|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_shared.h" | 
|  | #include "xfs_format.h" | 
|  | #include "xfs_log_format.h" | 
|  | #include "xfs_trans_resv.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_rtalloc.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_log_priv.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_fsops.h" | 
|  | #include "xfs_icache.h" | 
|  | #include "xfs_sysfs.h" | 
|  | #include "xfs_rmap_btree.h" | 
|  | #include "xfs_refcount_btree.h" | 
|  | #include "xfs_reflink.h" | 
|  | #include "xfs_extent_busy.h" | 
|  | #include "xfs_health.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_ag.h" | 
|  |  | 
|  | static DEFINE_MUTEX(xfs_uuid_table_mutex); | 
|  | static int xfs_uuid_table_size; | 
|  | static uuid_t *xfs_uuid_table; | 
|  |  | 
|  | void | 
|  | xfs_uuid_table_free(void) | 
|  | { | 
|  | if (xfs_uuid_table_size == 0) | 
|  | return; | 
|  | kmem_free(xfs_uuid_table); | 
|  | xfs_uuid_table = NULL; | 
|  | xfs_uuid_table_size = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if the UUID is unique among mounted XFS filesystems. | 
|  | * Mount fails if UUID is nil or a FS with the same UUID is already mounted. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_uuid_mount( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | uuid_t			*uuid = &mp->m_sb.sb_uuid; | 
|  | int			hole, i; | 
|  |  | 
|  | /* Publish UUID in struct super_block */ | 
|  | uuid_copy(&mp->m_super->s_uuid, uuid); | 
|  |  | 
|  | if (xfs_has_nouuid(mp)) | 
|  | return 0; | 
|  |  | 
|  | if (uuid_is_null(uuid)) { | 
|  | xfs_warn(mp, "Filesystem has null UUID - can't mount"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mutex_lock(&xfs_uuid_table_mutex); | 
|  | for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { | 
|  | if (uuid_is_null(&xfs_uuid_table[i])) { | 
|  | hole = i; | 
|  | continue; | 
|  | } | 
|  | if (uuid_equal(uuid, &xfs_uuid_table[i])) | 
|  | goto out_duplicate; | 
|  | } | 
|  |  | 
|  | if (hole < 0) { | 
|  | xfs_uuid_table = krealloc(xfs_uuid_table, | 
|  | (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), | 
|  | GFP_KERNEL | __GFP_NOFAIL); | 
|  | hole = xfs_uuid_table_size++; | 
|  | } | 
|  | xfs_uuid_table[hole] = *uuid; | 
|  | mutex_unlock(&xfs_uuid_table_mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_duplicate: | 
|  | mutex_unlock(&xfs_uuid_table_mutex); | 
|  | xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_uuid_unmount( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | uuid_t			*uuid = &mp->m_sb.sb_uuid; | 
|  | int			i; | 
|  |  | 
|  | if (xfs_has_nouuid(mp)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&xfs_uuid_table_mutex); | 
|  | for (i = 0; i < xfs_uuid_table_size; i++) { | 
|  | if (uuid_is_null(&xfs_uuid_table[i])) | 
|  | continue; | 
|  | if (!uuid_equal(uuid, &xfs_uuid_table[i])) | 
|  | continue; | 
|  | memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); | 
|  | break; | 
|  | } | 
|  | ASSERT(i < xfs_uuid_table_size); | 
|  | mutex_unlock(&xfs_uuid_table_mutex); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check size of device based on the (data/realtime) block count. | 
|  | * Note: this check is used by the growfs code as well as mount. | 
|  | */ | 
|  | int | 
|  | xfs_sb_validate_fsb_count( | 
|  | xfs_sb_t	*sbp, | 
|  | uint64_t	nblocks) | 
|  | { | 
|  | ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); | 
|  | ASSERT(sbp->sb_blocklog >= BBSHIFT); | 
|  |  | 
|  | /* Limited by ULONG_MAX of page cache index */ | 
|  | if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) | 
|  | return -EFBIG; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_readsb | 
|  | * | 
|  | * Does the initial read of the superblock. | 
|  | */ | 
|  | int | 
|  | xfs_readsb( | 
|  | struct xfs_mount *mp, | 
|  | int		flags) | 
|  | { | 
|  | unsigned int	sector_size; | 
|  | struct xfs_buf	*bp; | 
|  | struct xfs_sb	*sbp = &mp->m_sb; | 
|  | int		error; | 
|  | int		loud = !(flags & XFS_MFSI_QUIET); | 
|  | const struct xfs_buf_ops *buf_ops; | 
|  |  | 
|  | ASSERT(mp->m_sb_bp == NULL); | 
|  | ASSERT(mp->m_ddev_targp != NULL); | 
|  |  | 
|  | /* | 
|  | * For the initial read, we must guess at the sector | 
|  | * size based on the block device.  It's enough to | 
|  | * get the sb_sectsize out of the superblock and | 
|  | * then reread with the proper length. | 
|  | * We don't verify it yet, because it may not be complete. | 
|  | */ | 
|  | sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); | 
|  | buf_ops = NULL; | 
|  |  | 
|  | /* | 
|  | * Allocate a (locked) buffer to hold the superblock. This will be kept | 
|  | * around at all times to optimize access to the superblock. Therefore, | 
|  | * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count | 
|  | * elevated. | 
|  | */ | 
|  | reread: | 
|  | error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, | 
|  | BTOBB(sector_size), XBF_NO_IOACCT, &bp, | 
|  | buf_ops); | 
|  | if (error) { | 
|  | if (loud) | 
|  | xfs_warn(mp, "SB validate failed with error %d.", error); | 
|  | /* bad CRC means corrupted metadata */ | 
|  | if (error == -EFSBADCRC) | 
|  | error = -EFSCORRUPTED; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the mount structure from the superblock. | 
|  | */ | 
|  | xfs_sb_from_disk(sbp, bp->b_addr); | 
|  |  | 
|  | /* | 
|  | * If we haven't validated the superblock, do so now before we try | 
|  | * to check the sector size and reread the superblock appropriately. | 
|  | */ | 
|  | if (sbp->sb_magicnum != XFS_SB_MAGIC) { | 
|  | if (loud) | 
|  | xfs_warn(mp, "Invalid superblock magic number"); | 
|  | error = -EINVAL; | 
|  | goto release_buf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We must be able to do sector-sized and sector-aligned IO. | 
|  | */ | 
|  | if (sector_size > sbp->sb_sectsize) { | 
