| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2005, Intec Automation Inc. |
| * Copyright (C) 2014, Freescale Semiconductor, Inc. |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/device.h> |
| #include <linux/errno.h> |
| #include <linux/mtd/spi-nor.h> |
| |
| #include "core.h" |
| |
| /* flash_info mfr_flag. Used to clear sticky prorietary SR bits. */ |
| #define USE_CLSR BIT(0) |
| #define USE_CLPEF BIT(1) |
| |
| #define SPINOR_OP_CLSR 0x30 /* Clear status register 1 */ |
| #define SPINOR_OP_CLPEF 0x82 /* Clear program/erase failure flags */ |
| #define SPINOR_OP_RD_ANY_REG 0x65 /* Read any register */ |
| #define SPINOR_OP_WR_ANY_REG 0x71 /* Write any register */ |
| #define SPINOR_REG_CYPRESS_VREG 0x00800000 |
| #define SPINOR_REG_CYPRESS_STR1 0x0 |
| #define SPINOR_REG_CYPRESS_STR1V \ |
| (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_STR1) |
| #define SPINOR_REG_CYPRESS_CFR1 0x2 |
| #define SPINOR_REG_CYPRESS_CFR1_QUAD_EN BIT(1) /* Quad Enable */ |
| #define SPINOR_REG_CYPRESS_CFR2 0x3 |
| #define SPINOR_REG_CYPRESS_CFR2V \ |
| (SPINOR_REG_CYPRESS_VREG + SPINOR_REG_CYPRESS_CFR2) |
| #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK GENMASK(3, 0) |
| #define SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24 0xb |
| #define SPINOR_REG_CYPRESS_CFR2_ADRBYT BIT(7) |
| #define SPINOR_REG_CYPRESS_CFR3 0x4 |
| #define SPINOR_REG_CYPRESS_CFR3_PGSZ BIT(4) /* Page size. */ |
| #define SPINOR_REG_CYPRESS_CFR5 0x6 |
| #define SPINOR_REG_CYPRESS_CFR5_BIT6 BIT(6) |
| #define SPINOR_REG_CYPRESS_CFR5_DDR BIT(1) |
| #define SPINOR_REG_CYPRESS_CFR5_OPI BIT(0) |
| #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN \ |
| (SPINOR_REG_CYPRESS_CFR5_BIT6 | SPINOR_REG_CYPRESS_CFR5_DDR | \ |
| SPINOR_REG_CYPRESS_CFR5_OPI) |
| #define SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS SPINOR_REG_CYPRESS_CFR5_BIT6 |
| #define SPINOR_OP_CYPRESS_RD_FAST 0xee |
| #define SPINOR_REG_CYPRESS_ARCFN 0x00000006 |
| |
| /* Cypress SPI NOR flash operations. */ |
| #define CYPRESS_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \ |
| SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WR_ANY_REG, 0), \ |
| SPI_MEM_OP_ADDR(naddr, addr, 0), \ |
| SPI_MEM_OP_NO_DUMMY, \ |
| SPI_MEM_OP_DATA_OUT(ndata, buf, 0)) |
| |
| #define CYPRESS_NOR_RD_ANY_REG_OP(naddr, addr, ndummy, buf) \ |
| SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RD_ANY_REG, 0), \ |
| SPI_MEM_OP_ADDR(naddr, addr, 0), \ |
| SPI_MEM_OP_DUMMY(ndummy, 0), \ |
| SPI_MEM_OP_DATA_IN(1, buf, 0)) |
| |
| #define SPANSION_OP(opcode) \ |
| SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 0), \ |
| SPI_MEM_OP_NO_ADDR, \ |
| SPI_MEM_OP_NO_DUMMY, \ |
| SPI_MEM_OP_NO_DATA) |
| |
| /** |
| * struct spansion_nor_params - Spansion private parameters. |
| * @clsr: Clear Status Register or Clear Program and Erase Failure Flag |
| * opcode. |
| */ |
| struct spansion_nor_params { |
| u8 clsr; |
| }; |
| |
| /** |
| * spansion_nor_clear_sr() - Clear the Status Register. |
| * @nor: pointer to 'struct spi_nor'. |
| */ |
| static void spansion_nor_clear_sr(struct spi_nor *nor) |
| { |
| const struct spansion_nor_params *priv_params = nor->params->priv; |
| int ret; |
| |
| if (nor->spimem) { |
| struct spi_mem_op op = SPANSION_OP(priv_params->clsr); |
| |
| spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); |
| |
| ret = spi_mem_exec_op(nor->spimem, &op); |
| } else { |
| ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR, |
| NULL, 0); |
| } |
| |
| if (ret) |
| dev_dbg(nor->dev, "error %d clearing SR\n", ret); |
| } |
| |
| static int cypress_nor_sr_ready_and_clear_reg(struct spi_nor *nor, u64 addr) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| struct spi_mem_op op = |
