| // SPDX-License-Identifier: GPL-2.0-only | 
 | /* ----------------------------------------------------------------------- * | 
 |  * | 
 |  *   Copyright 2014 Intel Corporation; author: H. Peter Anvin | 
 |  * | 
 |  * ----------------------------------------------------------------------- */ | 
 |  | 
 | /* | 
 |  * The IRET instruction, when returning to a 16-bit segment, only | 
 |  * restores the bottom 16 bits of the user space stack pointer.  This | 
 |  * causes some 16-bit software to break, but it also leaks kernel state | 
 |  * to user space. | 
 |  * | 
 |  * This works around this by creating percpu "ministacks", each of which | 
 |  * is mapped 2^16 times 64K apart.  When we detect that the return SS is | 
 |  * on the LDT, we copy the IRET frame to the ministack and use the | 
 |  * relevant alias to return to userspace.  The ministacks are mapped | 
 |  * readonly, so if the IRET fault we promote #GP to #DF which is an IST | 
 |  * vector and thus has its own stack; we then do the fixup in the #DF | 
 |  * handler. | 
 |  * | 
 |  * This file sets up the ministacks and the related page tables.  The | 
 |  * actual ministack invocation is in entry_64.S. | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/init_task.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/random.h> | 
 | #include <linux/pgtable.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/espfix.h> | 
 |  | 
 | /* | 
 |  * Note: we only need 6*8 = 48 bytes for the espfix stack, but round | 
 |  * it up to a cache line to avoid unnecessary sharing. | 
 |  */ | 
 | #define ESPFIX_STACK_SIZE	(8*8UL) | 
 | #define ESPFIX_STACKS_PER_PAGE	(PAGE_SIZE/ESPFIX_STACK_SIZE) | 
 |  | 
 | /* There is address space for how many espfix pages? */ | 
 | #define ESPFIX_PAGE_SPACE	(1UL << (P4D_SHIFT-PAGE_SHIFT-16)) | 
 |  | 
 | #define ESPFIX_MAX_CPUS		(ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE) | 
 | #if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS | 
 | # error "Need more virtual address space for the ESPFIX hack" | 
 | #endif | 
 |  | 
 | #define PGALLOC_GFP (GFP_KERNEL | __GFP_ZERO) | 
 |  | 
 | /* This contains the *bottom* address of the espfix stack */ | 
 | DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack); | 
 | DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr); | 
 |  | 
 | /* Initialization mutex - should this be a spinlock? */ | 
 | static DEFINE_MUTEX(espfix_init_mutex); | 
 |  | 
 | /* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */ | 
 | #define ESPFIX_MAX_PAGES  DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE) | 
 | static void *espfix_pages[ESPFIX_MAX_PAGES]; | 
 |  | 
 | static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD] | 
 | 	__aligned(PAGE_SIZE); | 
 |  | 
 | static unsigned int page_random, slot_random; | 
 |  | 
 | /* | 
 |  * This returns the bottom address of the espfix stack for a specific CPU. | 
 |  * The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case | 
 |  * we have to account for some amount of padding at the end of each page. | 
 |  */ | 
 | static inline unsigned long espfix_base_addr(unsigned int cpu) | 
 | { | 
 | 	unsigned long page, slot; | 
 | 	unsigned long addr; | 
 |  | 
 | 	page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random; | 
 | 	slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE; | 
 | 	addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE); | 
 | 	addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16); | 
 | 	addr += ESPFIX_BASE_ADDR; | 
 | 	return addr; | 
 | } | 
 |  | 
 | #define PTE_STRIDE        (65536/PAGE_SIZE) | 