|  | if (loud) | 
|  | xfs_warn(mp, "device supports %u byte sectors (not %u)", | 
|  | sector_size, sbp->sb_sectsize); | 
|  | error = -ENOSYS; | 
|  | goto release_buf; | 
|  | } | 
|  |  | 
|  | if (buf_ops == NULL) { | 
|  | /* | 
|  | * Re-read the superblock so the buffer is correctly sized, | 
|  | * and properly verified. | 
|  | */ | 
|  | xfs_buf_relse(bp); | 
|  | sector_size = sbp->sb_sectsize; | 
|  | buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; | 
|  | goto reread; | 
|  | } | 
|  |  | 
|  | mp->m_features |= xfs_sb_version_to_features(sbp); | 
|  | xfs_reinit_percpu_counters(mp); | 
|  |  | 
|  | /* no need to be quiet anymore, so reset the buf ops */ | 
|  | bp->b_ops = &xfs_sb_buf_ops; | 
|  |  | 
|  | mp->m_sb_bp = bp; | 
|  | xfs_buf_unlock(bp); | 
|  | return 0; | 
|  |  | 
|  | release_buf: | 
|  | xfs_buf_relse(bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the sunit/swidth change would move the precomputed root inode value, we | 
|  | * must reject the ondisk change because repair will stumble over that. | 
|  | * However, we allow the mount to proceed because we never rejected this | 
|  | * combination before.  Returns true to update the sb, false otherwise. | 
|  | */ | 
|  | static inline int | 
|  | xfs_check_new_dalign( | 
|  | struct xfs_mount	*mp, | 
|  | int			new_dalign, | 
|  | bool			*update_sb) | 
|  | { | 
|  | struct xfs_sb		*sbp = &mp->m_sb; | 
|  | xfs_ino_t		calc_ino; | 
|  |  | 
|  | calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); | 
|  | trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); | 
|  |  | 
|  | if (sbp->sb_rootino == calc_ino) { | 
|  | *update_sb = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xfs_warn(mp, | 
|  | "Cannot change stripe alignment; would require moving root inode."); | 
|  |  | 
|  | /* | 
|  | * XXX: Next time we add a new incompat feature, this should start | 
|  | * returning -EINVAL to fail the mount.  Until then, spit out a warning | 
|  | * that we're ignoring the administrator's instructions. | 
|  | */ | 
|  | xfs_warn(mp, "Skipping superblock stripe alignment update."); | 
|  | *update_sb = false; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we were provided with new sunit/swidth values as mount options, make sure | 
|  | * that they pass basic alignment and superblock feature checks, and convert | 
|  | * them into the same units (FSB) that everything else expects.  This step | 
|  | * /must/ be done before computing the inode geometry. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_validate_new_dalign( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | if (mp->m_dalign == 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If stripe unit and stripe width are not multiples | 
|  | * of the fs blocksize turn off alignment. | 
|  | */ | 
|  | if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || | 
|  | (BBTOB(mp->m_swidth) & mp->m_blockmask)) { | 
|  | xfs_warn(mp, | 
|  | "alignment check failed: sunit/swidth vs. blocksize(%d)", | 
|  | mp->m_sb.sb_blocksize); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert the stripe unit and width to FSBs. | 
|  | */ | 
|  | mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); | 
|  | if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { | 
|  | xfs_warn(mp, | 
|  | "alignment check failed: sunit/swidth vs. agsize(%d)", | 
|  | mp->m_sb.sb_agblocks); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!mp->m_dalign) { | 
|  | xfs_warn(mp, | 
|  | "alignment check failed: sunit(%d) less than bsize(%d)", | 
|  | mp->m_dalign, mp->m_sb.sb_blocksize); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); | 
|  |  | 
|  | if (!xfs_has_dalign(mp)) { | 
|  | xfs_warn(mp, | 
|  | "cannot change alignment: superblock does not support data alignment"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Update alignment values based on mount options and sb values. */ | 
|  | STATIC int | 
|  | xfs_update_alignment( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_sb		*sbp = &mp->m_sb; | 
|  |  | 
|  | if (mp->m_dalign) { | 
|  | bool		update_sb; | 
|  | int		error; | 
|  |  | 
|  | if (sbp->sb_unit == mp->m_dalign && | 
|  | sbp->sb_width == mp->m_swidth) | 
|  | return 0; | 
|  |  | 
|  | error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); | 
|  | if (error || !update_sb) | 
|  | return error; | 
|  |  | 
|  | sbp->sb_unit = mp->m_dalign; | 
|  | sbp->sb_width = mp->m_swidth; | 
|  | mp->m_update_sb = true; | 
|  | } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { | 
|  | mp->m_dalign = sbp->sb_unit; | 
|  | mp->m_swidth = sbp->sb_width; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * precalculate the low space thresholds for dynamic speculative preallocation. | 
|  | */ | 
|  | void | 
|  | xfs_set_low_space_thresholds( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | uint64_t		dblocks = mp->m_sb.sb_dblocks; | 
|  | uint64_t		rtexts = mp->m_sb.sb_rextents; | 
|  | int			i; | 
|  |  | 
|  | do_div(dblocks, 100); | 
|  | do_div(rtexts, 100); | 
|  |  | 
|  | for (i = 0; i < XFS_LOWSP_MAX; i++) { | 
|  | mp->m_low_space[i] = dblocks * (i + 1); | 
|  | mp->m_low_rtexts[i] = rtexts * (i + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the data (and log if separate) is an ok size. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_check_sizes( | 
|  | struct xfs_mount *mp) | 
|  | { | 
|  | struct xfs_buf	*bp; | 
|  | xfs_daddr_t	d; | 
|  | int		error; | 
|  |  | 
|  | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); | 
|  | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { | 
|  | xfs_warn(mp, "filesystem size mismatch detected"); | 
|  | return -EFBIG; | 
|  | } | 
|  | error = xfs_buf_read_uncached(mp->m_ddev_targp, | 
|  | d - XFS_FSS_TO_BB(mp, 1), | 
|  | XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); | 
|  | if (error) { | 