| CYPRESS_NOR_RD_ANY_REG_OP(params->addr_mode_nbytes, addr, |
| 0, nor->bouncebuf); |
| int ret; |
| |
| if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { |
| op.dummy.nbytes = params->rdsr_dummy; |
| op.data.nbytes = 2; |
| } |
| |
| ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { |
| if (nor->bouncebuf[0] & SR_E_ERR) |
| dev_err(nor->dev, "Erase Error occurred\n"); |
| else |
| dev_err(nor->dev, "Programming Error occurred\n"); |
| |
| spansion_nor_clear_sr(nor); |
| |
| ret = spi_nor_write_disable(nor); |
| if (ret) |
| return ret; |
| |
| return -EIO; |
| } |
| |
| return !(nor->bouncebuf[0] & SR_WIP); |
| } |
| /** |
| * cypress_nor_sr_ready_and_clear() - Query the Status Register of each die by |
| * using Read Any Register command to see if the whole flash is ready for new |
| * commands and clear it if there are any errors. |
| * @nor: pointer to 'struct spi_nor'. |
| * |
| * Return: 1 if ready, 0 if not ready, -errno on errors. |
| */ |
| static int cypress_nor_sr_ready_and_clear(struct spi_nor *nor) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| u64 addr; |
| int ret; |
| u8 i; |
| |
| for (i = 0; i < params->n_dice; i++) { |
| addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_STR1; |
| ret = cypress_nor_sr_ready_and_clear_reg(nor, addr); |
| if (ret < 0) |
| return ret; |
| else if (ret == 0) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int cypress_nor_set_memlat(struct spi_nor *nor, u64 addr) |
| { |
| struct spi_mem_op op; |
| u8 *buf = nor->bouncebuf; |
| int ret; |
| u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; |
| |
| op = (struct spi_mem_op) |
| CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, buf); |
| |
| ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| /* Use 24 dummy cycles for memory array reads. */ |
| *buf &= ~SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK; |
| *buf |= FIELD_PREP(SPINOR_REG_CYPRESS_CFR2_MEMLAT_MASK, |
| SPINOR_REG_CYPRESS_CFR2_MEMLAT_11_24); |
| op = (struct spi_mem_op) |
| CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, buf); |
| |
| ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| nor->read_dummy = 24; |
| |
| return 0; |
| } |
| |
| static int cypress_nor_set_octal_dtr_bits(struct spi_nor *nor, u64 addr) |
| { |
| struct spi_mem_op op; |
| u8 *buf = nor->bouncebuf; |
| |
| /* Set the octal and DTR enable bits. */ |
| buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_EN; |
| op = (struct spi_mem_op) |
| CYPRESS_NOR_WR_ANY_REG_OP(nor->params->addr_mode_nbytes, |
| addr, 1, buf); |
| |
| return spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); |
| } |
| |
| static int cypress_nor_octal_dtr_en(struct spi_nor *nor) |
| { |
| const struct spi_nor_flash_parameter *params = nor->params; |
| u8 *buf = nor->bouncebuf; |
| u64 addr; |
| int i, ret; |
| |
| for (i = 0; i < params->n_dice; i++) { |
| addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR2; |
| ret = cypress_nor_set_memlat(nor, addr); |
| if (ret) |
| return ret; |
| |
| addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5; |
| ret = cypress_nor_set_octal_dtr_bits(nor, addr); |
| if (ret) |
| return ret; |
| } |
| |
| /* Read flash ID to make sure the switch was successful. */ |
| ret = spi_nor_read_id(nor, nor->addr_nbytes, 3, buf, |
| SNOR_PROTO_8_8_8_DTR); |
| if (ret) { |
| dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret); |
| return ret; |
| } |
| |
| if (memcmp(buf, nor->info->id, nor->info->id_len)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int cypress_nor_set_single_spi_bits(struct spi_nor *nor, u64 addr) |
| { |
| struct spi_mem_op op; |
| u8 *buf = nor->bouncebuf; |
| |
| /* |
