| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Device Memory Migration functionality. |
| * |
| * Originally written by Jérôme Glisse. |
| */ |
| #include <linux/export.h> |
| #include <linux/memremap.h> |
| #include <linux/migrate.h> |
| #include <linux/mm.h> |
| #include <linux/mm_inline.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/oom.h> |
| #include <linux/pagewalk.h> |
| #include <linux/rmap.h> |
| #include <linux/swapops.h> |
| #include <asm/tlbflush.h> |
| #include "internal.h" |
| |
| static int migrate_vma_collect_skip(unsigned long start, |
| unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct migrate_vma *migrate = walk->private; |
| unsigned long addr; |
| |
| for (addr = start; addr < end; addr += PAGE_SIZE) { |
| migrate->dst[migrate->npages] = 0; |
| migrate->src[migrate->npages++] = 0; |
| } |
| |
| return 0; |
| } |
| |
| static int migrate_vma_collect_hole(unsigned long start, |
| unsigned long end, |
| __always_unused int depth, |
| struct mm_walk *walk) |
| { |
| struct migrate_vma *migrate = walk->private; |
| unsigned long addr; |
| |
| /* Only allow populating anonymous memory. */ |
| if (!vma_is_anonymous(walk->vma)) |
| return migrate_vma_collect_skip(start, end, walk); |
| |
| for (addr = start; addr < end; addr += PAGE_SIZE) { |
| migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; |
| migrate->dst[migrate->npages] = 0; |
| migrate->npages++; |
| migrate->cpages++; |
| } |
| |
| return 0; |
| } |
| |
| static int migrate_vma_collect_pmd(pmd_t *pmdp, |
| unsigned long start, |
| unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct migrate_vma *migrate = walk->private; |
| struct vm_area_struct *vma = walk->vma; |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long addr = start, unmapped = 0; |
| spinlock_t *ptl; |
| pte_t *ptep; |
| |
| again: |
| if (pmd_none(*pmdp)) |
| return migrate_vma_collect_hole(start, end, -1, walk); |
| |
| if (pmd_trans_huge(*pmdp)) { |
| struct page *page; |
| |
| ptl = pmd_lock(mm, pmdp); |
| if (unlikely(!pmd_trans_huge(*pmdp))) { |
| spin_unlock(ptl); |
| goto again; |
| } |
| |
| page = pmd_page(*pmdp); |
| if (is_huge_zero_page(page)) { |
| spin_unlock(ptl); |
| split_huge_pmd(vma, pmdp, addr); |
| } else { |
| int ret; |
| |
| get_page(page); |
| spin_unlock(ptl); |
| if (unlikely(!trylock_page(page))) |
| return migrate_vma_collect_skip(start, end, |
| walk); |
| ret = split_huge_page(page); |
| unlock_page(page); |
| put_page(page); |
| if (ret) |
| return migrate_vma_collect_skip(start, end, |
| walk); |
| } |
| } |
| |
| ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); |
| if (!ptep) |
| goto again; |
| arch_enter_lazy_mmu_mode(); |
| |
| for (; addr < end; addr += PAGE_SIZE, ptep++) { |
| unsigned long mpfn = 0, pfn; |
| struct page *page; |
| swp_entry_t entry; |
| pte_t pte; |
| |
| pte = ptep_get(ptep); |
| |
| if (pte_none(pte)) { |
| if (vma_is_anonymous(vma)) { |
| mpfn = MIGRATE_PFN_MIGRATE; |
| migrate->cpages++; |
| } |
| goto next; |
| } |
| |
| if (!pte_present(pte)) { |
| /* |
| * Only care about unaddressable device page special |
| * page table entry. Other special swap entries are not |
| * migratable, and we ignore regular swapped page. |
| */ |
| entry = pte_to_swp_entry(pte); |
| if (!is_device_private_entry(entry)) |
| goto next; |
| |
| page = pfn_swap_entry_to_page(entry); |
| if (!(migrate->flags & |
| MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || |
| page->pgmap->owner != migrate->pgmap_owner) |
| goto next; |
| |
| mpfn = migrate_pfn(page_to_pfn(page)) | |
| MIGRATE_PFN_MIGRATE; |
| if (is_writable_device_private_entry(entry)) |
| mpfn |= MIGRATE_PFN_WRITE; |