|  | xfs_warn(mp, "last sector read failed"); | 
|  | return error; | 
|  | } | 
|  | xfs_buf_relse(bp); | 
|  |  | 
|  | if (mp->m_logdev_targp == mp->m_ddev_targp) | 
|  | return 0; | 
|  |  | 
|  | d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); | 
|  | if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { | 
|  | xfs_warn(mp, "log size mismatch detected"); | 
|  | return -EFBIG; | 
|  | } | 
|  | error = xfs_buf_read_uncached(mp->m_logdev_targp, | 
|  | d - XFS_FSB_TO_BB(mp, 1), | 
|  | XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); | 
|  | if (error) { | 
|  | xfs_warn(mp, "log device read failed"); | 
|  | return error; | 
|  | } | 
|  | xfs_buf_relse(bp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the quotaflags in memory and in the superblock. | 
|  | */ | 
|  | int | 
|  | xfs_mount_reset_sbqflags( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | mp->m_qflags = 0; | 
|  |  | 
|  | /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ | 
|  | if (mp->m_sb.sb_qflags == 0) | 
|  | return 0; | 
|  | spin_lock(&mp->m_sb_lock); | 
|  | mp->m_sb.sb_qflags = 0; | 
|  | spin_unlock(&mp->m_sb_lock); | 
|  |  | 
|  | if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) | 
|  | return 0; | 
|  |  | 
|  | return xfs_sync_sb(mp, false); | 
|  | } | 
|  |  | 
|  | uint64_t | 
|  | xfs_default_resblks(xfs_mount_t *mp) | 
|  | { | 
|  | uint64_t resblks; | 
|  |  | 
|  | /* | 
|  | * We default to 5% or 8192 fsbs of space reserved, whichever is | 
|  | * smaller.  This is intended to cover concurrent allocation | 
|  | * transactions when we initially hit enospc. These each require a 4 | 
|  | * block reservation. Hence by default we cover roughly 2000 concurrent | 
|  | * allocation reservations. | 
|  | */ | 
|  | resblks = mp->m_sb.sb_dblocks; | 
|  | do_div(resblks, 20); | 
|  | resblks = min_t(uint64_t, resblks, 8192); | 
|  | return resblks; | 
|  | } | 
|  |  | 
|  | /* Ensure the summary counts are correct. */ | 
|  | STATIC int | 
|  | xfs_check_summary_counts( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | int			error = 0; | 
|  |  | 
|  | /* | 
|  | * The AG0 superblock verifier rejects in-progress filesystems, | 
|  | * so we should never see the flag set this far into mounting. | 
|  | */ | 
|  | if (mp->m_sb.sb_inprogress) { | 
|  | xfs_err(mp, "sb_inprogress set after log recovery??"); | 
|  | WARN_ON(1); | 
|  | return -EFSCORRUPTED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now the log is mounted, we know if it was an unclean shutdown or | 
|  | * not. If it was, with the first phase of recovery has completed, we | 
|  | * have consistent AG blocks on disk. We have not recovered EFIs yet, | 
|  | * but they are recovered transactionally in the second recovery phase | 
|  | * later. | 
|  | * | 
|  | * If the log was clean when we mounted, we can check the summary | 
|  | * counters.  If any of them are obviously incorrect, we can recompute | 
|  | * them from the AGF headers in the next step. | 
|  | */ | 
|  | if (xfs_is_clean(mp) && | 
|  | (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || | 
|  | !xfs_verify_icount(mp, mp->m_sb.sb_icount) || | 
|  | mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) | 
|  | xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); | 
|  |  | 
|  | /* | 
|  | * We can safely re-initialise incore superblock counters from the | 
|  | * per-ag data. These may not be correct if the filesystem was not | 
|  | * cleanly unmounted, so we waited for recovery to finish before doing | 
|  | * this. | 
|  | * | 
|  | * If the filesystem was cleanly unmounted or the previous check did | 
|  | * not flag anything weird, then we can trust the values in the | 
|  | * superblock to be correct and we don't need to do anything here. | 
|  | * Otherwise, recalculate the summary counters. | 
|  | */ | 
|  | if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) || | 
|  | xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) { | 
|  | error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Older kernels misused sb_frextents to reflect both incore | 
|  | * reservations made by running transactions and the actual count of | 
|  | * free rt extents in the ondisk metadata.  Transactions committed | 
|  | * during runtime can therefore contain a superblock update that | 
|  | * undercounts the number of free rt extents tracked in the rt bitmap. | 
|  | * A clean unmount record will have the correct frextents value since | 
|  | * there can be no other transactions running at that point. | 
|  | * | 
|  | * If we're mounting the rt volume after recovering the log, recompute | 
|  | * frextents from the rtbitmap file to fix the inconsistency. | 
|  | */ | 
|  | if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) { | 
|  | error = xfs_rtalloc_reinit_frextents(mp); | 
|  | if (error) | 
|  | return error; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_unmount_check( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | if (xfs_is_shutdown(mp)) | 
|  | return; | 
|  |  | 
|  | if (percpu_counter_sum(&mp->m_ifree) > | 
|  | percpu_counter_sum(&mp->m_icount)) { | 
|  | xfs_alert(mp, "ifree/icount mismatch at unmount"); | 
|  | xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush and reclaim dirty inodes in preparation for unmount. Inodes and | 
|  | * internal inode structures can be sitting in the CIL and AIL at this point, | 
|  | * so we need to unpin them, write them back and/or reclaim them before unmount | 
|  | * can proceed.  In other words, callers are required to have inactivated all | 
|  | * inodes. | 
|  | * | 
|  | * An inode cluster that has been freed can have its buffer still pinned in | 
|  | * memory because the transaction is still sitting in a iclog. The stale inodes | 
|  | * on that buffer will be pinned to the buffer until the transaction hits the | 