| * The register is 1-byte wide, but 1-byte transactions are not allowed |
| * in 8D-8D-8D mode. Since there is no register at the next location, |
| * just initialize the value to 0 and let the transaction go on. |
| */ |
| buf[0] = SPINOR_REG_CYPRESS_CFR5_OCT_DTR_DS; |
| buf[1] = 0; |
| op = (struct spi_mem_op) |
| CYPRESS_NOR_WR_ANY_REG_OP(nor->addr_nbytes, addr, 2, buf); |
| return spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR); |
| } |
| |
| static int cypress_nor_octal_dtr_dis(struct spi_nor *nor) |
| { |
| const struct spi_nor_flash_parameter *params = nor->params; |
| u8 *buf = nor->bouncebuf; |
| u64 addr; |
| int i, ret; |
| |
| for (i = 0; i < params->n_dice; i++) { |
| addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR5; |
| ret = cypress_nor_set_single_spi_bits(nor, addr); |
| if (ret) |
| return ret; |
| } |
| |
| /* Read flash ID to make sure the switch was successful. */ |
| ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1); |
| if (ret) { |
| dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret); |
| return ret; |
| } |
| |
| if (memcmp(buf, nor->info->id, nor->info->id_len)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int cypress_nor_quad_enable_volatile_reg(struct spi_nor *nor, u64 addr) |
| { |
| struct spi_mem_op op; |
| u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; |
| u8 cfr1v_written; |
| int ret; |
| |
| op = (struct spi_mem_op) |
| CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, |
| nor->bouncebuf); |
| |
| ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR1_QUAD_EN) |
| return 0; |
| |
| /* Update the Quad Enable bit. */ |
| nor->bouncebuf[0] |= SPINOR_REG_CYPRESS_CFR1_QUAD_EN; |
| op = (struct spi_mem_op) |
| CYPRESS_NOR_WR_ANY_REG_OP(addr_mode_nbytes, addr, 1, |
| nor->bouncebuf); |
| ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| cfr1v_written = nor->bouncebuf[0]; |
| |
| /* Read back and check it. */ |
| op = (struct spi_mem_op) |
| CYPRESS_NOR_RD_ANY_REG_OP(addr_mode_nbytes, addr, 0, |
| nor->bouncebuf); |
| ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| if (nor->bouncebuf[0] != cfr1v_written) { |
| dev_err(nor->dev, "CFR1: Read back test failed\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * cypress_nor_quad_enable_volatile() - enable Quad I/O mode in volatile |
| * register. |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * It is recommended to update volatile registers in the field application due |
| * to a risk of the non-volatile registers corruption by power interrupt. This |
| * function sets Quad Enable bit in CFR1 volatile. If users set the Quad Enable |
| * bit in the CFR1 non-volatile in advance (typically by a Flash programmer |
| * before mounting Flash on PCB), the Quad Enable bit in the CFR1 volatile is |
| * also set during Flash power-up. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int cypress_nor_quad_enable_volatile(struct spi_nor *nor) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| u64 addr; |
| u8 i; |
| int ret; |
| |
| for (i = 0; i < params->n_dice; i++) { |
| addr = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR1; |
| ret = cypress_nor_quad_enable_volatile_reg(nor, addr); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * cypress_nor_determine_addr_mode_by_sr1() - Determine current address mode |
| * (3 or 4-byte) by querying status |
| * register 1 (SR1). |
| * @nor: pointer to a 'struct spi_nor' |
| * @addr_mode: ponter to a buffer where we return the determined |
| * address mode. |
| * |
| * This function tries to determine current address mode by comparing SR1 value |
| * from RDSR1(no address), RDAR(3-byte address), and RDAR(4-byte address). |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int cypress_nor_determine_addr_mode_by_sr1(struct spi_nor *nor, |