| } else { |
| pfn = pte_pfn(pte); |
| if (is_zero_pfn(pfn) && |
| (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) { |
| mpfn = MIGRATE_PFN_MIGRATE; |
| migrate->cpages++; |
| goto next; |
| } |
| page = vm_normal_page(migrate->vma, addr, pte); |
| if (page && !is_zone_device_page(page) && |
| !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) |
| goto next; |
| else if (page && is_device_coherent_page(page) && |
| (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) || |
| page->pgmap->owner != migrate->pgmap_owner)) |
| goto next; |
| mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; |
| mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; |
| } |
| |
| /* FIXME support THP */ |
| if (!page || !page->mapping || PageTransCompound(page)) { |
| mpfn = 0; |
| goto next; |
| } |
| |
| /* |
| * By getting a reference on the page we pin it and that blocks |
| * any kind of migration. Side effect is that it "freezes" the |
| * pte. |
| * |
| * We drop this reference after isolating the page from the lru |
| * for non device page (device page are not on the lru and thus |
| * can't be dropped from it). |
| */ |
| get_page(page); |
| |
| /* |
| * We rely on trylock_page() to avoid deadlock between |
| * concurrent migrations where each is waiting on the others |
| * page lock. If we can't immediately lock the page we fail this |
| * migration as it is only best effort anyway. |
| * |
| * If we can lock the page it's safe to set up a migration entry |
| * now. In the common case where the page is mapped once in a |
| * single process setting up the migration entry now is an |
| * optimisation to avoid walking the rmap later with |
| * try_to_migrate(). |
| */ |
| if (trylock_page(page)) { |
| bool anon_exclusive; |
| pte_t swp_pte; |
| |
| flush_cache_page(vma, addr, pte_pfn(pte)); |
| anon_exclusive = PageAnon(page) && PageAnonExclusive(page); |
| if (anon_exclusive) { |
| pte = ptep_clear_flush(vma, addr, ptep); |
| |
| if (page_try_share_anon_rmap(page)) { |
| set_pte_at(mm, addr, ptep, pte); |
| unlock_page(page); |
| put_page(page); |
| mpfn = 0; |
| goto next; |
| } |
| } else { |
| pte = ptep_get_and_clear(mm, addr, ptep); |
| } |
| |
| migrate->cpages++; |
| |
| /* Set the dirty flag on the folio now the pte is gone. */ |
| if (pte_dirty(pte)) |
| folio_mark_dirty(page_folio(page)); |
| |
| /* Setup special migration page table entry */ |
| if (mpfn & MIGRATE_PFN_WRITE) |
| entry = make_writable_migration_entry( |
| page_to_pfn(page)); |
| else if (anon_exclusive) |
| entry = make_readable_exclusive_migration_entry( |
| page_to_pfn(page)); |
| else |
| entry = make_readable_migration_entry( |
| page_to_pfn(page)); |
| if (pte_present(pte)) { |
| if (pte_young(pte)) |
| entry = make_migration_entry_young(entry); |
| if (pte_dirty(pte)) |
| entry = make_migration_entry_dirty(entry); |
| } |
| swp_pte = swp_entry_to_pte(entry); |
| if (pte_present(pte)) { |
| if (pte_soft_dirty(pte)) |
| swp_pte = pte_swp_mksoft_dirty(swp_pte); |
| if (pte_uffd_wp(pte)) |
| swp_pte = pte_swp_mkuffd_wp(swp_pte); |
| } else { |
| if (pte_swp_soft_dirty(pte)) |
| swp_pte = pte_swp_mksoft_dirty(swp_pte); |
| if (pte_swp_uffd_wp(pte)) |
| swp_pte = pte_swp_mkuffd_wp(swp_pte); |
| } |
| set_pte_at(mm, addr, ptep, swp_pte); |
| |
| /* |
| * This is like regular unmap: we remove the rmap and |
| * drop page refcount. Page won't be freed, as we took |
| * a reference just above. |
| */ |
| page_remove_rmap(page, vma, false); |
| put_page(page); |
| |
| if (pte_present(pte)) |
| unmapped++; |
| } else { |
| put_page(page); |
| mpfn = 0; |
| } |
| |
| next: |
| migrate->dst[migrate->npages] = 0; |