|  | * disk and the callbacks run. Pushing the AIL will skip the stale inodes and | 
|  | * may never see the pinned buffer, so nothing will push out the iclog and | 
|  | * unpin the buffer. | 
|  | * | 
|  | * Hence we need to force the log to unpin everything first. However, log | 
|  | * forces don't wait for the discards they issue to complete, so we have to | 
|  | * explicitly wait for them to complete here as well. | 
|  | * | 
|  | * Then we can tell the world we are unmounting so that error handling knows | 
|  | * that the filesystem is going away and we should error out anything that we | 
|  | * have been retrying in the background.  This will prevent never-ending | 
|  | * retries in AIL pushing from hanging the unmount. | 
|  | * | 
|  | * Finally, we can push the AIL to clean all the remaining dirty objects, then | 
|  | * reclaim the remaining inodes that are still in memory at this point in time. | 
|  | */ | 
|  | static void | 
|  | xfs_unmount_flush_inodes( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | xfs_log_force(mp, XFS_LOG_SYNC); | 
|  | xfs_extent_busy_wait_all(mp); | 
|  | flush_workqueue(xfs_discard_wq); | 
|  |  | 
|  | set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); | 
|  |  | 
|  | xfs_ail_push_all_sync(mp->m_ail); | 
|  | xfs_inodegc_stop(mp); | 
|  | cancel_delayed_work_sync(&mp->m_reclaim_work); | 
|  | xfs_reclaim_inodes(mp); | 
|  | xfs_health_unmount(mp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | xfs_mount_setup_inode_geom( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_ino_geometry *igeo = M_IGEO(mp); | 
|  |  | 
|  | igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); | 
|  | ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); | 
|  |  | 
|  | xfs_ialloc_setup_geometry(mp); | 
|  | } | 
|  |  | 
|  | /* Compute maximum possible height for per-AG btree types for this fs. */ | 
|  | static inline void | 
|  | xfs_agbtree_compute_maxlevels( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | unsigned int		levels; | 
|  |  | 
|  | levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); | 
|  | levels = max(levels, mp->m_rmap_maxlevels); | 
|  | mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function does the following on an initial mount of a file system: | 
|  | *	- reads the superblock from disk and init the mount struct | 
|  | *	- if we're a 32-bit kernel, do a size check on the superblock | 
|  | *		so we don't mount terabyte filesystems | 
|  | *	- init mount struct realtime fields | 
|  | *	- allocate inode hash table for fs | 
|  | *	- init directory manager | 
|  | *	- perform recovery and init the log manager | 
|  | */ | 
|  | int | 
|  | xfs_mountfs( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_sb		*sbp = &(mp->m_sb); | 
|  | struct xfs_inode	*rip; | 
|  | struct xfs_ino_geometry	*igeo = M_IGEO(mp); | 
|  | uint64_t		resblks; | 
|  | uint			quotamount = 0; | 
|  | uint			quotaflags = 0; | 
|  | int			error = 0; | 
|  |  | 
|  | xfs_sb_mount_common(mp, sbp); | 
|  |  | 
|  | /* | 
|  | * Check for a mismatched features2 values.  Older kernels read & wrote | 
|  | * into the wrong sb offset for sb_features2 on some platforms due to | 
|  | * xfs_sb_t not being 64bit size aligned when sb_features2 was added, | 
|  | * which made older superblock reading/writing routines swap it as a | 
|  | * 64-bit value. | 
|  | * | 
|  | * For backwards compatibility, we make both slots equal. | 
|  | * | 
|  | * If we detect a mismatched field, we OR the set bits into the existing | 
|  | * features2 field in case it has already been modified; we don't want | 
|  | * to lose any features.  We then update the bad location with the ORed | 
|  | * value so that older kernels will see any features2 flags. The | 
|  | * superblock writeback code ensures the new sb_features2 is copied to | 
|  | * sb_bad_features2 before it is logged or written to disk. | 
|  | */ | 
|  | if (xfs_sb_has_mismatched_features2(sbp)) { | 
|  | xfs_warn(mp, "correcting sb_features alignment problem"); | 
|  | sbp->sb_features2 |= sbp->sb_bad_features2; | 
|  | mp->m_update_sb = true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* always use v2 inodes by default now */ | 
|  | if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { | 
|  | mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; | 
|  | mp->m_features |= XFS_FEAT_NLINK; | 
|  | mp->m_update_sb = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we were given new sunit/swidth options, do some basic validation | 
|  | * checks and convert the incore dalign and swidth values to the | 
|  | * same units (FSB) that everything else uses.  This /must/ happen | 
|  | * before computing the inode geometry. | 
|  | */ | 
|  | error = xfs_validate_new_dalign(mp); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | xfs_alloc_compute_maxlevels(mp); | 
|  | xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); | 
|  | xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); | 
|  | xfs_mount_setup_inode_geom(mp); | 
|  | xfs_rmapbt_compute_maxlevels(mp); | 
|  | xfs_refcountbt_compute_maxlevels(mp); | 
|  |  | 
|  | xfs_agbtree_compute_maxlevels(mp); | 
|  |  | 
|  | /* | 
|  | * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks | 
|  | * is NOT aligned turn off m_dalign since allocator alignment is within | 
|  | * an ag, therefore ag has to be aligned at stripe boundary.  Note that | 
|  | * we must compute the free space and rmap btree geometry before doing | 
|  | * this. | 
|  | */ | 
|  | error = xfs_update_alignment(mp); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | /* enable fail_at_unmount as default */ | 
|  | mp->m_fail_unmount = true; | 
|  |  | 
|  | error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, | 
|  | NULL, mp->m_super->s_id); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, | 