| u8 *addr_mode) |
| { |
| struct spi_mem_op op = |
| CYPRESS_NOR_RD_ANY_REG_OP(3, SPINOR_REG_CYPRESS_STR1V, 0, |
| nor->bouncebuf); |
| bool is3byte, is4byte; |
| int ret; |
| |
| ret = spi_nor_read_sr(nor, &nor->bouncebuf[1]); |
| if (ret) |
| return ret; |
| |
| ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| is3byte = (nor->bouncebuf[0] == nor->bouncebuf[1]); |
| |
| op = (struct spi_mem_op) |
| CYPRESS_NOR_RD_ANY_REG_OP(4, SPINOR_REG_CYPRESS_STR1V, 0, |
| nor->bouncebuf); |
| ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| is4byte = (nor->bouncebuf[0] == nor->bouncebuf[1]); |
| |
| if (is3byte == is4byte) |
| return -EIO; |
| if (is3byte) |
| *addr_mode = 3; |
| else |
| *addr_mode = 4; |
| |
| return 0; |
| } |
| |
| /** |
| * cypress_nor_set_addr_mode_nbytes() - Set the number of address bytes mode of |
| * current address mode. |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * Determine current address mode by reading SR1 with different methods, then |
| * query CFR2V[7] to confirm. If determination is failed, force enter to 4-byte |
| * address mode. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int cypress_nor_set_addr_mode_nbytes(struct spi_nor *nor) |
| { |
| struct spi_mem_op op; |
| u8 addr_mode; |
| int ret; |
| |
| /* |
| * Read SR1 by RDSR1 and RDAR(3- AND 4-byte addr). Use write enable |
| * that sets bit-1 in SR1. |
| */ |
| ret = spi_nor_write_enable(nor); |
| if (ret) |
| return ret; |
| ret = cypress_nor_determine_addr_mode_by_sr1(nor, &addr_mode); |
| if (ret) { |
| ret = spi_nor_set_4byte_addr_mode(nor, true); |
| if (ret) |
| return ret; |
| return spi_nor_write_disable(nor); |
| } |
| ret = spi_nor_write_disable(nor); |
| if (ret) |
| return ret; |
| |
| /* |
| * Query CFR2V and make sure no contradiction between determined address |
| * mode and CFR2V[7]. |
| */ |
| op = (struct spi_mem_op) |
| CYPRESS_NOR_RD_ANY_REG_OP(addr_mode, SPINOR_REG_CYPRESS_CFR2V, |
| 0, nor->bouncebuf); |
| ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| if (nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR2_ADRBYT) { |
| if (addr_mode != 4) |
| return spi_nor_set_4byte_addr_mode(nor, true); |
| } else { |
| if (addr_mode != 3) |
| return spi_nor_set_4byte_addr_mode(nor, true); |
| } |
| |
| nor->params->addr_nbytes = addr_mode; |
| nor->params->addr_mode_nbytes = addr_mode; |
| |
| return 0; |
| } |
| |
| /** |
| * cypress_nor_get_page_size() - Get flash page size configuration. |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * The BFPT table advertises a 512B or 256B page size depending on part but the |
| * page size is actually configurable (with the default being 256B). Read from |
| * CFR3V[4] and set the correct size. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int cypress_nor_get_page_size(struct spi_nor *nor) |
| { |
| struct spi_mem_op op = |
| CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, |
| 0, 0, nor->bouncebuf); |
| struct spi_nor_flash_parameter *params = nor->params; |
| int ret; |
| u8 i; |
| |
| /* |
| * Use the minimum common page size configuration. Programming 256-byte |
| * under 512-byte page size configuration is safe. |
| */ |
| params->page_size = 256; |
| for (i = 0; i < params->n_dice; i++) { |
| op.addr.val = params->vreg_offset[i] + SPINOR_REG_CYPRESS_CFR3; |
| |
| ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| if (!(nor->bouncebuf[0] & SPINOR_REG_CYPRESS_CFR3_PGSZ)) |
| return 0; |
| } |
| |
| params->page_size = 512; |
| |
| return 0; |
| } |
| |
| static void cypress_nor_ecc_init(struct spi_nor *nor) |
| { |
| /* |
| * Programming is supported only in 16-byte ECC data unit granularity. |