| migrate->src[migrate->npages++] = mpfn; |
| } |
| |
| /* Only flush the TLB if we actually modified any entries */ |
| if (unmapped) |
| flush_tlb_range(walk->vma, start, end); |
| |
| arch_leave_lazy_mmu_mode(); |
| pte_unmap_unlock(ptep - 1, ptl); |
| |
| return 0; |
| } |
| |
| static const struct mm_walk_ops migrate_vma_walk_ops = { |
| .pmd_entry = migrate_vma_collect_pmd, |
| .pte_hole = migrate_vma_collect_hole, |
| .walk_lock = PGWALK_RDLOCK, |
| }; |
| |
| /* |
| * migrate_vma_collect() - collect pages over a range of virtual addresses |
| * @migrate: migrate struct containing all migration information |
| * |
| * This will walk the CPU page table. For each virtual address backed by a |
| * valid page, it updates the src array and takes a reference on the page, in |
| * order to pin the page until we lock it and unmap it. |
| */ |
| static void migrate_vma_collect(struct migrate_vma *migrate) |
| { |
| struct mmu_notifier_range range; |
| |
| /* |
| * Note that the pgmap_owner is passed to the mmu notifier callback so |
| * that the registered device driver can skip invalidating device |
| * private page mappings that won't be migrated. |
| */ |
| mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, |
| migrate->vma->vm_mm, migrate->start, migrate->end, |
| migrate->pgmap_owner); |
| mmu_notifier_invalidate_range_start(&range); |
| |
| walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, |
| &migrate_vma_walk_ops, migrate); |
| |
| mmu_notifier_invalidate_range_end(&range); |
| migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); |
| } |
| |
| /* |
| * migrate_vma_check_page() - check if page is pinned or not |
| * @page: struct page to check |
| * |
| * Pinned pages cannot be migrated. This is the same test as in |
| * folio_migrate_mapping(), except that here we allow migration of a |
| * ZONE_DEVICE page. |
| */ |
| static bool migrate_vma_check_page(struct page *page, struct page *fault_page) |
| { |
| /* |
| * One extra ref because caller holds an extra reference, either from |
| * isolate_lru_page() for a regular page, or migrate_vma_collect() for |
| * a device page. |
| */ |
| int extra = 1 + (page == fault_page); |
| |
| /* |
| * FIXME support THP (transparent huge page), it is bit more complex to |
| * check them than regular pages, because they can be mapped with a pmd |
| * or with a pte (split pte mapping). |
| */ |
| if (PageCompound(page)) |
| return false; |
| |
| /* Page from ZONE_DEVICE have one extra reference */ |
| if (is_zone_device_page(page)) |
| extra++; |
| |
| /* For file back page */ |
| if (page_mapping(page)) |
| extra += 1 + page_has_private(page); |
| |
| if ((page_count(page) - extra) > page_mapcount(page)) |
| return false; |
| |
| return true; |
| } |
| |
| /* |
| * Unmaps pages for migration. Returns number of source pfns marked as |
| * migrating. |
| */ |
| static unsigned long migrate_device_unmap(unsigned long *src_pfns, |
| unsigned long npages, |
| struct page *fault_page) |
| { |
| unsigned long i, restore = 0; |
| bool allow_drain = true; |
| unsigned long unmapped = 0; |
| |
| lru_add_drain(); |
| |
| for (i = 0; i < npages; i++) { |
| struct page *page = migrate_pfn_to_page(src_pfns[i]); |
| struct folio *folio; |
| |
| if (!page) { |
| if (src_pfns[i] & MIGRATE_PFN_MIGRATE) |
| unmapped++; |
| continue; |
| } |
| |
| /* ZONE_DEVICE pages are not on LRU */ |
| if (!is_zone_device_page(page)) { |
| if (!PageLRU(page) && allow_drain) { |
| /* Drain CPU's lru cache */ |
| lru_add_drain_all(); |
| allow_drain = false; |
| } |
| |
| if (!isolate_lru_page(page)) { |
| src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; |
| restore++; |
