIT_MIPI_DATA_FORMAT_RAW14;
break;
/*
* The CSI bridge has a 16-bit input bus. Depending on the
* connected source, data may be transmitted with 8 or 10 bits
* per clock sample (in bits [9:2] or [9:0] respectively) or
* with 16 bits per clock sample (in bits [15:0]). The data is
* then packed into a 32-bit FIFO (as shown in figure 13-11 of
* the i.MX8MM reference manual rev. 3).
*
* The data packing in a 32-bit FIFO input word is controlled by
* the CR3 TWO_8BIT_SENSOR field (also known as SENSOR_16BITS in
* the i.MX8MM reference manual). When set to 0, data packing
* groups four 8-bit input samples (bits [9:2]). When set to 1,
* data packing groups two 16-bit input samples (bits [15:0]).
*
* The register field CR18 MIPI_DOUBLE_CMPNT also needs to be
* configured according to the input format for YUV 4:2:2 data.
* The field controls the gasket between the CSI-2 receiver and
* the CSI bridge. On i.MX7 and i.MX8MM, the field must be set
* to 1 when the CSIS outputs 16-bit samples. On i.MX8MQ, the
* gasket ignores the MIPI_DOUBLE_CMPNT bit and YUV 4:2:2 always
* uses 16-bit samples. Setting MIPI_DOUBLE_CMPNT in that case
* has no effect, but doesn't cause any issue.
*/
case MEDIA_BUS_FMT_UYVY8_2X8:
case MEDIA_BUS_FMT_YUYV8_2X8:
cr18 |= BIT_MIPI_DATA_FORMAT_YUV422_8B;
break;
case MEDIA_BUS_FMT_UYVY8_1X16:
case MEDIA_BUS_FMT_YUYV8_1X16:
cr3 |= BIT_TWO_8BIT_SENSOR;
cr18 |= BIT_MIPI_DATA_FORMAT_YUV422_8B |
BIT_MIPI_DOUBLE_CMPNT;
break;
}
}
imx7_csi_reg_write(csi, cr1, CSI_CSICR1);
imx7_csi_reg_write(csi, BIT_DMA_BURST_TYPE_RFF_INCR16, CSI_CSICR2);
imx7_csi_reg_write(csi, cr3, CSI_CSICR3);
imx7_csi_reg_write(csi, cr18, CSI_CSICR18);
imx7_csi_reg_write(csi, (width * out_pix->height) >> 2, CSI_CSIRXCNT);
imx7_csi_reg_write(csi, BIT_IMAGE_WIDTH(width) |
BIT_IMAGE_HEIGHT(out_pix->height),
CSI_CSIIMAG_PARA);
imx7_csi_reg_write(csi, stride, CSI_CSIFBUF_PARA);
}
static int imx7_csi_init(struct imx7_csi *csi,
struct v4l2_subdev_state *sd_state)
{
int ret;
ret = clk_prepare_enable(csi->mclk);
if (ret < 0)
return ret;
imx7_csi_configure(csi, sd_state);
ret = imx7_csi_dma_setup(csi);
if (ret < 0) {
clk_disable_unprepare(csi->mclk);
return ret;
}
return 0;
}
static void imx7_csi_deinit(struct imx7_csi *csi,
enum vb2_buffer_state return_status)
{
imx7_csi_dma_cleanup(csi, return_status);
imx7_csi_init_default(csi);
imx7_csi_dmareq_rff_disable(csi);
clk_disable_unprepare(csi->mclk);
}
static void imx7_csi_baseaddr_switch_on_second_frame(struct imx7_csi *csi)
{
u32 cr18 = imx7_csi_reg_read(csi, CSI_CSICR18);
cr18 |= BIT_BASEADDR_SWITCH_EN | BIT_BASEADDR_SWITCH_SEL |
BIT_BASEADDR_CHG_ERR_EN;
cr18 |= BIT_MASK_OPTION_SECOND_FRAME;
imx7_csi_reg_write(csi, cr18, CSI_CSICR18);
}
static void imx7_csi_enable(struct imx7_csi *csi)
{
/* Clear the Rx FIFO and reflash the DMA controller. */
imx7_csi_rx_fifo_clear(csi);
imx7_csi_dma_reflash(csi);
usleep_range(2000, 3000);
/* Clear and enable the interrupts. */
imx7_csi_irq_clear(csi);
imx7_csi_hw_enable_irq(csi);
/* Enable the RxFIFO DMA and the CSI. */
imx7_csi_dmareq_rff_enable(csi);
imx7_csi_hw_enable(csi);
if (csi->model == IMX7_CSI_IMX8MQ)
imx7_csi_baseaddr_switch_on_second_frame(csi);
}
static void imx7_csi_disable(struct imx7_csi *csi)
{
imx7_csi_dma_stop(csi);
imx7_csi_dmareq_rff_disable(csi);
imx7_csi_hw_disable_irq(csi);
imx7_csi_hw_disable(csi);
}
/* -----------------------------------------------------------------------------
* Interrupt Handling
*/
static void imx7_csi_error_recovery(struct imx7_csi *csi)
{
imx7_csi_hw_disable(csi);
imx7_csi_rx_fifo_clear(csi);
imx7_csi_dma_reflash(csi);
imx7_csi_hw_enable(csi);
}
static void imx7_csi_vb2_buf_done(struct imx7_csi *csi)
{
struct imx7_csi_vb2_buffer *done, *next;
struct vb2_buffer *vb;
dma_addr_t dma_addr;
done = csi->active_vb2_buf[csi->buf_num];
if (done) {
done->vbuf.field = csi->vdev_fmt.field;
done->vbuf.sequence = csi->frame_sequence;
vb = &done->vbuf.vb2_buf;
vb->timestamp = ktime_get_ns();
vb2_buffer_done(vb, VB2_BUF_STATE_DONE);
}
csi->frame_sequence++;
/* get next queued buffer */
next = imx7_csi_video_next_buf(csi);
if (next) {
dma_addr = vb2_dma_contig_plane_dma_addr(&next->vbuf.vb2_buf, 0);
csi->active_vb2_buf[csi->buf_num] = next;
} else {
dma_addr = csi->underrun_buf.dma_addr;
csi->active_vb2_buf[csi->buf_num] = NULL;
}
imx7_csi_update_buf(csi, dma_addr, csi->buf_num);
}
static irqreturn_t imx7_csi_irq_handler(int irq, void *data)
{
struct imx7_csi *csi = data;
u32 status;
spin_lock(&csi->irqlock);
status = imx7_csi_irq_clear(csi);
if (status & BIT_RFF_OR_INT) {
dev_warn(csi->dev, "Rx fifo overflow\n");
imx7_csi_error_recovery(csi);
}
if (status & BIT_HRESP_ERR_INT) {
dev_warn(csi->dev, "Hresponse error detected\n");
imx7_csi_error_recovery(csi);
}
if (status & BIT_ADDR_CH_ERR_INT) {
imx7_csi_hw_disable(csi);
imx7_csi_dma_reflash(csi);
imx7_csi_hw_enable(csi);
}
if ((status & BIT_DMA_TSF_DONE_FB1) &&
(status & BIT_DMA_TSF_DONE_FB2)) {
/*
* For both FB1 and FB2 interrupter bits set case,
* CSI DMA is work in one of FB1 and FB2 buffer,
* but software can not know the state.
