| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2015 - ARM Ltd |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/tlbflush.h> |
| |
| #include <nvhe/mem_protect.h> |
| |
| struct tlb_inv_context { |
| struct kvm_s2_mmu *mmu; |
| u64 tcr; |
| u64 sctlr; |
| }; |
| |
| static void enter_vmid_context(struct kvm_s2_mmu *mmu, |
| struct tlb_inv_context *cxt, |
| bool nsh) |
| { |
| struct kvm_s2_mmu *host_s2_mmu = &host_mmu.arch.mmu; |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_vcpu *vcpu; |
| |
| host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; |
| vcpu = host_ctxt->__hyp_running_vcpu; |
| cxt->mmu = NULL; |
| |
| /* |
| * We have two requirements: |
| * |
| * - ensure that the page table updates are visible to all |
| * CPUs, for which a dsb(DOMAIN-st) is what we need, DOMAIN |
| * being either ish or nsh, depending on the invalidation |
| * type. |
| * |
| * - complete any speculative page table walk started before |
| * we trapped to EL2 so that we can mess with the MM |
| * registers out of context, for which dsb(nsh) is enough |
| * |
| * The composition of these two barriers is a dsb(DOMAIN), and |
| * the 'nsh' parameter tracks the distinction between |
| * Inner-Shareable and Non-Shareable, as specified by the |
| * callers. |
| */ |
| if (nsh) |
| dsb(nsh); |
| else |
| dsb(ish); |
| |
| /* |
| * If we're already in the desired context, then there's nothing to do. |
| */ |
| if (vcpu) { |
| /* |
| * We're in guest context. However, for this to work, this needs |
| * to be called from within __kvm_vcpu_run(), which ensures that |
| * __hyp_running_vcpu is set to the current guest vcpu. |
| */ |
| if (mmu == vcpu->arch.hw_mmu || WARN_ON(mmu != host_s2_mmu)) |
| return; |
| |
| cxt->mmu = vcpu->arch.hw_mmu; |
| } else { |
| /* We're in host context. */ |
| if (mmu == host_s2_mmu) |
| return; |
| |
| cxt->mmu = host_s2_mmu; |
| } |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { |
| u64 val; |
| |
| /* |
| * For CPUs that are affected by ARM 1319367, we need to |
| * avoid a Stage-1 walk with the old VMID while we have |
| * the new VMID set in the VTTBR in order to invalidate TLBs. |
| * We're guaranteed that the host S1 MMU is enabled, so |
| * we can simply set the EPD bits to avoid any further |
| * TLB fill. For guests, we ensure that the S1 MMU is |
| * temporarily enabled in the next context. |
| */ |
| val = cxt->tcr = read_sysreg_el1(SYS_TCR); |
| val |= TCR_EPD1_MASK | TCR_EPD0_MASK; |
| write_sysreg_el1(val, SYS_TCR); |
| isb(); |
| |
| if (vcpu) { |
| val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR); |
| if (!(val & SCTLR_ELx_M)) { |
| val |= SCTLR_ELx_M; |
| write_sysreg_el1(val, SYS_SCTLR); |
| isb(); |
| } |
| } else { |
| /* The host S1 MMU is always enabled. */ |
| cxt->sctlr = SCTLR_ELx_M; |
| } |
| } |
| |
| /* |
| * __load_stage2() includes an ISB only when the AT |
| * workaround is applied. Take care of the opposite condition, |
| * ensuring that we always have an ISB, but not two ISBs back |
| * to back. |
| */ |
| if (vcpu) |
| __load_host_stage2(); |
| else |
| __load_stage2(mmu, kern_hyp_va(mmu->arch)); |
| |
| asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT)); |
| } |
| |
| static void exit_vmid_context(struct tlb_inv_context *cxt) |
| { |
| struct kvm_s2_mmu *mmu = cxt->mmu; |
| struct kvm_cpu_context *host_ctxt; |
| struct kvm_vcpu *vcpu; |
| |
| host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; |