| continue; |
| } |
| |
| /* Drop the reference we took in collect */ |
| put_page(page); |
| } |
| |
| folio = page_folio(page); |
| if (folio_mapped(folio)) |
| try_to_migrate(folio, 0); |
| |
| if (page_mapped(page) || |
| !migrate_vma_check_page(page, fault_page)) { |
| if (!is_zone_device_page(page)) { |
| get_page(page); |
| putback_lru_page(page); |
| } |
| |
| src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; |
| restore++; |
| continue; |
| } |
| |
| unmapped++; |
| } |
| |
| for (i = 0; i < npages && restore; i++) { |
| struct page *page = migrate_pfn_to_page(src_pfns[i]); |
| struct folio *folio; |
| |
| if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE)) |
| continue; |
| |
| folio = page_folio(page); |
| remove_migration_ptes(folio, folio, false); |
| |
| src_pfns[i] = 0; |
| folio_unlock(folio); |
| folio_put(folio); |
| restore--; |
| } |
| |
| return unmapped; |
| } |
| |
| /* |
| * migrate_vma_unmap() - replace page mapping with special migration pte entry |
| * @migrate: migrate struct containing all migration information |
| * |
| * Isolate pages from the LRU and replace mappings (CPU page table pte) with a |
| * special migration pte entry and check if it has been pinned. Pinned pages are |
| * restored because we cannot migrate them. |
| * |
| * This is the last step before we call the device driver callback to allocate |
| * destination memory and copy contents of original page over to new page. |
| */ |
| static void migrate_vma_unmap(struct migrate_vma *migrate) |
| { |
| migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages, |
| migrate->fault_page); |
| } |
| |
| /** |
| * migrate_vma_setup() - prepare to migrate a range of memory |
| * @args: contains the vma, start, and pfns arrays for the migration |
| * |
| * Returns: negative errno on failures, 0 when 0 or more pages were migrated |
| * without an error. |
| * |
| * Prepare to migrate a range of memory virtual address range by collecting all |
| * the pages backing each virtual address in the range, saving them inside the |
| * src array. Then lock those pages and unmap them. Once the pages are locked |
| * and unmapped, check whether each page is pinned or not. Pages that aren't |
| * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the |
| * corresponding src array entry. Then restores any pages that are pinned, by |
| * remapping and unlocking those pages. |
| * |
| * The caller should then allocate destination memory and copy source memory to |
| * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE |
| * flag set). Once these are allocated and copied, the caller must update each |
| * corresponding entry in the dst array with the pfn value of the destination |
| * page and with MIGRATE_PFN_VALID. Destination pages must be locked via |
| * lock_page(). |
| * |
| * Note that the caller does not have to migrate all the pages that are marked |
| * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from |
| * device memory to system memory. If the caller cannot migrate a device page |
| * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe |
| * consequences for the userspace process, so it must be avoided if at all |
| * possible. |
| * |
| * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we |
| * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus |
| * allowing the caller to allocate device memory for those unbacked virtual |
| * addresses. For this the caller simply has to allocate device memory and |
| * properly set the destination entry like for regular migration. Note that |
| * this can still fail, and thus inside the device driver you must check if the |
