blob: 451a2c1f1f32186989160ed6e77e87cb8d14f4f1 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* blk-mq scheduling framework
*
* Copyright (C) 2016 Jens Axboe
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list_sort.h>
#include <trace/events/block.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-debugfs.h"
#include "blk-mq-sched.h"
#include "blk-wbt.h"
/*
* Mark a hardware queue as needing a restart.
*/
void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
{
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
return;
set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
{
clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
/*
* Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
* in blk_mq_run_hw_queue(). Its pair is the barrier in
* blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
* meantime new request added to hctx->dispatch is missed to check in
* blk_mq_run_hw_queue().
*/
smp_mb();
blk_mq_run_hw_queue(hctx, true);
}
static int sched_rq_cmp(void *priv, const struct list_head *a,
const struct list_head *b)
{
struct request *rqa = container_of(a, struct request, queuelist);
struct request *rqb = container_of(b, struct request, queuelist);
return rqa->mq_hctx > rqb->mq_hctx;
}
static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
{
struct blk_mq_hw_ctx *hctx =
list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
struct request *rq;
LIST_HEAD(hctx_list);
unsigned int count = 0;
list_for_each_entry(rq, rq_list, queuelist) {
if (rq->mq_hctx != hctx) {
list_cut_before(&hctx_list, rq_list, &rq->queuelist);
goto dispatch;
}
count++;
}
list_splice_tail_init(rq_list, &hctx_list);
dispatch:
return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
}
#define BLK_MQ_BUDGET_DELAY 3 /* ms units */
/*
* Only SCSI implements .get_budget and .put_budget, and SCSI restarts
* its queue by itself in its completion handler, so we don't need to
* restart queue if .get_budget() fails to get the budget.
*
* Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
* be run again. This is necessary to avoid starving flushes.
*/
static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
struct elevator_queue *e = q->elevator;
bool multi_hctxs = false, run_queue = false;
bool dispatched = false, busy = false;
unsigned int max_dispatch;
LIST_HEAD(rq_list);
int count = 0;
if (hctx->dispatch_busy)
max_dispatch = 1;
else
max_dispatch = hctx->queue->nr_requests;
do {
struct request *rq;
int budget_token;
if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
break;
if (!list_empty_careful(&hctx->dispatch)) {
busy = true;
break;
}
budget_token = blk_mq_get_dispatch_budget(q);
if (budget_token < 0)
break;
rq = e->type->ops.dispatch_request(hctx);
if (!rq) {
blk_mq_put_dispatch_budget(q, budget_token);
/*
* We're releasing without dispatching. Holding the
* budget could have blocked any "hctx"s with the
* same queue and if we didn't dispatch then there's
* no guarantee anyone will kick the queue. Kick it
* ourselves.
*/
run_queue = true;
break;
}
blk_mq_set_rq_budget_token(rq, budget_token);
/*
* Now this rq owns the budget which has to be released
* if this rq won't be queued to driver via .queue_rq()
* in blk_mq_dispatch_rq_list().
*/
list_add_tail(&rq->queuelist, &rq_list);
count++;
if (rq->mq_hctx != hctx)
multi_hctxs = true;
/*
* If we cannot get tag for the request, stop dequeueing
* requests from the IO scheduler. We are unlikely to be able
* to submit them anyway and it creates false impression for
* scheduling heuristics that the device can take more IO.
*/
if (!blk_mq_get_driver_tag(rq))
break;
} while (count < max_dispatch);
if (!count) {
if (run_queue)
blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
} else if (multi_hctxs) {
/*
* Requests from different hctx may be dequeued from some
* schedulers, such as bfq and deadline.
*
* Sort the requests in the list according to their hctx,
* dispatch batching requests from same hctx at a time.
*/
list_sort(NULL, &rq_list, sched_rq_cmp);
do {
dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
} while (!list_empty(&rq_list));
} else {
dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
}
if (busy)
return -EAGAIN;
return !!dispatched;
}
static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
{
unsigned long end = jiffies + HZ;
int ret;
do {
ret = __blk_mq_do_dispatch_sched(hctx);
if (ret != 1)
break;
if (need_resched() || time_is_before_jiffies(end)) {
blk_mq_delay_run_hw_queue(hctx, 0);
break;
}
} while (1);
return ret;
}
static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *ctx)
{
unsigned short idx = ctx->index_hw[hctx->type];
if (++idx == hctx->nr_ctx)
idx = 0;
return hctx->ctxs[idx];
}
/*
* Only SCSI implements .get_budget and .put_budget, and SCSI restarts
* its queue by itself in its completion handler, so we don't need to
* restart queue if .get_budget() fails to get the budget.