* Skip it to avoid base address updated
* when csi work in field0 and field1 will write to
* new base address.
*/
} else if (status & BIT_DMA_TSF_DONE_FB1) {
csi->buf_num = 0;
} else if (status & BIT_DMA_TSF_DONE_FB2) {
csi->buf_num = 1;
}
if ((status & BIT_DMA_TSF_DONE_FB1) ||
(status & BIT_DMA_TSF_DONE_FB2)) {
imx7_csi_vb2_buf_done(csi);
if (csi->last_eof) {
complete(&csi->last_eof_completion);
csi->last_eof = false;
}
}
spin_unlock(&csi->irqlock);
return IRQ_HANDLED;
}
/* -----------------------------------------------------------------------------
* Format Helpers
*/
#define IMX_BUS_FMTS(fmt...) (const u32[]) {fmt, 0}
/*
* List of supported pixel formats for the subdevs. Keep V4L2_PIX_FMT_UYVY and
* MEDIA_BUS_FMT_UYVY8_2X8 first to match IMX7_CSI_DEF_PIX_FORMAT and
* IMX7_CSI_DEF_MBUS_CODE.
*
* TODO: Restrict the supported formats list based on the SoC integration.
*
* The CSI bridge can be configured to sample pixel components from the Rx queue
* in single (8bpp) or double (16bpp) component modes. Image format variants
* with different sample sizes (ie YUYV_2X8 vs YUYV_1X16) determine the pixel
* components sampling size per each clock cycle and their packing mode (see
* imx7_csi_configure() for details).
*
* As the CSI bridge can be interfaced with different IP blocks depending on the
* SoC model it is integrated on, the Rx queue sampling size should match the
* size of the samples transferred by the transmitting IP block. To avoid
* misconfigurations of the capture pipeline, the enumeration of the supported
* formats should be restricted to match the pixel source transmitting mode.
*
* Example: i.MX8MM SoC integrates the CSI bridge with the Samsung CSIS CSI-2
* receiver which operates in dual pixel sampling mode. The CSI bridge should
* only expose the 1X16 formats variant which instructs it to operate in dual
* pixel sampling mode. When the CSI bridge is instead integrated on an i.MX7,
* which supports both serial and parallel input, it should expose both
* variants.
*
* This currently only applies to YUYV formats, but other formats might need to
* be handled in the same way.
*/
static const struct imx7_csi_pixfmt pixel_formats[] = {
/*** YUV formats start here ***/
{
.fourcc = V4L2_PIX_FMT_UYVY,
.codes = IMX_BUS_FMTS(
MEDIA_BUS_FMT_UYVY8_2X8,
MEDIA_BUS_FMT_UYVY8_1X16
),
.yuv = true,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_YUYV,
.codes = IMX_BUS_FMTS(
MEDIA_BUS_FMT_YUYV8_2X8,
MEDIA_BUS_FMT_YUYV8_1X16
),
.yuv = true,
.bpp = 16,
},
/*** raw bayer and grayscale formats start here ***/
{
.fourcc = V4L2_PIX_FMT_SBGGR8,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SBGGR8_1X8),
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGBRG8_1X8),
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGRBG8_1X8),
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB8,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SRGGB8_1X8),
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR10,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SBGGR10_1X10),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG10,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGBRG10_1X10),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG10,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGRBG10_1X10),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB10,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SRGGB10_1X10),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR12,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SBGGR12_1X12),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG12,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGBRG12_1X12),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG12,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGRBG12_1X12),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB12,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SRGGB12_1X12),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR14,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SBGGR14_1X14),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG14,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGBRG14_1X14),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG14,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SGRBG14_1X14),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB14,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_SRGGB14_1X14),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_GREY,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_Y8_1X8),
.bpp = 8,
}, {
.fourcc = V4L2_PIX_FMT_Y10,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_Y10_1X10),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_Y12,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_Y12_1X12),
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_Y14,
.codes = IMX_BUS_FMTS(MEDIA_BUS_FMT_Y14_1X14),
.bpp = 16,
},
};
/*
* Search in the pixel_formats[] array for an entry with the given fourcc
* return it.
*/
static const struct imx7_csi_pixfmt *imx7_csi_find_pixel_format(u32 fourcc)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pixel_formats); i++) {
const struct imx7_csi_pixfmt *fmt = &pixel_formats[i];
if (fmt->fourcc == fourcc)
return fmt;
}
return NULL;
}
/*
* Search in the pixel_formats[] array for an entry with the given media
* bus code and return it.
*/
static const struct imx7_csi_pixfmt *imx7_csi_find_mbus_format(u32 code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pixel_formats); i++) {
const struct imx7_csi_pixfmt *fmt = &pixel_formats[i];
unsigned int j;
if (!fmt->codes)
continue;
for (j = 0; fmt->codes[j]; j++) {
if (code == fmt->codes[j])
return fmt;
}
}
return NULL;
}
/*
* Enumerate entries in the pixel_formats[] array that match the
* requested search criteria. Return the media-bus code that matches
* the search criteria at the requested match index.
*
* @code: The returned media-bus code that matches the search criteria at
* the requested match index.
* @index: The requested match index.