| vcpu = host_ctxt->__hyp_running_vcpu; |
| |
| if (!mmu) |
| return; |
| |
| if (vcpu) |
| __load_stage2(mmu, kern_hyp_va(mmu->arch)); |
| else |
| __load_host_stage2(); |
| |
| /* Ensure write of the old VMID */ |
| isb(); |
| |
| if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { |
| if (!(cxt->sctlr & SCTLR_ELx_M)) { |
| write_sysreg_el1(cxt->sctlr, SYS_SCTLR); |
| isb(); |
| } |
| |
| write_sysreg_el1(cxt->tcr, SYS_TCR); |
| } |
| } |
| |
| void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, |
| phys_addr_t ipa, int level) |
| { |
| struct tlb_inv_context cxt; |
| |
| /* Switch to requested VMID */ |
| enter_vmid_context(mmu, &cxt, false); |
| |
| /* |
| * We could do so much better if we had the VA as well. |
| * Instead, we invalidate Stage-2 for this IPA, and the |
| * whole of Stage-1. Weep... |
| */ |
| ipa >>= 12; |
| __tlbi_level(ipas2e1is, ipa, level); |
| |
| /* |
| * We have to ensure completion of the invalidation at Stage-2, |
| * since a table walk on another CPU could refill a TLB with a |
| * complete (S1 + S2) walk based on the old Stage-2 mapping if |
| * the Stage-1 invalidation happened first. |
| */ |
| dsb(ish); |
| __tlbi(vmalle1is); |
| dsb(ish); |
| isb(); |
| |
| exit_vmid_context(&cxt); |
| } |
| |
| void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu, |
| phys_addr_t ipa, int level) |
| { |
| struct tlb_inv_context cxt; |
| |
| /* Switch to requested VMID */ |
| enter_vmid_context(mmu, &cxt, true); |
| |
| /* |
| * We could do so much better if we had the VA as well. |
| * Instead, we invalidate Stage-2 for this IPA, and the |
| * whole of Stage-1. Weep... |
| */ |
| ipa >>= 12; |
| __tlbi_level(ipas2e1, ipa, level); |
| |
| /* |
| * We have to ensure completion of the invalidation at Stage-2, |
| * since a table walk on another CPU could refill a TLB with a |
| * complete (S1 + S2) walk based on the old Stage-2 mapping if |
| * the Stage-1 invalidation happened first. |
| */ |
| dsb(nsh); |
| __tlbi(vmalle1); |
| dsb(nsh); |
| isb(); |
| |
| exit_vmid_context(&cxt); |
| } |
| |
| void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu, |
| phys_addr_t start, unsigned long pages) |
| { |
| struct tlb_inv_context cxt; |
| unsigned long stride; |
| |
| /* |
| * Since the range of addresses may not be mapped at |
| * the same level, assume the worst case as PAGE_SIZE |
| */ |
| stride = PAGE_SIZE; |
| start = round_down(start, stride); |
| |
| /* Switch to requested VMID */ |
| enter_vmid_context(mmu, &cxt, false); |
| |
| __flush_s2_tlb_range_op(ipas2e1is, start, pages, stride, |
| TLBI_TTL_UNKNOWN); |
| |
| dsb(ish); |
| __tlbi(vmalle1is); |
| dsb(ish); |
| isb(); |
| |
| exit_vmid_context(&cxt); |
| } |
| |
| void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu) |
| { |
| struct tlb_inv_context cxt; |
| |
| /* Switch to requested VMID */ |
| enter_vmid_context(mmu, &cxt, false); |
| |
| __tlbi(vmalls12e1is); |
| dsb(ish); |
| isb(); |
| |
| exit_vmid_context(&cxt); |
| } |
| |
| void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu) |
| { |
| struct tlb_inv_context cxt; |
| |
| /* Switch to requested VMID */ |
| enter_vmid_context(mmu, &cxt, false); |
| |
| __tlbi(vmalle1); |
| asm volatile("ic iallu"); |
| dsb(nsh); |
| isb(); |
| |
| exit_vmid_context(&cxt); |
| } |
| |
| void __kvm_flush_vm_context(void) |
| { |
| /* Same remark as in enter_vmid_context() */ |
| dsb(ish); |
| __tlbi(alle1is); |
| dsb(ish); |
| } |