| * migration was successful for those entries after calling migrate_vma_pages(), |
| * just like for regular migration. |
| * |
| * After that, the callers must call migrate_vma_pages() to go over each entry |
| * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag |
| * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, |
| * then migrate_vma_pages() to migrate struct page information from the source |
| * struct page to the destination struct page. If it fails to migrate the |
| * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the |
| * src array. |
| * |
| * At this point all successfully migrated pages have an entry in the src |
| * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst |
| * array entry with MIGRATE_PFN_VALID flag set. |
| * |
| * Once migrate_vma_pages() returns the caller may inspect which pages were |
| * successfully migrated, and which were not. Successfully migrated pages will |
| * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. |
| * |
| * It is safe to update device page table after migrate_vma_pages() because |
| * both destination and source page are still locked, and the mmap_lock is held |
| * in read mode (hence no one can unmap the range being migrated). |
| * |
| * Once the caller is done cleaning up things and updating its page table (if it |
| * chose to do so, this is not an obligation) it finally calls |
| * migrate_vma_finalize() to update the CPU page table to point to new pages |
| * for successfully migrated pages or otherwise restore the CPU page table to |
| * point to the original source pages. |
| */ |
| int migrate_vma_setup(struct migrate_vma *args) |
| { |
| long nr_pages = (args->end - args->start) >> PAGE_SHIFT; |
| |
| args->start &= PAGE_MASK; |
| args->end &= PAGE_MASK; |
| if (!args->vma || is_vm_hugetlb_page(args->vma) || |
| (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) |
| return -EINVAL; |
| if (nr_pages <= 0) |
| return -EINVAL; |
| if (args->start < args->vma->vm_start || |
| args->start >= args->vma->vm_end) |
| return -EINVAL; |
| if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) |
| return -EINVAL; |
| if (!args->src || !args->dst) |
| return -EINVAL; |
| if (args->fault_page && !is_device_private_page(args->fault_page)) |
| return -EINVAL; |
| |
| memset(args->src, 0, sizeof(*args->src) * nr_pages); |
| args->cpages = 0; |
| args->npages = 0; |
| |
| migrate_vma_collect(args); |
| |
| if (args->cpages) |
| migrate_vma_unmap(args); |
| |
| /* |
| * At this point pages are locked and unmapped, and thus they have |
| * stable content and can safely be copied to destination memory that |
| * is allocated by the drivers. |
| */ |
| return 0; |
| |
| } |
| EXPORT_SYMBOL(migrate_vma_setup); |
| |
| /* |
| * This code closely matches the code in: |
| * __handle_mm_fault() |
| * handle_pte_fault() |
| * do_anonymous_page() |
| * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE |
| * private or coherent page. |
| */ |
| static void migrate_vma_insert_page(struct migrate_vma *migrate, |
| unsigned long addr, |
| struct page *page, |
| unsigned long *src) |
| { |
| struct vm_area_struct *vma = migrate->vma; |
| struct mm_struct *mm = vma->vm_mm; |
| bool flush = false; |
| spinlock_t *ptl; |
| pte_t entry; |
| pgd_t *pgdp; |
| p4d_t *p4dp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| pte_t orig_pte; |
| |
| /* Only allow populating anonymous memory */ |
| if (!vma_is_anonymous(vma)) |
| goto abort; |
| |
| pgdp = pgd_offset(mm, addr); |
| p4dp = p4d_alloc(mm, pgdp, addr); |
| if (!p4dp) |
| goto abort; |
| pudp = pud_alloc(mm, p4dp, addr); |
| if (!pudp) |
| goto abort; |
| pmdp = pmd_alloc(mm, pudp, addr); |