| * Byte-programming, bit-walking, or multiple program operations to the |
| * same ECC data unit without an erase are not allowed. |
| */ |
| nor->params->writesize = 16; |
| nor->flags |= SNOR_F_ECC; |
| } |
| |
| static int |
| s25fs256t_post_bfpt_fixup(struct spi_nor *nor, |
| const struct sfdp_parameter_header *bfpt_header, |
| const struct sfdp_bfpt *bfpt) |
| { |
| struct spi_mem_op op; |
| int ret; |
| |
| ret = cypress_nor_set_addr_mode_nbytes(nor); |
| if (ret) |
| return ret; |
| |
| /* Read Architecture Configuration Register (ARCFN) */ |
| op = (struct spi_mem_op) |
| CYPRESS_NOR_RD_ANY_REG_OP(nor->params->addr_mode_nbytes, |
| SPINOR_REG_CYPRESS_ARCFN, 1, |
| nor->bouncebuf); |
| ret = spi_nor_read_any_reg(nor, &op, nor->reg_proto); |
| if (ret) |
| return ret; |
| |
| /* ARCFN value must be 0 if uniform sector is selected */ |
| if (nor->bouncebuf[0]) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static int s25fs256t_post_sfdp_fixup(struct spi_nor *nor) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| |
| /* |
| * S25FS256T does not define the SCCR map, but we would like to use the |
| * same code base for both single and multi chip package devices, thus |
| * set the vreg_offset and n_dice to be able to do so. |
| */ |
| params->vreg_offset = devm_kmalloc(nor->dev, sizeof(u32), GFP_KERNEL); |
| if (!params->vreg_offset) |
| return -ENOMEM; |
| |
| params->vreg_offset[0] = SPINOR_REG_CYPRESS_VREG; |
| params->n_dice = 1; |
| |
| /* PP_1_1_4_4B is supported but missing in 4BAIT. */ |
| params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4; |
| spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4], |
| SPINOR_OP_PP_1_1_4_4B, |
| SNOR_PROTO_1_1_4); |
| |
| return cypress_nor_get_page_size(nor); |
| } |
| |
| static int s25fs256t_late_init(struct spi_nor *nor) |
| { |
| cypress_nor_ecc_init(nor); |
| |
| return 0; |
| } |
| |
| static struct spi_nor_fixups s25fs256t_fixups = { |
| .post_bfpt = s25fs256t_post_bfpt_fixup, |
| .post_sfdp = s25fs256t_post_sfdp_fixup, |
| .late_init = s25fs256t_late_init, |
| }; |
| |
| static int |
| s25hx_t_post_bfpt_fixup(struct spi_nor *nor, |
| const struct sfdp_parameter_header *bfpt_header, |
| const struct sfdp_bfpt *bfpt) |
| { |
| int ret; |
| |
| ret = cypress_nor_set_addr_mode_nbytes(nor); |
| if (ret) |
| return ret; |
| |
| /* Replace Quad Enable with volatile version */ |
| nor->params->quad_enable = cypress_nor_quad_enable_volatile; |
| |
| return 0; |
| } |
| |
| static int s25hx_t_post_sfdp_fixup(struct spi_nor *nor) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| struct spi_nor_erase_type *erase_type = params->erase_map.erase_type; |
| unsigned int i; |
| |
| if (!params->n_dice || !params->vreg_offset) { |
| dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n", |
| __func__); |
| return -EOPNOTSUPP; |
| } |
| |
| /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */ |
| if (params->size == SZ_256M) |
| params->n_dice = 2; |
| |
| /* |
| * In some parts, 3byte erase opcodes are advertised by 4BAIT. |
| * Convert them to 4byte erase opcodes. |
| */ |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { |
| switch (erase_type[i].opcode) { |
| case SPINOR_OP_SE: |
| erase_type[i].opcode = SPINOR_OP_SE_4B; |
| break; |
| case SPINOR_OP_BE_4K: |
| erase_type[i].opcode = SPINOR_OP_BE_4K_4B; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| return cypress_nor_get_page_size(nor); |
| } |
| |
| static int s25hx_t_late_init(struct spi_nor *nor) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| |
| /* Fast Read 4B requires mode cycles */ |
| params->reads[SNOR_CMD_READ_FAST].num_mode_clocks = 8; |
| params->ready = cypress_nor_sr_ready_and_clear; |