*/
static int imx7_csi_enum_mbus_formats(u32 *code, u32 index)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pixel_formats); i++) {
const struct imx7_csi_pixfmt *fmt = &pixel_formats[i];
unsigned int j;
if (!fmt->codes)
continue;
for (j = 0; fmt->codes[j]; j++) {
if (index == 0) {
*code = fmt->codes[j];
return 0;
}
index--;
}
}
return -EINVAL;
}
/* -----------------------------------------------------------------------------
* Video Capture Device - IOCTLs
*/
static int imx7_csi_video_querycap(struct file *file, void *fh,
struct v4l2_capability *cap)
{
struct imx7_csi *csi = video_drvdata(file);
strscpy(cap->driver, IMX7_CSI_VIDEO_NAME, sizeof(cap->driver));
strscpy(cap->card, IMX7_CSI_VIDEO_NAME, sizeof(cap->card));
snprintf(cap->bus_info, sizeof(cap->bus_info),
"platform:%s", dev_name(csi->dev));
return 0;
}
static int imx7_csi_video_enum_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_fmtdesc *f)
{
unsigned int index = f->index;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(pixel_formats); i++) {
const struct imx7_csi_pixfmt *fmt = &pixel_formats[i];
/*
* If a media bus code is specified, only consider formats that
* match it.
*/
if (f->mbus_code) {
unsigned int j;
if (!fmt->codes)
continue;
for (j = 0; fmt->codes[j]; j++) {
if (f->mbus_code == fmt->codes[j])
break;
}
if (!fmt->codes[j])
continue;
}
if (index == 0) {
f->pixelformat = fmt->fourcc;
return 0;
}
index--;
}
return -EINVAL;
}
static int imx7_csi_video_enum_framesizes(struct file *file, void *fh,
struct v4l2_frmsizeenum *fsize)
{
const struct imx7_csi_pixfmt *cc;
u32 walign;
if (fsize->index > 0)
return -EINVAL;
cc = imx7_csi_find_pixel_format(fsize->pixel_format);
if (!cc)
return -EINVAL;
/*
* The width alignment is 8 bytes as indicated by the
* CSI_IMAG_PARA.IMAGE_WIDTH documentation. Convert it to pixels.
*/
walign = 8 * 8 / cc->bpp;
fsize->type = V4L2_FRMSIZE_TYPE_CONTINUOUS;
fsize->stepwise.min_width = walign;
fsize->stepwise.max_width = round_down(65535U, walign);
fsize->stepwise.min_height = 1;
fsize->stepwise.max_height = 65535;
fsize->stepwise.step_width = walign;
fsize->stepwise.step_height = 1;
return 0;
}
static int imx7_csi_video_g_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_format *f)
{
struct imx7_csi *csi = video_drvdata(file);
f->fmt.pix = csi->vdev_fmt;
return 0;
}
static const struct imx7_csi_pixfmt *
__imx7_csi_video_try_fmt(struct v4l2_pix_format *pixfmt,
struct v4l2_rect *compose)
{
const struct imx7_csi_pixfmt *cc;
u32 walign;
if (compose) {
compose->width = pixfmt->width;
compose->height = pixfmt->height;
}
/*
* Find the pixel format, default to the first supported format if not
* found.
*/
cc = imx7_csi_find_pixel_format(pixfmt->pixelformat);
if (!cc) {
pixfmt->pixelformat = IMX7_CSI_DEF_PIX_FORMAT;
cc = imx7_csi_find_pixel_format(pixfmt->pixelformat);
}
/*
* The width alignment is 8 bytes as indicated by the
* CSI_IMAG_PARA.IMAGE_WIDTH documentation. Convert it to pixels.
*
* TODO: Implement configurable stride support.
*/
walign = 8 * 8 / cc->bpp;
pixfmt->width = clamp(round_up(pixfmt->width, walign), walign,
round_down(65535U, walign));
pixfmt->height = clamp(pixfmt->height, 1U, 65535U);
pixfmt->bytesperline = pixfmt->width * cc->bpp / 8;
pixfmt->sizeimage = pixfmt->bytesperline * pixfmt->height;
pixfmt->field = V4L2_FIELD_NONE;
return cc;
}
static int imx7_csi_video_try_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_format *f)
{
__imx7_csi_video_try_fmt(&f->fmt.pix, NULL);
return 0;
}
static int imx7_csi_video_s_fmt_vid_cap(struct file *file, void *fh,
struct v4l2_format *f)
{
struct imx7_csi *csi = video_drvdata(file);
const struct imx7_csi_pixfmt *cc;
if (vb2_is_busy(&csi->q)) {
dev_err(csi->dev, "%s queue busy\n", __func__);
return -EBUSY;
}
cc = __imx7_csi_video_try_fmt(&f->fmt.pix, &csi->vdev_compose);
csi->vdev_cc = cc;
csi->vdev_fmt = f->fmt.pix;
return 0;
}
static int imx7_csi_video_g_selection(struct file *file, void *fh,
struct v4l2_selection *s)
{
struct imx7_csi *csi = video_drvdata(file);
if (s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
switch (s->target) {
case V4L2_SEL_TGT_COMPOSE:
case V4L2_SEL_TGT_COMPOSE_DEFAULT:
case V4L2_SEL_TGT_COMPOSE_BOUNDS:
/* The compose rectangle is fixed to the source format. */
s->r = csi->vdev_compose;
break;
case V4L2_SEL_TGT_COMPOSE_PADDED:
/*
* The hardware writes with a configurable but fixed DMA burst
* size. If the source format width is not burst size aligned,
* the written frame contains padding to the right.