| if (!pmdp) |
| goto abort; |
| if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) |
| goto abort; |
| if (pte_alloc(mm, pmdp)) |
| goto abort; |
| if (unlikely(anon_vma_prepare(vma))) |
| goto abort; |
| if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) |
| goto abort; |
| |
| /* |
| * The memory barrier inside __SetPageUptodate makes sure that |
| * preceding stores to the page contents become visible before |
| * the set_pte_at() write. |
| */ |
| __SetPageUptodate(page); |
| |
| if (is_device_private_page(page)) { |
| swp_entry_t swp_entry; |
| |
| if (vma->vm_flags & VM_WRITE) |
| swp_entry = make_writable_device_private_entry( |
| page_to_pfn(page)); |
| else |
| swp_entry = make_readable_device_private_entry( |
| page_to_pfn(page)); |
| entry = swp_entry_to_pte(swp_entry); |
| } else { |
| if (is_zone_device_page(page) && |
| !is_device_coherent_page(page)) { |
| pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); |
| goto abort; |
| } |
| entry = mk_pte(page, vma->vm_page_prot); |
| if (vma->vm_flags & VM_WRITE) |
| entry = pte_mkwrite(pte_mkdirty(entry), vma); |
| } |
| |
| ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); |
| if (!ptep) |
| goto abort; |
| orig_pte = ptep_get(ptep); |
| |
| if (check_stable_address_space(mm)) |
| goto unlock_abort; |
| |
| if (pte_present(orig_pte)) { |
| unsigned long pfn = pte_pfn(orig_pte); |
| |
| if (!is_zero_pfn(pfn)) |
| goto unlock_abort; |
| flush = true; |
| } else if (!pte_none(orig_pte)) |
| goto unlock_abort; |
| |
| /* |
| * Check for userfaultfd but do not deliver the fault. Instead, |
| * just back off. |
| */ |
| if (userfaultfd_missing(vma)) |
| goto unlock_abort; |
| |
| inc_mm_counter(mm, MM_ANONPAGES); |
| page_add_new_anon_rmap(page, vma, addr); |
| if (!is_zone_device_page(page)) |
| lru_cache_add_inactive_or_unevictable(page, vma); |
| get_page(page); |
| |
| if (flush) { |
| flush_cache_page(vma, addr, pte_pfn(orig_pte)); |
| ptep_clear_flush(vma, addr, ptep); |
| set_pte_at_notify(mm, addr, ptep, entry); |
| update_mmu_cache(vma, addr, ptep); |
| } else { |
| /* No need to invalidate - it was non-present before */ |
| set_pte_at(mm, addr, ptep, entry); |
| update_mmu_cache(vma, addr, ptep); |
| } |
| |
| pte_unmap_unlock(ptep, ptl); |
| *src = MIGRATE_PFN_MIGRATE; |
| return; |
| |
| unlock_abort: |
| pte_unmap_unlock(ptep, ptl); |
| abort: |
| *src &= ~MIGRATE_PFN_MIGRATE; |
| } |
| |
| static void __migrate_device_pages(unsigned long *src_pfns, |
| unsigned long *dst_pfns, unsigned long npages, |
| struct migrate_vma *migrate) |
| { |
| struct mmu_notifier_range range; |
| unsigned long i; |
| bool notified = false; |
| |
| for (i = 0; i < npages; i++) { |
| struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); |
| struct page *page = migrate_pfn_to_page(src_pfns[i]); |
| struct address_space *mapping; |
| int r; |
| |
| if (!newpage) { |
| src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; |
| continue; |
| } |
| |
| if (!page) { |
| unsigned long addr; |
| |
| if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE)) |
| continue; |
| |
| /* |
| * The only time there is no vma is when called from |
| * migrate_device_coherent_page(). However this isn't |
| * called if the page could not be unmapped. |
| */ |
| VM_BUG_ON(!migrate); |
| addr = migrate->start + i*PAGE_SIZE; |
| if (!notified) { |
| notified = true; |
| |
| mmu_notifier_range_init_owner(&range, |
| MMU_NOTIFY_MIGRATE, 0, |
| migrate->vma->vm_mm, addr, migrate->end, |
| migrate->pgmap_owner); |
| mmu_notifier_invalidate_range_start(&range); |
| } |
| migrate_vma_insert_page(migrate, addr, newpage, |
| &src_pfns[i]); |
| continue; |