|  | &mp->m_kobj, "stats"); | 
|  | if (error) | 
|  | goto out_remove_sysfs; | 
|  |  | 
|  | error = xfs_error_sysfs_init(mp); | 
|  | if (error) | 
|  | goto out_del_stats; | 
|  |  | 
|  | error = xfs_errortag_init(mp); | 
|  | if (error) | 
|  | goto out_remove_error_sysfs; | 
|  |  | 
|  | error = xfs_uuid_mount(mp); | 
|  | if (error) | 
|  | goto out_remove_errortag; | 
|  |  | 
|  | /* | 
|  | * Update the preferred write size based on the information from the | 
|  | * on-disk superblock. | 
|  | */ | 
|  | mp->m_allocsize_log = | 
|  | max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); | 
|  | mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); | 
|  |  | 
|  | /* set the low space thresholds for dynamic preallocation */ | 
|  | xfs_set_low_space_thresholds(mp); | 
|  |  | 
|  | /* | 
|  | * If enabled, sparse inode chunk alignment is expected to match the | 
|  | * cluster size. Full inode chunk alignment must match the chunk size, | 
|  | * but that is checked on sb read verification... | 
|  | */ | 
|  | if (xfs_has_sparseinodes(mp) && | 
|  | mp->m_sb.sb_spino_align != | 
|  | XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { | 
|  | xfs_warn(mp, | 
|  | "Sparse inode block alignment (%u) must match cluster size (%llu).", | 
|  | mp->m_sb.sb_spino_align, | 
|  | XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); | 
|  | error = -EINVAL; | 
|  | goto out_remove_uuid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the data (and log if separate) is an ok size. | 
|  | */ | 
|  | error = xfs_check_sizes(mp); | 
|  | if (error) | 
|  | goto out_remove_uuid; | 
|  |  | 
|  | /* | 
|  | * Initialize realtime fields in the mount structure | 
|  | */ | 
|  | error = xfs_rtmount_init(mp); | 
|  | if (error) { | 
|  | xfs_warn(mp, "RT mount failed"); | 
|  | goto out_remove_uuid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Copies the low order bits of the timestamp and the randomly | 
|  | *  set "sequence" number out of a UUID. | 
|  | */ | 
|  | mp->m_fixedfsid[0] = | 
|  | (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | | 
|  | get_unaligned_be16(&sbp->sb_uuid.b[4]); | 
|  | mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); | 
|  |  | 
|  | error = xfs_da_mount(mp); | 
|  | if (error) { | 
|  | xfs_warn(mp, "Failed dir/attr init: %d", error); | 
|  | goto out_remove_uuid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the precomputed transaction reservations values. | 
|  | */ | 
|  | xfs_trans_init(mp); | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize the per-ag data. | 
|  | */ | 
|  | error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks, | 
|  | &mp->m_maxagi); | 
|  | if (error) { | 
|  | xfs_warn(mp, "Failed per-ag init: %d", error); | 
|  | goto out_free_dir; | 
|  | } | 
|  |  | 
|  | if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { | 
|  | xfs_warn(mp, "no log defined"); | 
|  | error = -EFSCORRUPTED; | 
|  | goto out_free_perag; | 
|  | } | 
|  |  | 
|  | error = xfs_inodegc_register_shrinker(mp); | 
|  | if (error) | 
|  | goto out_fail_wait; | 
|  |  | 
|  | /* | 
|  | * Log's mount-time initialization. The first part of recovery can place | 
|  | * some items on the AIL, to be handled when recovery is finished or | 
|  | * cancelled. | 
|  | */ | 
|  | error = xfs_log_mount(mp, mp->m_logdev_targp, | 
|  | XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), | 
|  | XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); | 
|  | if (error) { | 
|  | xfs_warn(mp, "log mount failed"); | 
|  | goto out_inodegc_shrinker; | 
|  | } | 
|  |  | 
|  | /* Enable background inode inactivation workers. */ | 
|  | xfs_inodegc_start(mp); | 
|  | xfs_blockgc_start(mp); | 
|  |  | 
|  | /* | 
|  | * Now that we've recovered any pending superblock feature bit | 
|  | * additions, we can finish setting up the attr2 behaviour for the | 
|  | * mount. The noattr2 option overrides the superblock flag, so only | 
|  | * check the superblock feature flag if the mount option is not set. | 
|  | */ | 
|  | if (xfs_has_noattr2(mp)) { | 
|  | mp->m_features &= ~XFS_FEAT_ATTR2; | 
|  | } else if (!xfs_has_attr2(mp) && | 
|  | (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { | 
|  | mp->m_features |= XFS_FEAT_ATTR2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get and sanity-check the root inode. | 
|  | * Save the pointer to it in the mount structure. | 
|  | */ | 
|  | error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, | 
|  | XFS_ILOCK_EXCL, &rip); | 
|  | if (error) { | 
|  | xfs_warn(mp, | 
|  | "Failed to read root inode 0x%llx, error %d", | 
|  | sbp->sb_rootino, -error); | 
|  | goto out_log_dealloc; | 
|  | } | 
|  |  | 
|  | ASSERT(rip != NULL); | 
|  |  | 
|  | if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { | 
|  | xfs_warn(mp, "corrupted root inode %llu: not a directory", | 
|  | (unsigned long long)rip->i_ino); | 
|  | xfs_iunlock(rip, XFS_ILOCK_EXCL); | 
|  | error = -EFSCORRUPTED; | 
|  | goto out_rele_rip; | 
|  | } | 
|  | mp->m_rootip = rip;	/* save it */ | 
|  |  | 
|  | xfs_iunlock(rip, XFS_ILOCK_EXCL); | 
|  |  | 
|  | /* | 
|  | * Initialize realtime inode pointers in the mount structure | 
|  | */ | 
|  | error = xfs_rtmount_inodes(mp); | 
|  | if (error) { | 
|  | /* | 
|  | * Free up the root inode. | 
|  | */ | 
|  | xfs_warn(mp, "failed to read RT inodes"); | 
|  | goto out_rele_rip; | 
|  | } | 
|  |  | 
|  | /* Make sure the summary counts are ok. */ | 
|  | error = xfs_check_summary_counts(mp); | 
|  | if (error) | 
|  | goto out_rtunmount; | 
|  |  | 
|  | /* | 
|  | * If this is a read-only mount defer the superblock updates until | 
|  | * the next remount into writeable mode.  Otherwise we would never | 
|  | * perform the update e.g. for the root filesystem. | 
|  | */ | 
|  | if (mp->m_update_sb && !xfs_is_readonly(mp)) { | 