 | #define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE) | 
 | #define ESPFIX_PMD_CLONES PTRS_PER_PMD | 
 | #define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES)) | 
 |  | 
 | #define PGTABLE_PROT	  ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX) | 
 |  | 
 | static void init_espfix_random(void) | 
 | { | 
 | 	unsigned long rand = get_random_long(); | 
 |  | 
 | 	slot_random = rand % ESPFIX_STACKS_PER_PAGE; | 
 | 	page_random = (rand / ESPFIX_STACKS_PER_PAGE) | 
 | 		& (ESPFIX_PAGE_SPACE - 1); | 
 | } | 
 |  | 
 | void __init init_espfix_bsp(void) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	p4d_t *p4d; | 
 |  | 
 | 	/* Install the espfix pud into the kernel page directory */ | 
 | 	pgd = &init_top_pgt[pgd_index(ESPFIX_BASE_ADDR)]; | 
 | 	p4d = p4d_alloc(&init_mm, pgd, ESPFIX_BASE_ADDR); | 
 | 	p4d_populate(&init_mm, p4d, espfix_pud_page); | 
 |  | 
 | 	/* Randomize the locations */ | 
 | 	init_espfix_random(); | 
 |  | 
 | 	/* The rest is the same as for any other processor */ | 
 | 	init_espfix_ap(0); | 
 | } | 
 |  | 
 | void init_espfix_ap(int cpu) | 
 | { | 
 | 	unsigned int page; | 
 | 	unsigned long addr; | 
 | 	pud_t pud, *pud_p; | 
 | 	pmd_t pmd, *pmd_p; | 
 | 	pte_t pte, *pte_p; | 
 | 	int n, node; | 
 | 	void *stack_page; | 
 | 	pteval_t ptemask; | 
 |  | 
 | 	/* We only have to do this once... */ | 
 | 	if (likely(per_cpu(espfix_stack, cpu))) | 
 | 		return;		/* Already initialized */ | 
 |  | 
 | 	addr = espfix_base_addr(cpu); | 
 | 	page = cpu/ESPFIX_STACKS_PER_PAGE; | 
 |  | 
 | 	/* Did another CPU already set this up? */ | 
 | 	stack_page = READ_ONCE(espfix_pages[page]); | 
 | 	if (likely(stack_page)) | 
 | 		goto done; | 
 |  | 
 | 	mutex_lock(&espfix_init_mutex); | 
 |  | 
 | 	/* Did we race on the lock? */ | 
 | 	stack_page = READ_ONCE(espfix_pages[page]); | 
 | 	if (stack_page) | 
 | 		goto unlock_done; | 
 |  | 
 | 	node = cpu_to_node(cpu); | 
 | 	ptemask = __supported_pte_mask; | 
 |  | 
 | 	pud_p = &espfix_pud_page[pud_index(addr)]; | 
 | 	pud = *pud_p; | 
 | 	if (!pud_present(pud)) { | 
 | 		struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); | 
 |  | 
 | 		pmd_p = (pmd_t *)page_address(page); | 
 | 		pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask)); | 
 | 		paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT); | 
 | 		for (n = 0; n < ESPFIX_PUD_CLONES; n++) | 
 | 			set_pud(&pud_p[n], pud); | 
 | 	} | 
 |  | 
 | 	pmd_p = pmd_offset(&pud, addr); | 
 | 	pmd = *pmd_p; | 
 | 	if (!pmd_present(pmd)) { | 
 | 		struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0); | 
 |  | 
 | 		pte_p = (pte_t *)page_address(page); | 
 | 		pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask)); | 
 | 		paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT); | 
 | 		for (n = 0; n < ESPFIX_PMD_CLONES; n++) | 
 | 			set_pmd(&pmd_p[n], pmd); | 
 | 	} | 
 |  | 
 | 	pte_p = pte_offset_kernel(&pmd, addr); | 
 | 	stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0)); | 
 | 	/* | 
 | 	 * __PAGE_KERNEL_* includes _PAGE_GLOBAL, which we want since | 
 | 	 * this is mapped to userspace. | 
 | 	 */ | 
 | 	pte = __pte(__pa(stack_page) | ((__PAGE_KERNEL_RO | _PAGE_ENC) & ptemask)); | 
 | 	for (n = 0; n < ESPFIX_PTE_CLONES; n++) | 
 | 		set_pte(&pte_p[n*PTE_STRIDE], pte); | 
 |  | 
 | 	/* Job is done for this CPU and any CPU which shares this page */ | 
 | 	WRITE_ONCE(espfix_pages[page], stack_page); | 
 |  | 
 | unlock_done: | 
 | 	mutex_unlock(&espfix_init_mutex); | 
 | done: | 
 | 	per_cpu(espfix_stack, cpu) = addr; | 
 | 	per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page | 
 | 				      + (addr & ~PAGE_MASK); | 
 | } |