| } |
| |
| mapping = page_mapping(page); |
| |
| if (is_device_private_page(newpage) || |
| is_device_coherent_page(newpage)) { |
| if (mapping) { |
| struct folio *folio; |
| |
| folio = page_folio(page); |
| |
| /* |
| * For now only support anonymous memory migrating to |
| * device private or coherent memory. |
| * |
| * Try to get rid of swap cache if possible. |
| */ |
| if (!folio_test_anon(folio) || |
| !folio_free_swap(folio)) { |
| src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; |
| continue; |
| } |
| } |
| } else if (is_zone_device_page(newpage)) { |
| /* |
| * Other types of ZONE_DEVICE page are not supported. |
| */ |
| src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; |
| continue; |
| } |
| |
| if (migrate && migrate->fault_page == page) |
| r = migrate_folio_extra(mapping, page_folio(newpage), |
| page_folio(page), |
| MIGRATE_SYNC_NO_COPY, 1); |
| else |
| r = migrate_folio(mapping, page_folio(newpage), |
| page_folio(page), MIGRATE_SYNC_NO_COPY); |
| if (r != MIGRATEPAGE_SUCCESS) |
| src_pfns[i] &= ~MIGRATE_PFN_MIGRATE; |
| } |
| |
| if (notified) |
| mmu_notifier_invalidate_range_end(&range); |
| } |
| |
| /** |
| * migrate_device_pages() - migrate meta-data from src page to dst page |
| * @src_pfns: src_pfns returned from migrate_device_range() |
| * @dst_pfns: array of pfns allocated by the driver to migrate memory to |
| * @npages: number of pages in the range |
| * |
| * Equivalent to migrate_vma_pages(). This is called to migrate struct page |
| * meta-data from source struct page to destination. |
| */ |
| void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns, |
| unsigned long npages) |
| { |
| __migrate_device_pages(src_pfns, dst_pfns, npages, NULL); |
| } |
| EXPORT_SYMBOL(migrate_device_pages); |
| |
| /** |
| * migrate_vma_pages() - migrate meta-data from src page to dst page |
| * @migrate: migrate struct containing all migration information |
| * |
| * This migrates struct page meta-data from source struct page to destination |
| * struct page. This effectively finishes the migration from source page to the |
| * destination page. |
| */ |
| void migrate_vma_pages(struct migrate_vma *migrate) |
| { |
| __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate); |
| } |
| EXPORT_SYMBOL(migrate_vma_pages); |
| |
| /* |
| * migrate_device_finalize() - complete page migration |
| * @src_pfns: src_pfns returned from migrate_device_range() |
| * @dst_pfns: array of pfns allocated by the driver to migrate memory to |
| * @npages: number of pages in the range |
| * |
| * Completes migration of the page by removing special migration entries. |
| * Drivers must ensure copying of page data is complete and visible to the CPU |
| * before calling this. |
| */ |
| void migrate_device_finalize(unsigned long *src_pfns, |
| unsigned long *dst_pfns, unsigned long npages) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < npages; i++) { |
| struct folio *dst, *src; |
| struct page *newpage = migrate_pfn_to_page(dst_pfns[i]); |
| struct page *page = migrate_pfn_to_page(src_pfns[i]); |
| |
| if (!page) { |
| if (newpage) { |
| unlock_page(newpage); |
| put_page(newpage); |
| } |
| continue; |
| } |
| |
| if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) { |
| if (newpage) { |
| unlock_page(newpage); |
| put_page(newpage); |
| } |
| newpage = page; |
| } |
| |
| src = page_folio(page); |
| dst = page_folio(newpage); |
| remove_migration_ptes(src, dst, false); |
| folio_unlock(src); |
| |
| if (is_zone_device_page(page)) |
| put_page(page); |
| else |
| putback_lru_page(page); |
| |
| if (newpage != page) { |
| unlock_page(newpage); |