|  | error = xfs_sync_sb(mp, false); | 
|  | if (error) { | 
|  | xfs_warn(mp, "failed to write sb changes"); | 
|  | goto out_rtunmount; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialise the XFS quota management subsystem for this mount | 
|  | */ | 
|  | if (XFS_IS_QUOTA_ON(mp)) { | 
|  | error = xfs_qm_newmount(mp, "amount, "aflags); | 
|  | if (error) | 
|  | goto out_rtunmount; | 
|  | } else { | 
|  | /* | 
|  | * If a file system had quotas running earlier, but decided to | 
|  | * mount without -o uquota/pquota/gquota options, revoke the | 
|  | * quotachecked license. | 
|  | */ | 
|  | if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { | 
|  | xfs_notice(mp, "resetting quota flags"); | 
|  | error = xfs_mount_reset_sbqflags(mp); | 
|  | if (error) | 
|  | goto out_rtunmount; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finish recovering the file system.  This part needed to be delayed | 
|  | * until after the root and real-time bitmap inodes were consistently | 
|  | * read in.  Temporarily create per-AG space reservations for metadata | 
|  | * btree shape changes because space freeing transactions (for inode | 
|  | * inactivation) require the per-AG reservation in lieu of reserving | 
|  | * blocks. | 
|  | */ | 
|  | error = xfs_fs_reserve_ag_blocks(mp); | 
|  | if (error && error == -ENOSPC) | 
|  | xfs_warn(mp, | 
|  | "ENOSPC reserving per-AG metadata pool, log recovery may fail."); | 
|  | error = xfs_log_mount_finish(mp); | 
|  | xfs_fs_unreserve_ag_blocks(mp); | 
|  | if (error) { | 
|  | xfs_warn(mp, "log mount finish failed"); | 
|  | goto out_rtunmount; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now the log is fully replayed, we can transition to full read-only | 
|  | * mode for read-only mounts. This will sync all the metadata and clean | 
|  | * the log so that the recovery we just performed does not have to be | 
|  | * replayed again on the next mount. | 
|  | * | 
|  | * We use the same quiesce mechanism as the rw->ro remount, as they are | 
|  | * semantically identical operations. | 
|  | */ | 
|  | if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) | 
|  | xfs_log_clean(mp); | 
|  |  | 
|  | /* | 
|  | * Complete the quota initialisation, post-log-replay component. | 
|  | */ | 
|  | if (quotamount) { | 
|  | ASSERT(mp->m_qflags == 0); | 
|  | mp->m_qflags = quotaflags; | 
|  |  | 
|  | xfs_qm_mount_quotas(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we are mounted, reserve a small amount of unused space for | 
|  | * privileged transactions. This is needed so that transaction | 
|  | * space required for critical operations can dip into this pool | 
|  | * when at ENOSPC. This is needed for operations like create with | 
|  | * attr, unwritten extent conversion at ENOSPC, etc. Data allocations | 
|  | * are not allowed to use this reserved space. | 
|  | * | 
|  | * This may drive us straight to ENOSPC on mount, but that implies | 
|  | * we were already there on the last unmount. Warn if this occurs. | 
|  | */ | 
|  | if (!xfs_is_readonly(mp)) { | 
|  | resblks = xfs_default_resblks(mp); | 
|  | error = xfs_reserve_blocks(mp, &resblks, NULL); | 
|  | if (error) | 
|  | xfs_warn(mp, | 
|  | "Unable to allocate reserve blocks. Continuing without reserve pool."); | 
|  |  | 
|  | /* Reserve AG blocks for future btree expansion. */ | 
|  | error = xfs_fs_reserve_ag_blocks(mp); | 
|  | if (error && error != -ENOSPC) | 
|  | goto out_agresv; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_agresv: | 
|  | xfs_fs_unreserve_ag_blocks(mp); | 
|  | xfs_qm_unmount_quotas(mp); | 
|  | out_rtunmount: | 
|  | xfs_rtunmount_inodes(mp); | 
|  | out_rele_rip: | 
|  | xfs_irele(rip); | 
|  | /* Clean out dquots that might be in memory after quotacheck. */ | 
|  | xfs_qm_unmount(mp); | 
|  |  | 
|  | /* | 
|  | * Inactivate all inodes that might still be in memory after a log | 
|  | * intent recovery failure so that reclaim can free them.  Metadata | 
|  | * inodes and the root directory shouldn't need inactivation, but the | 
|  | * mount failed for some reason, so pull down all the state and flee. | 
|  | */ | 
|  | xfs_inodegc_flush(mp); | 
|  |  | 
|  | /* | 
|  | * Flush all inode reclamation work and flush the log. | 
|  | * We have to do this /after/ rtunmount and qm_unmount because those | 
|  | * two will have scheduled delayed reclaim for the rt/quota inodes. | 
|  | * | 
|  | * This is slightly different from the unmountfs call sequence | 
|  | * because we could be tearing down a partially set up mount.  In | 
|  | * particular, if log_mount_finish fails we bail out without calling | 
|  | * qm_unmount_quotas and therefore rely on qm_unmount to release the | 
|  | * quota inodes. | 
|  | */ | 
|  | xfs_unmount_flush_inodes(mp); | 
|  | out_log_dealloc: | 
|  | xfs_log_mount_cancel(mp); | 
|  | out_inodegc_shrinker: | 
|  | unregister_shrinker(&mp->m_inodegc_shrinker); | 
|  | out_fail_wait: | 
|  | if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) | 
|  | xfs_buftarg_drain(mp->m_logdev_targp); | 
|  | xfs_buftarg_drain(mp->m_ddev_targp); | 
|  | out_free_perag: | 
|  | xfs_free_perag(mp); | 
|  | out_free_dir: | 
|  | xfs_da_unmount(mp); | 
|  | out_remove_uuid: | 
|  | xfs_uuid_unmount(mp); | 
|  | out_remove_errortag: | 
|  | xfs_errortag_del(mp); | 
|  | out_remove_error_sysfs: | 
|  | xfs_error_sysfs_del(mp); | 
|  | out_del_stats: | 
|  | xfs_sysfs_del(&mp->m_stats.xs_kobj); | 
|  | out_remove_sysfs: | 
|  | xfs_sysfs_del(&mp->m_kobj); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This flushes out the inodes,dquots and the superblock, unmounts the | 
|  | * log and makes sure that incore structures are freed. | 
|  | */ | 
|  | void | 