*
* Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
* be run again. This is necessary to avoid starving flushes.
*/
static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
LIST_HEAD(rq_list);
struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
int ret = 0;
struct request *rq;
do {
int budget_token;
if (!list_empty_careful(&hctx->dispatch)) {
ret = -EAGAIN;
break;
}
if (!sbitmap_any_bit_set(&hctx->ctx_map))
break;
budget_token = blk_mq_get_dispatch_budget(q);
if (budget_token < 0)
break;
rq = blk_mq_dequeue_from_ctx(hctx, ctx);
if (!rq) {
blk_mq_put_dispatch_budget(q, budget_token);
/*
* We're releasing without dispatching. Holding the
* budget could have blocked any "hctx"s with the
* same queue and if we didn't dispatch then there's
* no guarantee anyone will kick the queue. Kick it
* ourselves.
*/
blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
break;
}
blk_mq_set_rq_budget_token(rq, budget_token);
/*
* Now this rq owns the budget which has to be released
* if this rq won't be queued to driver via .queue_rq()
* in blk_mq_dispatch_rq_list().
*/
list_add(&rq->queuelist, &rq_list);
/* round robin for fair dispatch */
ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
WRITE_ONCE(hctx->dispatch_from, ctx);
return ret;
}
static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
bool need_dispatch = false;
LIST_HEAD(rq_list);
/*
* If we have previous entries on our dispatch list, grab them first for
* more fair dispatch.
*/
if (!list_empty_careful(&hctx->dispatch)) {
spin_lock(&hctx->lock);
if (!list_empty(&hctx->dispatch))
list_splice_init(&hctx->dispatch, &rq_list);
spin_unlock(&hctx->lock);
}
/*
* Only ask the scheduler for requests, if we didn't have residual
* requests from the dispatch list. This is to avoid the case where
* we only ever dispatch a fraction of the requests available because
* of low device queue depth. Once we pull requests out of the IO
* scheduler, we can no longer merge or sort them. So it's best to
* leave them there for as long as we can. Mark the hw queue as
* needing a restart in that case.
*
* We want to dispatch from the scheduler if there was nothing
* on the dispatch list or we were able to dispatch from the
* dispatch list.
*/
if (!list_empty(&rq_list)) {
blk_mq_sched_mark_restart_hctx(hctx);
if (!blk_mq_dispatch_rq_list(hctx, &rq_list, 0))
return 0;
need_dispatch = true;
} else {
need_dispatch = hctx->dispatch_busy;
}
if (hctx->queue->elevator)
return blk_mq_do_dispatch_sched(hctx);
/* dequeue request one by one from sw queue if queue is busy */
if (need_dispatch)
return blk_mq_do_dispatch_ctx(hctx);
blk_mq_flush_busy_ctxs(hctx, &rq_list);
blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
return 0;
}
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
/* RCU or SRCU read lock is needed before checking quiesced flag */
if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
return;
/*
* A return of -EAGAIN is an indication that hctx->dispatch is not
* empty and we must run again in order to avoid starving flushes.
*/
if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
blk_mq_run_hw_queue(hctx, true);
}
}
bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
unsigned int nr_segs)
{
struct elevator_queue *e = q->elevator;
struct blk_mq_ctx *ctx;
struct blk_mq_hw_ctx *hctx;
bool ret = false;
enum hctx_type type;
if (e && e->type->ops.bio_merge) {
ret = e->type->ops.bio_merge(q, bio, nr_segs);
goto out_put;
}
ctx = blk_mq_get_ctx(q);
hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
type = hctx->type;
if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
list_empty_careful(&ctx->rq_lists[type]))
goto out_put;
/* default per sw-queue merge */
spin_lock(&ctx->lock);
/*
* Reverse check our software queue for entries that we could
* potentially merge with. Currently includes a hand-wavy stop
* count of 8, to not spend too much time checking for merges.