*/
s->r.left = 0;
s->r.top = 0;
s->r.width = csi->vdev_fmt.width;
s->r.height = csi->vdev_fmt.height;
break;
default:
return -EINVAL;
}
return 0;
}
static const struct v4l2_ioctl_ops imx7_csi_video_ioctl_ops = {
.vidioc_querycap = imx7_csi_video_querycap,
.vidioc_enum_fmt_vid_cap = imx7_csi_video_enum_fmt_vid_cap,
.vidioc_enum_framesizes = imx7_csi_video_enum_framesizes,
.vidioc_g_fmt_vid_cap = imx7_csi_video_g_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = imx7_csi_video_try_fmt_vid_cap,
.vidioc_s_fmt_vid_cap = imx7_csi_video_s_fmt_vid_cap,
.vidioc_g_selection = imx7_csi_video_g_selection,
.vidioc_reqbufs = vb2_ioctl_reqbufs,
.vidioc_create_bufs = vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
};
/* -----------------------------------------------------------------------------
* Video Capture Device - Queue Operations
*/
static int imx7_csi_video_queue_setup(struct vb2_queue *vq,
unsigned int *nbuffers,
unsigned int *nplanes,
unsigned int sizes[],
struct device *alloc_devs[])
{
struct imx7_csi *csi = vb2_get_drv_priv(vq);
struct v4l2_pix_format *pix = &csi->vdev_fmt;
unsigned int count = *nbuffers;
if (vq->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (*nplanes) {
if (*nplanes != 1 || sizes[0] < pix->sizeimage)
return -EINVAL;
count += vq->num_buffers;
}
count = min_t(__u32, IMX7_CSI_VIDEO_MEM_LIMIT / pix->sizeimage, count);
if (*nplanes)
*nbuffers = (count < vq->num_buffers) ? 0 :
count - vq->num_buffers;
else
*nbuffers = count;
*nplanes = 1;
sizes[0] = pix->sizeimage;
return 0;
}
static int imx7_csi_video_buf_init(struct vb2_buffer *vb)
{
struct imx7_csi_vb2_buffer *buf = to_imx7_csi_vb2_buffer(vb);
INIT_LIST_HEAD(&buf->list);
return 0;
}
static int imx7_csi_video_buf_prepare(struct vb2_buffer *vb)
{
struct imx7_csi *csi = vb2_get_drv_priv(vb->vb2_queue);
struct v4l2_pix_format *pix = &csi->vdev_fmt;
if (vb2_plane_size(vb, 0) < pix->sizeimage) {
dev_err(csi->dev,
"data will not fit into plane (%lu < %lu)\n",
vb2_plane_size(vb, 0), (long)pix->sizeimage);
return -EINVAL;
}
vb2_set_plane_payload(vb, 0, pix->sizeimage);
return 0;
}
static bool imx7_csi_fast_track_buffer(struct imx7_csi *csi,
struct imx7_csi_vb2_buffer *buf)
{
unsigned long flags;
dma_addr_t dma_addr;
int buf_num;
u32 isr;
if (!csi->is_streaming)
return false;
dma_addr = vb2_dma_contig_plane_dma_addr(&buf->vbuf.vb2_buf, 0);
/*
* buf_num holds the framebuffer ID of the most recently (*not* the
* next anticipated) triggered interrupt. Without loss of generality,
* if buf_num is 0, the hardware is capturing to FB2. If FB1 has been
* programmed with a dummy buffer (as indicated by active_vb2_buf[0]
* being NULL), then we can fast-track the new buffer by programming
* its address in FB1 before the hardware completes FB2, instead of
* adding it to the buffer queue and incurring a delay of one
* additional frame.
*
* The irqlock prevents races with the interrupt handler that updates
* buf_num when it programs the next buffer, but we can still race with
* the hardware if we program the buffer in FB1 just after the hardware
* completes FB2 and switches to FB1 and before buf_num can be updated
* by the interrupt handler for FB2. The fast-tracked buffer would
* then be ignored by the hardware while the driver would think it has
* successfully been processed.
*
* To avoid this problem, if we can't avoid the race, we can detect
* that we have lost it by checking, after programming the buffer in
* FB1, if the interrupt flag indicating completion of FB2 has been
* raised. If that is not the case, fast-tracking succeeded, and we can
* update active_vb2_buf[0]. Otherwise, we may or may not have lost the
* race (as the interrupt flag may have been raised just after
* programming FB1 and before we read the interrupt status register),
* and we need to assume the worst case of a race loss and queue the
* buffer through the slow path.
*/
spin_lock_irqsave(&csi->irqlock, flags);
buf_num = csi->buf_num;
if (csi->active_vb2_buf[buf_num]) {
spin_unlock_irqrestore(&csi->irqlock, flags);
return false;
}
imx7_csi_update_buf(csi, dma_addr, buf_num);
isr = imx7_csi_reg_read(csi, CSI_CSISR);
if (isr & (buf_num ? BIT_DMA_TSF_DONE_FB1 : BIT_DMA_TSF_DONE_FB2)) {
/*
* The interrupt for the /other/ FB just came (the isr hasn't
* run yet though, because we have the lock here); we can't be
* sure we've programmed buf_num FB in time, so queue the buffer
* to the buffer queue normally. No need to undo writing the FB
* register, since we won't return it as active_vb2_buf is NULL,
* so it's okay to potentially write it to both FB1 and FB2;
* only the one where it was queued normally will be returned.
*/
spin_unlock_irqrestore(&csi->irqlock, flags);
return false;
}
csi->active_vb2_buf[buf_num] = buf;
spin_unlock_irqrestore(&csi->irqlock, flags);
return true;
}
static void imx7_csi_video_buf_queue(struct vb2_buffer *vb)
{
struct imx7_csi *csi = vb2_get_drv_priv(vb->vb2_queue);
struct imx7_csi_vb2_buffer *buf = to_imx7_csi_vb2_buffer(vb);
unsigned long flags;
if (imx7_csi_fast_track_buffer(csi, buf))
return;
spin_lock_irqsave(&csi->q_lock, flags);
list_add_tail(&buf->list, &csi->ready_q);
spin_unlock_irqrestore(&csi->q_lock, flags);
}
static int imx7_csi_video_validate_fmt(struct imx7_csi *csi)
{
struct v4l2_subdev_format fmt_src = {
.pad = IMX7_CSI_PAD_SRC,
.which = V4L2_SUBDEV_FORMAT_ACTIVE,
};
const struct imx7_csi_pixfmt *cc;
int ret;
/* Retrieve the media bus format on the source subdev. */
ret = v4l2_subdev_call_state_active(&csi->sd, pad, get_fmt, &fmt_src);
if (ret)
return ret;
/*
* Verify that the media bus size matches the size set on the video
* node. It is sufficient to check the compose rectangle size without
* checking the rounded size from pix_fmt, as the rounded size is
* derived directly from the compose rectangle size, and will thus
* always match if the compose rectangle matches.
*/
if (csi->vdev_compose.width != fmt_src.format.width ||
csi->vdev_compose.height != fmt_src.format.height)
return -EPIPE;
/*
* Verify that the media bus code is compatible with the pixel format
* set on the video node.