| cypress_nor_ecc_init(nor); |
| |
| return 0; |
| } |
| |
| static struct spi_nor_fixups s25hx_t_fixups = { |
| .post_bfpt = s25hx_t_post_bfpt_fixup, |
| .post_sfdp = s25hx_t_post_sfdp_fixup, |
| .late_init = s25hx_t_late_init, |
| }; |
| |
| /** |
| * cypress_nor_set_octal_dtr() - Enable or disable octal DTR on Cypress flashes. |
| * @nor: pointer to a 'struct spi_nor' |
| * @enable: whether to enable or disable Octal DTR |
| * |
| * This also sets the memory access latency cycles to 24 to allow the flash to |
| * run at up to 200MHz. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int cypress_nor_set_octal_dtr(struct spi_nor *nor, bool enable) |
| { |
| return enable ? cypress_nor_octal_dtr_en(nor) : |
| cypress_nor_octal_dtr_dis(nor); |
| } |
| |
| static int s28hx_t_post_sfdp_fixup(struct spi_nor *nor) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| |
| if (!params->n_dice || !params->vreg_offset) { |
| dev_err(nor->dev, "%s failed. The volatile register offset could not be retrieved from SFDP.\n", |
| __func__); |
| return -EOPNOTSUPP; |
| } |
| |
| /* The 2 Gb parts duplicate info and advertise 4 dice instead of 2. */ |
| if (params->size == SZ_256M) |
| params->n_dice = 2; |
| |
| /* |
| * On older versions of the flash the xSPI Profile 1.0 table has the |
| * 8D-8D-8D Fast Read opcode as 0x00. But it actually should be 0xEE. |
| */ |
| if (params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode == 0) |
| params->reads[SNOR_CMD_READ_8_8_8_DTR].opcode = |
| SPINOR_OP_CYPRESS_RD_FAST; |
| |
| /* This flash is also missing the 4-byte Page Program opcode bit. */ |
| spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP], |
| SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); |
| /* |
| * Since xSPI Page Program opcode is backward compatible with |
| * Legacy SPI, use Legacy SPI opcode there as well. |
| */ |
| spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR], |
| SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); |
| |
| /* |
| * The xSPI Profile 1.0 table advertises the number of additional |
| * address bytes needed for Read Status Register command as 0 but the |
| * actual value for that is 4. |
| */ |
| params->rdsr_addr_nbytes = 4; |
| |
| return cypress_nor_get_page_size(nor); |
| } |
| |
| static int s28hx_t_post_bfpt_fixup(struct spi_nor *nor, |
| const struct sfdp_parameter_header *bfpt_header, |
| const struct sfdp_bfpt *bfpt) |
| { |
| return cypress_nor_set_addr_mode_nbytes(nor); |
| } |
| |
| static int s28hx_t_late_init(struct spi_nor *nor) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| |
| params->set_octal_dtr = cypress_nor_set_octal_dtr; |
| params->ready = cypress_nor_sr_ready_and_clear; |
| cypress_nor_ecc_init(nor); |
| |
| return 0; |
| } |
| |
| static const struct spi_nor_fixups s28hx_t_fixups = { |
| .post_sfdp = s28hx_t_post_sfdp_fixup, |
| .post_bfpt = s28hx_t_post_bfpt_fixup, |
| .late_init = s28hx_t_late_init, |
| }; |
| |
| static int |
| s25fs_s_nor_post_bfpt_fixups(struct spi_nor *nor, |
| const struct sfdp_parameter_header *bfpt_header, |
| const struct sfdp_bfpt *bfpt) |
| { |
| /* |
| * The S25FS-S chip family reports 512-byte pages in BFPT but |
| * in reality the write buffer still wraps at the safe default |
| * of 256 bytes. Overwrite the page size advertised by BFPT |
| * to get the writes working. |
| */ |
| nor->params->page_size = 256; |
| |
| return 0; |
| } |
| |
| static const struct spi_nor_fixups s25fs_s_nor_fixups = { |
| .post_bfpt = s25fs_s_nor_post_bfpt_fixups, |
| }; |
| |
| static const struct flash_info spansion_nor_parts[] = { |
| /* Spansion/Cypress -- single (large) sector size only, at least |
| * for the chips listed here (without boot sectors). |