| if (is_zone_device_page(newpage)) |
| put_page(newpage); |
| else |
| putback_lru_page(newpage); |
| } |
| } |
| } |
| EXPORT_SYMBOL(migrate_device_finalize); |
| |
| /** |
| * migrate_vma_finalize() - restore CPU page table entry |
| * @migrate: migrate struct containing all migration information |
| * |
| * This replaces the special migration pte entry with either a mapping to the |
| * new page if migration was successful for that page, or to the original page |
| * otherwise. |
| * |
| * This also unlocks the pages and puts them back on the lru, or drops the extra |
| * refcount, for device pages. |
| */ |
| void migrate_vma_finalize(struct migrate_vma *migrate) |
| { |
| migrate_device_finalize(migrate->src, migrate->dst, migrate->npages); |
| } |
| EXPORT_SYMBOL(migrate_vma_finalize); |
| |
| /** |
| * migrate_device_range() - migrate device private pfns to normal memory. |
| * @src_pfns: array large enough to hold migrating source device private pfns. |
| * @start: starting pfn in the range to migrate. |
| * @npages: number of pages to migrate. |
| * |
| * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that |
| * instead of looking up pages based on virtual address mappings a range of |
| * device pfns that should be migrated to system memory is used instead. |
| * |
| * This is useful when a driver needs to free device memory but doesn't know the |
| * virtual mappings of every page that may be in device memory. For example this |
| * is often the case when a driver is being unloaded or unbound from a device. |
| * |
| * Like migrate_vma_setup() this function will take a reference and lock any |
| * migrating pages that aren't free before unmapping them. Drivers may then |
| * allocate destination pages and start copying data from the device to CPU |
| * memory before calling migrate_device_pages(). |
| */ |
| int migrate_device_range(unsigned long *src_pfns, unsigned long start, |
| unsigned long npages) |
| { |
| unsigned long i, pfn; |
| |
| for (pfn = start, i = 0; i < npages; pfn++, i++) { |
| struct page *page = pfn_to_page(pfn); |
| |
| if (!get_page_unless_zero(page)) { |
| src_pfns[i] = 0; |
| continue; |
| } |
| |
| if (!trylock_page(page)) { |
| src_pfns[i] = 0; |
| put_page(page); |
| continue; |
| } |
| |
| src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; |
| } |
| |
| migrate_device_unmap(src_pfns, npages, NULL); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(migrate_device_range); |
| |
| /* |
| * Migrate a device coherent page back to normal memory. The caller should have |
| * a reference on page which will be copied to the new page if migration is |
| * successful or dropped on failure. |
| */ |
| int migrate_device_coherent_page(struct page *page) |
| { |
| unsigned long src_pfn, dst_pfn = 0; |
| struct page *dpage; |
| |
| WARN_ON_ONCE(PageCompound(page)); |
| |
| lock_page(page); |
| src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE; |
| |
| /* |
| * We don't have a VMA and don't need to walk the page tables to find |
| * the source page. So call migrate_vma_unmap() directly to unmap the |
| * page as migrate_vma_setup() will fail if args.vma == NULL. |
| */ |
| migrate_device_unmap(&src_pfn, 1, NULL); |
| if (!(src_pfn & MIGRATE_PFN_MIGRATE)) |
| return -EBUSY; |
| |
| dpage = alloc_page(GFP_USER | __GFP_NOWARN); |
| if (dpage) { |
| lock_page(dpage); |
| dst_pfn = migrate_pfn(page_to_pfn(dpage)); |
| } |
| |
| migrate_device_pages(&src_pfn, &dst_pfn, 1); |
| if (src_pfn & MIGRATE_PFN_MIGRATE) |
| copy_highpage(dpage, page); |
| migrate_device_finalize(&src_pfn, &dst_pfn, 1); |
| |
| if (src_pfn & MIGRATE_PFN_MIGRATE) |
| return 0; |
| return -EBUSY; |
| } |