*/
cc = imx7_csi_find_mbus_format(fmt_src.format.code);
if (!cc || csi->vdev_cc->yuv != cc->yuv)
return -EPIPE;
return 0;
}
static int imx7_csi_video_start_streaming(struct vb2_queue *vq,
unsigned int count)
{
struct imx7_csi *csi = vb2_get_drv_priv(vq);
struct imx7_csi_vb2_buffer *buf, *tmp;
unsigned long flags;
int ret;
ret = imx7_csi_video_validate_fmt(csi);
if (ret) {
dev_err(csi->dev, "capture format not valid\n");
goto err_buffers;
}
mutex_lock(&csi->mdev.graph_mutex);
ret = __video_device_pipeline_start(csi->vdev, &csi->pipe);
if (ret)
goto err_unlock;
ret = v4l2_subdev_call(&csi->sd, video, s_stream, 1);
if (ret)
goto err_stop;
mutex_unlock(&csi->mdev.graph_mutex);
return 0;
err_stop:
__video_device_pipeline_stop(csi->vdev);
err_unlock:
mutex_unlock(&csi->mdev.graph_mutex);
dev_err(csi->dev, "pipeline start failed with %d\n", ret);
err_buffers:
spin_lock_irqsave(&csi->q_lock, flags);
list_for_each_entry_safe(buf, tmp, &csi->ready_q, list) {
list_del(&buf->list);
vb2_buffer_done(&buf->vbuf.vb2_buf, VB2_BUF_STATE_QUEUED);
}
spin_unlock_irqrestore(&csi->q_lock, flags);
return ret;
}
static void imx7_csi_video_stop_streaming(struct vb2_queue *vq)
{
struct imx7_csi *csi = vb2_get_drv_priv(vq);
struct imx7_csi_vb2_buffer *frame;
struct imx7_csi_vb2_buffer *tmp;
unsigned long flags;
mutex_lock(&csi->mdev.graph_mutex);
v4l2_subdev_call(&csi->sd, video, s_stream, 0);
__video_device_pipeline_stop(csi->vdev);
mutex_unlock(&csi->mdev.graph_mutex);
/* release all active buffers */
spin_lock_irqsave(&csi->q_lock, flags);
list_for_each_entry_safe(frame, tmp, &csi->ready_q, list) {
list_del(&frame->list);
vb2_buffer_done(&frame->vbuf.vb2_buf, VB2_BUF_STATE_ERROR);
}
spin_unlock_irqrestore(&csi->q_lock, flags);
}
static const struct vb2_ops imx7_csi_video_qops = {
.queue_setup = imx7_csi_video_queue_setup,
.buf_init = imx7_csi_video_buf_init,
.buf_prepare = imx7_csi_video_buf_prepare,
.buf_queue = imx7_csi_video_buf_queue,
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.start_streaming = imx7_csi_video_start_streaming,
.stop_streaming = imx7_csi_video_stop_streaming,
};
/* -----------------------------------------------------------------------------
* Video Capture Device - File Operations
*/
static int imx7_csi_video_open(struct file *file)
{
struct imx7_csi *csi = video_drvdata(file);
int ret;
if (mutex_lock_interruptible(&csi->vdev_mutex))
return -ERESTARTSYS;
ret = v4l2_fh_open(file);
if (ret) {
dev_err(csi->dev, "v4l2_fh_open failed\n");
goto out;
}
ret = v4l2_pipeline_pm_get(&csi->vdev->entity);
if (ret)
v4l2_fh_release(file);
out:
mutex_unlock(&csi->vdev_mutex);
return ret;
}
static int imx7_csi_video_release(struct file *file)
{
struct imx7_csi *csi = video_drvdata(file);
struct vb2_queue *vq = &csi->q;
mutex_lock(&csi->vdev_mutex);
if (file->private_data == vq->owner) {
vb2_queue_release(vq);
vq->owner = NULL;
}
v4l2_pipeline_pm_put(&csi->vdev->entity);
v4l2_fh_release(file);
mutex_unlock(&csi->vdev_mutex);
return 0;
}
static const struct v4l2_file_operations imx7_csi_video_fops = {
.owner = THIS_MODULE,
.open = imx7_csi_video_open,
.release = imx7_csi_video_release,
.poll = vb2_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = vb2_fop_mmap,
};
/* -----------------------------------------------------------------------------
* Video Capture Device - Init & Cleanup
*/
static struct imx7_csi_vb2_buffer *imx7_csi_video_next_buf(struct imx7_csi *csi)
{
struct imx7_csi_vb2_buffer *buf = NULL;
unsigned long flags;
spin_lock_irqsave(&csi->q_lock, flags);
/* get next queued buffer */
if (!list_empty(&csi->ready_q)) {
buf = list_entry(csi->ready_q.next, struct imx7_csi_vb2_buffer,
list);
list_del(&buf->list);
}
spin_unlock_irqrestore(&csi->q_lock, flags);
return buf;
}
static void imx7_csi_video_init_format(struct imx7_csi *csi)
{
struct v4l2_pix_format *pixfmt = &csi->vdev_fmt;
pixfmt->width = IMX7_CSI_DEF_PIX_WIDTH;
pixfmt->height = IMX7_CSI_DEF_PIX_HEIGHT;
csi->vdev_cc = __imx7_csi_video_try_fmt(pixfmt, &csi->vdev_compose);
}
static int imx7_csi_video_register(struct imx7_csi *csi)
{
struct v4l2_subdev *sd = &csi->sd;
struct v4l2_device *v4l2_dev = sd->v4l2_dev;
struct video_device *vdev = csi->vdev;
int ret;
vdev->v4l2_dev = v4l2_dev;
/* Initialize the default format and compose rectangle. */
imx7_csi_video_init_format(csi);
/* Register the video device. */
ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (ret) {