| */ |
| { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl128s0", INFO6(0x012018, 0x4d0080, 256 * 1024, 64) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| }, |
| { "s25fl128s1", INFO6(0x012018, 0x4d0180, 64 * 1024, 256) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| }, |
| { "s25fl256s0", INFO6(0x010219, 0x4d0080, 256 * 1024, 128) |
| NO_SFDP_FLAGS(SPI_NOR_SKIP_SFDP | SPI_NOR_DUAL_READ | |
| SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| }, |
| { "s25fl256s1", INFO6(0x010219, 0x4d0180, 64 * 1024, 512) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| }, |
| { "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256) |
| FLAGS(SPI_NOR_HAS_LOCK) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| }, |
| { "s25fs128s1", INFO6(0x012018, 0x4d0181, 64 * 1024, 256) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| .fixups = &s25fs_s_nor_fixups, }, |
| { "s25fs256s0", INFO6(0x010219, 0x4d0081, 256 * 1024, 128) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| }, |
| { "s25fs256s1", INFO6(0x010219, 0x4d0181, 64 * 1024, 512) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| }, |
| { "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| .fixups = &s25fs_s_nor_fixups, }, |
| { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64) }, |
| { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256) }, |
| { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| }, |
| { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256) |
| NO_SFDP_FLAGS(SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| MFR_FLAGS(USE_CLSR) |
| }, |
| { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8) }, |
| { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16) }, |
| { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32) }, |
| { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64) }, |
| { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128) }, |
| { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8) |
| NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | |
| SPI_NOR_QUAD_READ) }, |
| { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16) |
| NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | |
| SPI_NOR_QUAD_READ) }, |
| { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32) |
| NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | |
| SPI_NOR_QUAD_READ) }, |
| { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128) |
| NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | |
| SPI_NOR_QUAD_READ) }, |
| { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32) |
| NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | |
| SPI_NOR_QUAD_READ) }, |
| { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64) |
| NO_SFDP_FLAGS(SECT_4K) }, |
| { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128) |
| NO_SFDP_FLAGS(SECT_4K) }, |
| { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8) |
| NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, |
| { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16) |
| NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ) }, |
| { "s25fl064l", INFO(0x016017, 0, 64 * 1024, 128) |
| NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, |
| { "s25fl128l", INFO(0x016018, 0, 64 * 1024, 256) |
| NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, |
| { "s25fl256l", INFO(0x016019, 0, 64 * 1024, 512) |
| NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) |
| FIXUP_FLAGS(SPI_NOR_4B_OPCODES) }, |
| { "s25fs256t", INFO6(0x342b19, 0x0f0890, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| .fixups = &s25fs256t_fixups }, |
| { "s25hl512t", INFO6(0x342a1a, 0x0f0390, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| .fixups = &s25hx_t_fixups }, |