|  | xfs_unmountfs( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | uint64_t		resblks; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * Perform all on-disk metadata updates required to inactivate inodes | 
|  | * that the VFS evicted earlier in the unmount process.  Freeing inodes | 
|  | * and discarding CoW fork preallocations can cause shape changes to | 
|  | * the free inode and refcount btrees, respectively, so we must finish | 
|  | * this before we discard the metadata space reservations.  Metadata | 
|  | * inodes and the root directory do not require inactivation. | 
|  | */ | 
|  | xfs_inodegc_flush(mp); | 
|  |  | 
|  | xfs_blockgc_stop(mp); | 
|  | xfs_fs_unreserve_ag_blocks(mp); | 
|  | xfs_qm_unmount_quotas(mp); | 
|  | xfs_rtunmount_inodes(mp); | 
|  | xfs_irele(mp->m_rootip); | 
|  |  | 
|  | xfs_unmount_flush_inodes(mp); | 
|  |  | 
|  | xfs_qm_unmount(mp); | 
|  |  | 
|  | /* | 
|  | * Unreserve any blocks we have so that when we unmount we don't account | 
|  | * the reserved free space as used. This is really only necessary for | 
|  | * lazy superblock counting because it trusts the incore superblock | 
|  | * counters to be absolutely correct on clean unmount. | 
|  | * | 
|  | * We don't bother correcting this elsewhere for lazy superblock | 
|  | * counting because on mount of an unclean filesystem we reconstruct the | 
|  | * correct counter value and this is irrelevant. | 
|  | * | 
|  | * For non-lazy counter filesystems, this doesn't matter at all because | 
|  | * we only every apply deltas to the superblock and hence the incore | 
|  | * value does not matter.... | 
|  | */ | 
|  | resblks = 0; | 
|  | error = xfs_reserve_blocks(mp, &resblks, NULL); | 
|  | if (error) | 
|  | xfs_warn(mp, "Unable to free reserved block pool. " | 
|  | "Freespace may not be correct on next mount."); | 
|  | xfs_unmount_check(mp); | 
|  |  | 
|  | xfs_log_unmount(mp); | 
|  | xfs_da_unmount(mp); | 
|  | xfs_uuid_unmount(mp); | 
|  |  | 
|  | #if defined(DEBUG) | 
|  | xfs_errortag_clearall(mp); | 
|  | #endif | 
|  | unregister_shrinker(&mp->m_inodegc_shrinker); | 
|  | xfs_free_perag(mp); | 
|  |  | 
|  | xfs_errortag_del(mp); | 
|  | xfs_error_sysfs_del(mp); | 
|  | xfs_sysfs_del(&mp->m_stats.xs_kobj); | 
|  | xfs_sysfs_del(&mp->m_kobj); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine whether modifications can proceed. The caller specifies the minimum | 
|  | * freeze level for which modifications should not be allowed. This allows | 
|  | * certain operations to proceed while the freeze sequence is in progress, if | 
|  | * necessary. | 
|  | */ | 
|  | bool | 
|  | xfs_fs_writable( | 
|  | struct xfs_mount	*mp, | 
|  | int			level) | 
|  | { | 
|  | ASSERT(level > SB_UNFROZEN); | 
|  | if ((mp->m_super->s_writers.frozen >= level) || | 
|  | xfs_is_shutdown(mp) || xfs_is_readonly(mp)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Adjust m_fdblocks or m_frextents. */ | 
|  | int | 
|  | xfs_mod_freecounter( | 
|  | struct xfs_mount	*mp, | 
|  | struct percpu_counter	*counter, | 
|  | int64_t			delta, | 
|  | bool			rsvd) | 
|  | { | 
|  | int64_t			lcounter; | 
|  | long long		res_used; | 
|  | uint64_t		set_aside = 0; | 
|  | s32			batch; | 
|  | bool			has_resv_pool; | 
|  |  | 
|  | ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents); | 
|  | has_resv_pool = (counter == &mp->m_fdblocks); | 
|  | if (rsvd) | 
|  | ASSERT(has_resv_pool); | 
|  |  | 
|  | if (delta > 0) { | 
|  | /* | 
|  | * If the reserve pool is depleted, put blocks back into it | 
|  | * first. Most of the time the pool is full. | 
|  | */ | 
|  | if (likely(!has_resv_pool || | 
|  | mp->m_resblks == mp->m_resblks_avail)) { | 
|  | percpu_counter_add(counter, delta); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock(&mp->m_sb_lock); | 
|  | res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); | 
|  |  | 
|  | if (res_used > delta) { | 
|  | mp->m_resblks_avail += delta; | 
|  | } else { | 
|  | delta -= res_used; | 
|  | mp->m_resblks_avail = mp->m_resblks; | 
|  | percpu_counter_add(counter, delta); | 
|  | } | 
|  | spin_unlock(&mp->m_sb_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Taking blocks away, need to be more accurate the closer we | 
|  | * are to zero. | 
|  | * | 
|  | * If the counter has a value of less than 2 * max batch size, | 
|  | * then make everything serialise as we are real close to | 
|  | * ENOSPC. | 
|  | */ | 
|  | if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH, | 
|  | XFS_FDBLOCKS_BATCH) < 0) | 
|  | batch = 1; | 
|  | else | 
|  | batch = XFS_FDBLOCKS_BATCH; | 
|  |  | 
|  | /* | 
|  | * Set aside allocbt blocks because these blocks are tracked as free | 
|  | * space but not available for allocation. Technically this means that a | 
|  | * single reservation cannot consume all remaining free space, but the | 
|  | * ratio of allocbt blocks to usable free blocks should be rather small. | 
|  | * The tradeoff without this is that filesystems that maintain high | 
|  | * perag block reservations can over reserve physical block availability | 
|  | * and fail physical allocation, which leads to much more serious | 
|  | * problems (i.e. transaction abort, pagecache discards, etc.) than | 
|  | * slightly premature -ENOSPC. | 
|  | */ | 
|  | if (has_resv_pool) | 
|  | set_aside = xfs_fdblocks_unavailable(mp); | 
|  | percpu_counter_add_batch(counter, delta, batch); | 
|  | if (__percpu_counter_compare(counter, set_aside, | 
|  | XFS_FDBLOCKS_BATCH) >= 0) { | 
|  | /* we had space! */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lock up the sb for dipping into reserves before releasing the space | 
|  | * that took us to ENOSPC. | 
|  | */ | 
|  | spin_lock(&mp->m_sb_lock); | 
|  | percpu_counter_add(counter, -delta); | 
|  | if (!has_resv_pool || !rsvd) | 
|  | goto fdblocks_enospc; | 
|  |  | 
|  | lcounter = (long long)mp->m_resblks_avail + delta; | 
|  | if (lcounter >= 0) { | 