dev_err(csi->dev, "Failed to register video device\n");
return ret;
}
dev_info(csi->dev, "Registered %s as /dev/%s\n", vdev->name,
video_device_node_name(vdev));
/* Create the link from the CSI subdev to the video device. */
ret = media_create_pad_link(&sd->entity, IMX7_CSI_PAD_SRC,
&vdev->entity, 0, MEDIA_LNK_FL_IMMUTABLE |
MEDIA_LNK_FL_ENABLED);
if (ret) {
dev_err(csi->dev, "failed to create link to device node\n");
video_unregister_device(vdev);
return ret;
}
return 0;
}
static void imx7_csi_video_unregister(struct imx7_csi *csi)
{
media_entity_cleanup(&csi->vdev->entity);
video_unregister_device(csi->vdev);
}
static int imx7_csi_video_init(struct imx7_csi *csi)
{
struct video_device *vdev;
struct vb2_queue *vq;
int ret;
mutex_init(&csi->vdev_mutex);
INIT_LIST_HEAD(&csi->ready_q);
spin_lock_init(&csi->q_lock);
/* Allocate and initialize the video device. */
vdev = video_device_alloc();
if (!vdev)
return -ENOMEM;
vdev->fops = &imx7_csi_video_fops;
vdev->ioctl_ops = &imx7_csi_video_ioctl_ops;
vdev->minor = -1;
vdev->release = video_device_release;
vdev->vfl_dir = VFL_DIR_RX;
vdev->tvnorms = V4L2_STD_NTSC | V4L2_STD_PAL | V4L2_STD_SECAM;
vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING
| V4L2_CAP_IO_MC;
vdev->lock = &csi->vdev_mutex;
vdev->queue = &csi->q;
snprintf(vdev->name, sizeof(vdev->name), "%s capture", csi->sd.name);
video_set_drvdata(vdev, csi);
csi->vdev = vdev;
/* Initialize the video device pad. */
csi->vdev_pad.flags = MEDIA_PAD_FL_SINK;
ret = media_entity_pads_init(&vdev->entity, 1, &csi->vdev_pad);
if (ret) {
video_device_release(vdev);
return ret;
}
/* Initialize the vb2 queue. */
vq = &csi->q;
vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
vq->io_modes = VB2_MMAP | VB2_DMABUF;
vq->drv_priv = csi;
vq->buf_struct_size = sizeof(struct imx7_csi_vb2_buffer);
vq->ops = &imx7_csi_video_qops;
vq->mem_ops = &vb2_dma_contig_memops;
vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
vq->lock = &csi->vdev_mutex;
vq->min_buffers_needed = 2;
vq->dev = csi->dev;
ret = vb2_queue_init(vq);
if (ret) {
dev_err(csi->dev, "vb2_queue_init failed\n");
video_device_release(vdev);
return ret;
}
return 0;
}
/* -----------------------------------------------------------------------------
* V4L2 Subdev Operations
*/
static int imx7_csi_s_stream(struct v4l2_subdev *sd, int enable)
{
struct imx7_csi *csi = v4l2_get_subdevdata(sd);
struct v4l2_subdev_state *sd_state;
int ret = 0;
sd_state = v4l2_subdev_lock_and_get_active_state(sd);
if (enable) {
ret = imx7_csi_init(csi, sd_state);
if (ret < 0)
goto out_unlock;
ret = v4l2_subdev_call(csi->src_sd, video, s_stream, 1);
if (ret < 0) {
imx7_csi_deinit(csi, VB2_BUF_STATE_QUEUED);
goto out_unlock;
}
imx7_csi_enable(csi);
} else {
imx7_csi_disable(csi);
v4l2_subdev_call(csi->src_sd, video, s_stream, 0);
imx7_csi_deinit(csi, VB2_BUF_STATE_ERROR);
}
csi->is_streaming = !!enable;
out_unlock:
v4l2_subdev_unlock_state(sd_state);
return ret;
}
static int imx7_csi_init_cfg(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
const struct imx7_csi_pixfmt *cc;
int i;
cc = imx7_csi_find_mbus_format(IMX7_CSI_DEF_MBUS_CODE);
for (i = 0; i < IMX7_CSI_PADS_NUM; i++) {
struct v4l2_mbus_framefmt *mf =
v4l2_subdev_get_pad_format(sd, sd_state, i);
mf->code = IMX7_CSI_DEF_MBUS_CODE;
mf->width = IMX7_CSI_DEF_PIX_WIDTH;
mf->height = IMX7_CSI_DEF_PIX_HEIGHT;
mf->field = V4L2_FIELD_NONE;
mf->colorspace = V4L2_COLORSPACE_SRGB;
mf->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(mf->colorspace);
mf->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(mf->colorspace);
mf->quantization = V4L2_MAP_QUANTIZATION_DEFAULT(!cc->yuv,
mf->colorspace, mf->ycbcr_enc);
}
return 0;
}
static int imx7_csi_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
struct v4l2_mbus_framefmt *in_fmt;
int ret = 0;
in_fmt = v4l2_subdev_get_pad_format(sd, sd_state, IMX7_CSI_PAD_SINK);
switch (code->pad) {
case IMX7_CSI_PAD_SINK:
ret = imx7_csi_enum_mbus_formats(&code->code, code->index);
break;
case IMX7_CSI_PAD_SRC:
if (code->index != 0) {
ret = -EINVAL;
break;
}
code->code = in_fmt->code;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
/*
* Default the colorspace in tryfmt to SRGB if set to an unsupported
* colorspace or not initialized. Then set the remaining colorimetry
* parameters based on the colorspace if they are uninitialized.
*
* tryfmt->code must be set on entry.