| { "s25hl01gt", INFO6(0x342a1b, 0x0f0390, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| .fixups = &s25hx_t_fixups }, |
| { "s25hl02gt", INFO6(0x342a1c, 0x0f0090, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| FLAGS(NO_CHIP_ERASE) |
| .fixups = &s25hx_t_fixups }, |
| { "s25hs512t", INFO6(0x342b1a, 0x0f0390, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| .fixups = &s25hx_t_fixups }, |
| { "s25hs01gt", INFO6(0x342b1b, 0x0f0390, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| .fixups = &s25hx_t_fixups }, |
| { "s25hs02gt", INFO6(0x342b1c, 0x0f0090, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| FLAGS(NO_CHIP_ERASE) |
| .fixups = &s25hx_t_fixups }, |
| { "cy15x104q", INFO6(0x042cc2, 0x7f7f7f, 512 * 1024, 1) |
| FLAGS(SPI_NOR_NO_ERASE) }, |
| { "s28hl512t", INFO(0x345a1a, 0, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| .fixups = &s28hx_t_fixups, |
| }, |
| { "s28hl01gt", INFO(0x345a1b, 0, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| .fixups = &s28hx_t_fixups, |
| }, |
| { "s28hs512t", INFO(0x345b1a, 0, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| .fixups = &s28hx_t_fixups, |
| }, |
| { "s28hs01gt", INFO(0x345b1b, 0, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| .fixups = &s28hx_t_fixups, |
| }, |
| { "s28hs02gt", INFO(0x345b1c, 0, 0, 0) |
| PARSE_SFDP |
| MFR_FLAGS(USE_CLPEF) |
| .fixups = &s28hx_t_fixups, |
| }, |
| }; |
| |
| /** |
| * spansion_nor_sr_ready_and_clear() - Query the Status Register to see if the |
| * flash is ready for new commands and clear it if there are any errors. |
| * @nor: pointer to 'struct spi_nor'. |
| * |
| * Return: 1 if ready, 0 if not ready, -errno on errors. |
| */ |
| static int spansion_nor_sr_ready_and_clear(struct spi_nor *nor) |
| { |
| int ret; |
| |
| ret = spi_nor_read_sr(nor, nor->bouncebuf); |
| if (ret) |
| return ret; |
| |
| if (nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) { |
| if (nor->bouncebuf[0] & SR_E_ERR) |
| dev_err(nor->dev, "Erase Error occurred\n"); |
| else |
| dev_err(nor->dev, "Programming Error occurred\n"); |
| |
| spansion_nor_clear_sr(nor); |
| |
| /* |
| * WEL bit remains set to one when an erase or page program |
| * error occurs. Issue a Write Disable command to protect |
| * against inadvertent writes that can possibly corrupt the |
| * contents of the memory. |
| */ |
| ret = spi_nor_write_disable(nor); |
| if (ret) |
| return ret; |
| |
| return -EIO; |
| } |
| |
| return !(nor->bouncebuf[0] & SR_WIP); |
| } |
| |
| static int spansion_nor_late_init(struct spi_nor *nor) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| struct spansion_nor_params *priv_params; |
| u8 mfr_flags = nor->info->mfr_flags; |
| |
| if (params->size > SZ_16M) { |
| nor->flags |= SNOR_F_4B_OPCODES; |
| /* No small sector erase for 4-byte command set */ |
| nor->erase_opcode = SPINOR_OP_SE; |
| nor->mtd.erasesize = nor->info->sector_size; |
| } |
| |
| if (mfr_flags & (USE_CLSR | USE_CLPEF)) { |
| priv_params = devm_kmalloc(nor->dev, sizeof(*priv_params), |
| GFP_KERNEL); |
| if (!priv_params) |
| return -ENOMEM; |
| |
| if (mfr_flags & USE_CLSR) |
| priv_params->clsr = SPINOR_OP_CLSR; |
| else if (mfr_flags & USE_CLPEF) |
| priv_params->clsr = SPINOR_OP_CLPEF; |
| |
| params->priv = priv_params; |
| params->ready = spansion_nor_sr_ready_and_clear; |
| } |
| |
| return 0; |
| } |
| |
| static const struct spi_nor_fixups spansion_nor_fixups = { |
| .late_init = spansion_nor_late_init, |
| }; |
| |
| const struct spi_nor_manufacturer spi_nor_spansion = { |
| .name = "spansion", |
| .parts = spansion_nor_parts, |
| .nparts = ARRAY_SIZE(spansion_nor_parts), |
| .fixups = &spansion_nor_fixups, |
| }; |