*/
if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs))
ret = true;
spin_unlock(&ctx->lock);
out_put:
return ret;
}
bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
struct list_head *free)
{
return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
}
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q,
struct blk_mq_hw_ctx *hctx,
unsigned int hctx_idx)
{
if (blk_mq_is_shared_tags(q->tag_set->flags)) {
hctx->sched_tags = q->sched_shared_tags;
return 0;
}
hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx,
q->nr_requests);
if (!hctx->sched_tags)
return -ENOMEM;
return 0;
}
static void blk_mq_exit_sched_shared_tags(struct request_queue *queue)
{
blk_mq_free_rq_map(queue->sched_shared_tags);
queue->sched_shared_tags = NULL;
}
/* called in queue's release handler, tagset has gone away */
static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i;
queue_for_each_hw_ctx(q, hctx, i) {
if (hctx->sched_tags) {
if (!blk_mq_is_shared_tags(flags))
blk_mq_free_rq_map(hctx->sched_tags);
hctx->sched_tags = NULL;
}
}
if (blk_mq_is_shared_tags(flags))
blk_mq_exit_sched_shared_tags(q);
}
static int blk_mq_init_sched_shared_tags(struct request_queue *queue)
{
struct blk_mq_tag_set *set = queue->tag_set;
/*
* Set initial depth at max so that we don't need to reallocate for
* updating nr_requests.
*/
queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set,
BLK_MQ_NO_HCTX_IDX,
MAX_SCHED_RQ);
if (!queue->sched_shared_tags)
return -ENOMEM;
blk_mq_tag_update_sched_shared_tags(queue);
return 0;
}
/* caller must have a reference to @e, will grab another one if successful */
int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
{
unsigned int flags = q->tag_set->flags;
struct blk_mq_hw_ctx *hctx;
struct elevator_queue *eq;
unsigned long i;
int ret;
/*
* Default to double of smaller one between hw queue_depth and 128,
* since we don't split into sync/async like the old code did.
* Additionally, this is a per-hw queue depth.
*/
q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
BLKDEV_DEFAULT_RQ);
if (blk_mq_is_shared_tags(flags)) {
ret = blk_mq_init_sched_shared_tags(q);
if (ret)
return ret;
}
queue_for_each_hw_ctx(q, hctx, i) {
ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i);
if (ret)
goto err_free_map_and_rqs;
}
ret = e->ops.init_sched(q, e);
if (ret)
goto err_free_map_and_rqs;
mutex_lock(&q->debugfs_mutex);
blk_mq_debugfs_register_sched(q);
mutex_unlock(&q->debugfs_mutex);
queue_for_each_hw_ctx(q, hctx, i) {
if (e->ops.init_hctx) {
ret = e->ops.init_hctx(hctx, i);
if (ret) {
eq = q->elevator;
blk_mq_sched_free_rqs(q);
blk_mq_exit_sched(q, eq);
kobject_put(&eq->kobj);
return ret;
}
}
mutex_lock(&q->debugfs_mutex);
blk_mq_debugfs_register_sched_hctx(q, hctx);
mutex_unlock(&q->debugfs_mutex);
}
return 0;
err_free_map_and_rqs:
blk_mq_sched_free_rqs(q);
blk_mq_sched_tags_teardown(q, flags);
q->elevator = NULL;
return ret;
}
/*
* called in either blk_queue_cleanup or elevator_switch, tagset
* is required for freeing requests
*/
void blk_mq_sched_free_rqs(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i;
if (blk_mq_is_shared_tags(q->tag_set->flags)) {
blk_mq_free_rqs(q->tag_set, q->sched_shared_tags,
BLK_MQ_NO_HCTX_IDX);
} else {
queue_for_each_hw_ctx(q, hctx, i) {
if (hctx->sched_tags)
blk_mq_free_rqs(q->tag_set,
hctx->sched_tags, i);
}
}
}
void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
{
struct blk_mq_hw_ctx *hctx;
unsigned long i;
unsigned int flags = 0;
queue_for_each_hw_ctx(q, hctx, i) {
mutex_lock(&q->debugfs_mutex);
blk_mq_debugfs_unregister_sched_hctx(hctx);
mutex_unlock(&q->debugfs_mutex);
if (e->type->ops.exit_hctx && hctx->sched_data) {
e->type->ops.exit_hctx(hctx, i);
hctx->sched_data = NULL;
}
flags = hctx->flags;
}
mutex_lock(&q->debugfs_mutex);
blk_mq_debugfs_unregister_sched(q);
mutex_unlock(&q->debugfs_mutex);
if (e->type->ops.exit_sched)
e->type->ops.exit_sched(e);
blk_mq_sched_tags_teardown(q, flags);
q->elevator = NULL;
}