*/
static void imx7_csi_try_colorimetry(struct v4l2_mbus_framefmt *tryfmt)
{
const struct imx7_csi_pixfmt *cc;
bool is_rgb = false;
cc = imx7_csi_find_mbus_format(tryfmt->code);
if (cc && !cc->yuv)
is_rgb = true;
switch (tryfmt->colorspace) {
case V4L2_COLORSPACE_SMPTE170M:
case V4L2_COLORSPACE_REC709:
case V4L2_COLORSPACE_JPEG:
case V4L2_COLORSPACE_SRGB:
case V4L2_COLORSPACE_BT2020:
case V4L2_COLORSPACE_OPRGB:
case V4L2_COLORSPACE_DCI_P3:
case V4L2_COLORSPACE_RAW:
break;
default:
tryfmt->colorspace = V4L2_COLORSPACE_SRGB;
break;
}
if (tryfmt->xfer_func == V4L2_XFER_FUNC_DEFAULT)
tryfmt->xfer_func =
V4L2_MAP_XFER_FUNC_DEFAULT(tryfmt->colorspace);
if (tryfmt->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT)
tryfmt->ycbcr_enc =
V4L2_MAP_YCBCR_ENC_DEFAULT(tryfmt->colorspace);
if (tryfmt->quantization == V4L2_QUANTIZATION_DEFAULT)
tryfmt->quantization =
V4L2_MAP_QUANTIZATION_DEFAULT(is_rgb,
tryfmt->colorspace,
tryfmt->ycbcr_enc);
}
static void imx7_csi_try_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *sdformat,
const struct imx7_csi_pixfmt **cc)
{
const struct imx7_csi_pixfmt *in_cc;
struct v4l2_mbus_framefmt *in_fmt;
u32 code;
in_fmt = v4l2_subdev_get_pad_format(sd, sd_state, IMX7_CSI_PAD_SINK);
switch (sdformat->pad) {
case IMX7_CSI_PAD_SRC:
in_cc = imx7_csi_find_mbus_format(in_fmt->code);
sdformat->format.width = in_fmt->width;
sdformat->format.height = in_fmt->height;
sdformat->format.code = in_fmt->code;
sdformat->format.field = in_fmt->field;
*cc = in_cc;
sdformat->format.colorspace = in_fmt->colorspace;
sdformat->format.xfer_func = in_fmt->xfer_func;
sdformat->format.quantization = in_fmt->quantization;
sdformat->format.ycbcr_enc = in_fmt->ycbcr_enc;
break;
case IMX7_CSI_PAD_SINK:
*cc = imx7_csi_find_mbus_format(sdformat->format.code);
if (!*cc) {
code = IMX7_CSI_DEF_MBUS_CODE;
*cc = imx7_csi_find_mbus_format(code);
sdformat->format.code = code;
}
if (sdformat->format.field != V4L2_FIELD_INTERLACED)
sdformat->format.field = V4L2_FIELD_NONE;
break;
}
imx7_csi_try_colorimetry(&sdformat->format);
}
static int imx7_csi_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *sdformat)
{
struct imx7_csi *csi = v4l2_get_subdevdata(sd);
const struct imx7_csi_pixfmt *outcc;
struct v4l2_mbus_framefmt *outfmt;
const struct imx7_csi_pixfmt *cc;
struct v4l2_mbus_framefmt *fmt;
struct v4l2_subdev_format format;
if (csi->is_streaming)
return -EBUSY;
imx7_csi_try_fmt(sd, sd_state, sdformat, &cc);
fmt = v4l2_subdev_get_pad_format(sd, sd_state, sdformat->pad);
*fmt = sdformat->format;
if (sdformat->pad == IMX7_CSI_PAD_SINK) {
/* propagate format to source pads */
format.pad = IMX7_CSI_PAD_SRC;
format.which = sdformat->which;
format.format = sdformat->format;
imx7_csi_try_fmt(sd, sd_state, &format, &outcc);
outfmt = v4l2_subdev_get_pad_format(sd, sd_state,
IMX7_CSI_PAD_SRC);
*outfmt = format.format;
}
return 0;
}
static int imx7_csi_pad_link_validate(struct v4l2_subdev *sd,
struct media_link *link,
struct v4l2_subdev_format *source_fmt,
struct v4l2_subdev_format *sink_fmt)
{
struct imx7_csi *csi = v4l2_get_subdevdata(sd);
struct media_pad *pad = NULL;
unsigned int i;
int ret;
/*
* Validate the source link, and record whether the source uses the
* parallel input or the CSI-2 receiver.
*/
ret = v4l2_subdev_link_validate_default(sd, link, source_fmt, sink_fmt);
if (ret)
return ret;
switch (csi->src_sd->entity.function) {
case MEDIA_ENT_F_VID_IF_BRIDGE:
/* The input is the CSI-2 receiver. */
csi->is_csi2 = true;
break;
case MEDIA_ENT_F_VID_MUX:
/* The input is the mux, check its input. */
for (i = 0; i < csi->src_sd->entity.num_pads; i++) {
struct media_pad *spad = &csi->src_sd->entity.pads[i];
if (!(spad->flags & MEDIA_PAD_FL_SINK))
continue;
pad = media_pad_remote_pad_first(spad);
if (pad)
break;
}
if (!pad)
return -ENODEV;
csi->is_csi2 = pad->entity->function == MEDIA_ENT_F_VID_IF_BRIDGE;
break;
default:
/*
* The input is an external entity, it must use the parallel
* bus.
*/
csi->is_csi2 = false;
break;
}
return 0;
}
static int imx7_csi_registered(struct v4l2_subdev *sd)
{
struct imx7_csi *csi = v4l2_get_subdevdata(sd);
int ret;
ret = imx7_csi_video_init(csi);
if (ret)
return ret;
ret = imx7_csi_video_register(csi);
if (ret)
return ret;
ret = v4l2_device_register_subdev_nodes(&csi->v4l2_dev);
if (ret)
goto err_unreg;
ret = media_device_register(&csi->mdev);
if (ret)
goto err_unreg;
return 0;
err_unreg:
imx7_csi_video_unregister(csi);
return ret;
}
static void imx7_csi_unregistered(struct v4l2_subdev *sd)
{
struct imx7_csi *csi = v4l2_get_subdevdata(sd);
imx7_csi_video_unregister(csi);
}
static const struct v4l2_subdev_video_ops imx7_csi_video_ops = {
.s_stream = imx7_csi_s_stream,
};
static const struct v4l2_subdev_pad_ops imx7_csi_pad_ops = {
.init_cfg = imx7_csi_init_cfg,
.enum_mbus_code = imx7_csi_enum_mbus_code,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = imx7_csi_set_fmt,
.link_validate = imx7_csi_pad_link_validate,
};
static const struct v4l2_subdev_ops imx7_csi_subdev_ops = {
.video = &imx7_csi_video_ops,
.pad = &imx7_csi_pad_ops,
};
static const struct v4l2_subdev_internal_ops imx7_csi_internal_ops = {
.registered = imx7_csi_registered,
.unregistered = imx7_csi_unregistered,
};
/* -----------------------------------------------------------------------------
* Media Entity Operations
*/
static const struct media_entity_operations imx7_csi_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
.get_fwnode_pad = v4l2_subdev_get_fwnode_pad_1_to_1,
};
/* -----------------------------------------------------------------------------