|  | mp->m_resblks_avail = lcounter; | 
|  | spin_unlock(&mp->m_sb_lock); | 
|  | return 0; | 
|  | } | 
|  | xfs_warn_once(mp, | 
|  | "Reserve blocks depleted! Consider increasing reserve pool size."); | 
|  |  | 
|  | fdblocks_enospc: | 
|  | spin_unlock(&mp->m_sb_lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Used to free the superblock along various error paths. | 
|  | */ | 
|  | void | 
|  | xfs_freesb( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_buf		*bp = mp->m_sb_bp; | 
|  |  | 
|  | xfs_buf_lock(bp); | 
|  | mp->m_sb_bp = NULL; | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the underlying (data/log/rt) device is readonly, there are some | 
|  | * operations that cannot proceed. | 
|  | */ | 
|  | int | 
|  | xfs_dev_is_read_only( | 
|  | struct xfs_mount	*mp, | 
|  | char			*message) | 
|  | { | 
|  | if (xfs_readonly_buftarg(mp->m_ddev_targp) || | 
|  | xfs_readonly_buftarg(mp->m_logdev_targp) || | 
|  | (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { | 
|  | xfs_notice(mp, "%s required on read-only device.", message); | 
|  | xfs_notice(mp, "write access unavailable, cannot proceed."); | 
|  | return -EROFS; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Force the summary counters to be recalculated at next mount. */ | 
|  | void | 
|  | xfs_force_summary_recalc( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | if (!xfs_has_lazysbcount(mp)) | 
|  | return; | 
|  |  | 
|  | xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable a log incompat feature flag in the primary superblock.  The caller | 
|  | * cannot have any other transactions in progress. | 
|  | */ | 
|  | int | 
|  | xfs_add_incompat_log_feature( | 
|  | struct xfs_mount	*mp, | 
|  | uint32_t		feature) | 
|  | { | 
|  | struct xfs_dsb		*dsb; | 
|  | int			error; | 
|  |  | 
|  | ASSERT(hweight32(feature) == 1); | 
|  | ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); | 
|  |  | 
|  | /* | 
|  | * Force the log to disk and kick the background AIL thread to reduce | 
|  | * the chances that the bwrite will stall waiting for the AIL to unpin | 
|  | * the primary superblock buffer.  This isn't a data integrity | 
|  | * operation, so we don't need a synchronous push. | 
|  | */ | 
|  | error = xfs_log_force(mp, XFS_LOG_SYNC); | 
|  | if (error) | 
|  | return error; | 
|  | xfs_ail_push_all(mp->m_ail); | 
|  |  | 
|  | /* | 
|  | * Lock the primary superblock buffer to serialize all callers that | 
|  | * are trying to set feature bits. | 
|  | */ | 
|  | xfs_buf_lock(mp->m_sb_bp); | 
|  | xfs_buf_hold(mp->m_sb_bp); | 
|  |  | 
|  | if (xfs_is_shutdown(mp)) { | 
|  | error = -EIO; | 
|  | goto rele; | 
|  | } | 
|  |  | 
|  | if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) | 
|  | goto rele; | 
|  |  | 
|  | /* | 
|  | * Write the primary superblock to disk immediately, because we need | 
|  | * the log_incompat bit to be set in the primary super now to protect | 
|  | * the log items that we're going to commit later. | 
|  | */ | 
|  | dsb = mp->m_sb_bp->b_addr; | 
|  | xfs_sb_to_disk(dsb, &mp->m_sb); | 
|  | dsb->sb_features_log_incompat |= cpu_to_be32(feature); | 
|  | error = xfs_bwrite(mp->m_sb_bp); | 
|  | if (error) | 
|  | goto shutdown; | 
|  |  | 
|  | /* | 
|  | * Add the feature bits to the incore superblock before we unlock the | 
|  | * buffer. | 
|  | */ | 
|  | xfs_sb_add_incompat_log_features(&mp->m_sb, feature); | 
|  | xfs_buf_relse(mp->m_sb_bp); | 
|  |  | 
|  | /* Log the superblock to disk. */ | 
|  | return xfs_sync_sb(mp, false); | 
|  | shutdown: | 
|  | xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); | 
|  | rele: | 
|  | xfs_buf_relse(mp->m_sb_bp); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear all the log incompat flags from the superblock. | 
|  | * | 
|  | * The caller cannot be in a transaction, must ensure that the log does not | 
|  | * contain any log items protected by any log incompat bit, and must ensure | 
|  | * that there are no other threads that depend on the state of the log incompat | 
|  | * feature flags in the primary super. | 
|  | * | 
|  | * Returns true if the superblock is dirty. | 
|  | */ | 
|  | bool | 
|  | xfs_clear_incompat_log_features( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | bool			ret = false; | 
|  |  | 
|  | if (!xfs_has_crc(mp) || | 
|  | !xfs_sb_has_incompat_log_feature(&mp->m_sb, | 
|  | XFS_SB_FEAT_INCOMPAT_LOG_ALL) || | 
|  | xfs_is_shutdown(mp)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Update the incore superblock.  We synchronize on the primary super | 
|  | * buffer lock to be consistent with the add function, though at least | 
|  | * in theory this shouldn't be necessary. | 
|  | */ | 
|  | xfs_buf_lock(mp->m_sb_bp); | 
|  | xfs_buf_hold(mp->m_sb_bp); | 
|  |  | 
|  | if (xfs_sb_has_incompat_log_feature(&mp->m_sb, | 
|  | XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { | 
|  | xfs_sb_remove_incompat_log_features(&mp->m_sb); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | xfs_buf_relse(mp->m_sb_bp); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the in-core delayed block counter. | 
|  | * | 
|  | * We prefer to update the counter without having to take a spinlock for every | 
|  | * counter update (i.e. batching).  Each change to delayed allocation | 
|  | * reservations can change can easily exceed the default percpu counter | 
|  | * batching, so we use a larger batch factor here. | 
|  | * | 
|  | * Note that we don't currently have any callers requiring fast summation | 
|  | * (e.g. percpu_counter_read) so we can use a big batch value here. | 
|  | */ | 
|  | #define XFS_DELALLOC_BATCH	(4096) | 
|  | void | 
|  | xfs_mod_delalloc( | 
|  | struct xfs_mount	*mp, | 
|  | int64_t			delta) | 
|  | { | 
|  | percpu_counter_add_batch(&mp->m_delalloc_blks, delta, | 
|  | XFS_DELALLOC_BATCH); | 
|  | } |