* Probe & Remove
*/
static int imx7_csi_notify_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd,
struct v4l2_async_connection *asd)
{
struct imx7_csi *csi = imx7_csi_notifier_to_dev(notifier);
struct media_pad *sink = &csi->sd.entity.pads[IMX7_CSI_PAD_SINK];
csi->src_sd = sd;
return v4l2_create_fwnode_links_to_pad(sd, sink, MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
}
static int imx7_csi_notify_complete(struct v4l2_async_notifier *notifier)
{
struct imx7_csi *csi = imx7_csi_notifier_to_dev(notifier);
return v4l2_device_register_subdev_nodes(&csi->v4l2_dev);
}
static const struct v4l2_async_notifier_operations imx7_csi_notify_ops = {
.bound = imx7_csi_notify_bound,
.complete = imx7_csi_notify_complete,
};
static int imx7_csi_async_register(struct imx7_csi *csi)
{
struct v4l2_async_connection *asd;
struct fwnode_handle *ep;
int ret;
v4l2_async_nf_init(&csi->notifier, &csi->v4l2_dev);
ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(csi->dev), 0, 0,
FWNODE_GRAPH_ENDPOINT_NEXT);
if (!ep) {
ret = dev_err_probe(csi->dev, -ENOTCONN,
"Failed to get remote endpoint\n");
goto error;
}
asd = v4l2_async_nf_add_fwnode_remote(&csi->notifier, ep,
struct v4l2_async_connection);
fwnode_handle_put(ep);
if (IS_ERR(asd)) {
ret = dev_err_probe(csi->dev, PTR_ERR(asd),
"Failed to add remote subdev to notifier\n");
goto error;
}
csi->notifier.ops = &imx7_csi_notify_ops;
ret = v4l2_async_nf_register(&csi->notifier);
if (ret)
goto error;
return 0;
error:
v4l2_async_nf_cleanup(&csi->notifier);
return ret;
}
static void imx7_csi_media_cleanup(struct imx7_csi *csi)
{
v4l2_device_unregister(&csi->v4l2_dev);
media_device_unregister(&csi->mdev);
v4l2_subdev_cleanup(&csi->sd);
media_device_cleanup(&csi->mdev);
}
static const struct media_device_ops imx7_csi_media_ops = {
.link_notify = v4l2_pipeline_link_notify,
};
static int imx7_csi_media_dev_init(struct imx7_csi *csi)
{
int ret;
strscpy(csi->mdev.model, "imx-media", sizeof(csi->mdev.model));
csi->mdev.ops = &imx7_csi_media_ops;
csi->mdev.dev = csi->dev;
csi->v4l2_dev.mdev = &csi->mdev;
strscpy(csi->v4l2_dev.name, "imx-media",
sizeof(csi->v4l2_dev.name));
snprintf(csi->mdev.bus_info, sizeof(csi->mdev.bus_info),
"platform:%s", dev_name(csi->mdev.dev));
media_device_init(&csi->mdev);
ret = v4l2_device_register(csi->dev, &csi->v4l2_dev);
if (ret < 0) {
v4l2_err(&csi->v4l2_dev,
"Failed to register v4l2_device: %d\n", ret);
goto cleanup;
}
return 0;
cleanup:
media_device_cleanup(&csi->mdev);
return ret;
}
static int imx7_csi_media_init(struct imx7_csi *csi)
{
unsigned int i;
int ret;
/* add media device */
ret = imx7_csi_media_dev_init(csi);
if (ret)
return ret;
v4l2_subdev_init(&csi->sd, &imx7_csi_subdev_ops);
v4l2_set_subdevdata(&csi->sd, csi);
csi->sd.internal_ops = &imx7_csi_internal_ops;
csi->sd.entity.ops = &imx7_csi_entity_ops;
csi->sd.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
csi->sd.dev = csi->dev;
csi->sd.owner = THIS_MODULE;
csi->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
snprintf(csi->sd.name, sizeof(csi->sd.name), "csi");
for (i = 0; i < IMX7_CSI_PADS_NUM; i++)
csi->pad[i].flags = (i == IMX7_CSI_PAD_SINK) ?
MEDIA_PAD_FL_SINK : MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&csi->sd.entity, IMX7_CSI_PADS_NUM,
csi->pad);
if (ret)
goto error;
ret = v4l2_subdev_init_finalize(&csi->sd);
if (ret)
goto error;
ret = v4l2_device_register_subdev(&csi->v4l2_dev, &csi->sd);
if (ret)
goto error;
return 0;
error:
imx7_csi_media_cleanup(csi);
return ret;
}
static int imx7_csi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct imx7_csi *csi;
int ret;
csi = devm_kzalloc(&pdev->dev, sizeof(*csi), GFP_KERNEL);
if (!csi)
return -ENOMEM;
csi->dev = dev;
platform_set_drvdata(pdev, csi);
spin_lock_init(&csi->irqlock);
/* Acquire resources and install interrupt handler. */
csi->mclk = devm_clk_get(&pdev->dev, "mclk");
if (IS_ERR(csi->mclk)) {
ret = PTR_ERR(csi->mclk);
dev_err(dev, "Failed to get mclk: %d", ret);
return ret;
}
csi->irq = platform_get_irq(pdev, 0);
if (csi->irq < 0)
return csi->irq;
csi->regbase = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(csi->regbase))
return PTR_ERR(csi->regbase);
csi->model = (enum imx_csi_model)(uintptr_t)of_device_get_match_data(&pdev->dev);
ret = devm_request_irq(dev, csi->irq, imx7_csi_irq_handler, 0, "csi",
(void *)csi);
if (ret < 0) {
dev_err(dev, "Request CSI IRQ failed.\n");
return ret;
}
/* Initialize all the media device infrastructure. */
ret = imx7_csi_media_init(csi);
if (ret)
return ret;
ret = imx7_csi_async_register(csi);
if (ret)
goto err_media_cleanup;
return 0;
err_media_cleanup:
imx7_csi_media_cleanup(csi);
return ret;
}
static void imx7_csi_remove(struct platform_device *pdev)
{
struct imx7_csi *csi = platform_get_drvdata(pdev);
imx7_csi_media_cleanup(csi);
v4l2_async_nf_unregister(&csi->notifier);
v4l2_async_nf_cleanup(&csi->notifier);
v4l2_async_unregister_subdev(&csi->sd);
}
static const struct of_device_id imx7_csi_of_match[] = {
{ .compatible = "fsl,imx8mq-csi", .data = (void *)IMX7_CSI_IMX8MQ },
{ .compatible = "fsl,imx7-csi", .data = (void *)IMX7_CSI_IMX7 },
{ .compatible = "fsl,imx6ul-csi", .data = (void *)IMX7_CSI_IMX7 },
{ },
};
MODULE_DEVICE_TABLE(of, imx7_csi_of_match);
static struct platform_driver imx7_csi_driver = {
.probe = imx7_csi_probe,
.remove_new = imx7_csi_remove,
.driver = {
.of_match_table = imx7_csi_of_match,
.name = "imx7-csi",
},
};
module_platform_driver(imx7_csi_driver);
MODULE_DESCRIPTION("i.MX7 CSI subdev driver");
MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:imx7-csi");