blob: a60bfb1abb7f01e41cfe1986fa764bc8df0525de [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-or-later
/* GTP according to GSM TS 09.60 / 3GPP TS 29.060
*
* (C) 2012-2014 by sysmocom - s.f.m.c. GmbH
* (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org>
*
* Author: Harald Welte <hwelte@sysmocom.de>
* Pablo Neira Ayuso <pablo@netfilter.org>
* Andreas Schultz <aschultz@travelping.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/udp.h>
#include <linux/rculist.h>
#include <linux/jhash.h>
#include <linux/if_tunnel.h>
#include <linux/net.h>
#include <linux/file.h>
#include <linux/gtp.h>
#include <net/net_namespace.h>
#include <net/protocol.h>
#include <net/ip.h>
#include <net/ipv6.h>
#include <net/udp.h>
#include <net/udp_tunnel.h>
#include <net/icmp.h>
#include <net/xfrm.h>
#include <net/genetlink.h>
#include <net/netns/generic.h>
#include <net/gtp.h>
/* An active session for the subscriber. */
struct pdp_ctx {
struct hlist_node hlist_tid;
struct hlist_node hlist_addr;
union {
struct {
u64 tid;
u16 flow;
} v0;
struct {
u32 i_tei;
u32 o_tei;
} v1;
} u;
u8 gtp_version;
u16 af;
union {
struct in_addr addr;
struct in6_addr addr6;
} ms;
union {
struct in_addr addr;
struct in6_addr addr6;
} peer;
struct sock *sk;
struct net_device *dev;
atomic_t tx_seq;
struct rcu_head rcu_head;
};
/* One instance of the GTP device. */
struct gtp_dev {
struct list_head list;
struct sock *sk0;
struct sock *sk1u;
u8 sk_created;
struct net_device *dev;
struct net *net;
unsigned int role;
unsigned int hash_size;
struct hlist_head *tid_hash;
struct hlist_head *addr_hash;
u8 restart_count;
};
struct echo_info {
u16 af;
u8 gtp_version;
union {
struct in_addr addr;
} ms;
union {
struct in_addr addr;
} peer;
};
static unsigned int gtp_net_id __read_mostly;
struct gtp_net {
struct list_head gtp_dev_list;
};
static u32 gtp_h_initval;
static struct genl_family gtp_genl_family;
enum gtp_multicast_groups {
GTP_GENL_MCGRP,
};
static const struct genl_multicast_group gtp_genl_mcgrps[] = {
[GTP_GENL_MCGRP] = { .name = GTP_GENL_MCGRP_NAME },
};
static void pdp_context_delete(struct pdp_ctx *pctx);
static inline u32 gtp0_hashfn(u64 tid)
{
u32 *tid32 = (u32 *) &tid;
return jhash_2words(tid32[0], tid32[1], gtp_h_initval);
}
static inline u32 gtp1u_hashfn(u32 tid)
{
return jhash_1word(tid, gtp_h_initval);
}
static inline u32 ipv4_hashfn(__be32 ip)
{
return jhash_1word((__force u32)ip, gtp_h_initval);
}
static u32 ipv6_hashfn(const struct in6_addr *ip6)
{
return jhash_2words((__force u32)ip6->s6_addr32[0],
(__force u32)ip6->s6_addr32[1], gtp_h_initval);
}
/* Resolve a PDP context structure based on the 64bit TID. */
static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid, u16 family)
{
struct hlist_head *head;
struct pdp_ctx *pdp;
head = &gtp->tid_hash[gtp0_hashfn(tid) % gtp->hash_size];
hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
if (pdp->af == family &&
pdp->gtp_version == GTP_V0 &&
pdp->u.v0.tid == tid)
return pdp;
}
return NULL;
}
/* Resolve a PDP context structure based on the 32bit TEI. */
static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid, u16 family)
{
struct hlist_head *head;
struct pdp_ctx *pdp;
head = &gtp->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size];
hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
if (pdp->af == family &&
pdp->gtp_version == GTP_V1 &&
pdp->u.v1.i_tei == tid)
return pdp;
}
return NULL;
}
/* Resolve a PDP context based on IPv4 address of MS. */
static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr)
{
struct hlist_head *head;
struct pdp_ctx *pdp;
head = &gtp->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size];
hlist_for_each_entry_rcu(pdp, head, hlist_addr) {
if (pdp->af == AF_INET &&
pdp->ms.addr.s_addr == ms_addr)
return pdp;
}
return NULL;
}
/* 3GPP TS 29.060: PDN Connection: the association between a MS represented by
* [...] one IPv6 *prefix* and a PDN represented by an APN.
*
* Then, 3GPP TS 29.061, Section 11.2.1.3 says: The size of the prefix shall be
* according to the maximum prefix length for a global IPv6 address as
* specified in the IPv6 Addressing Architecture, see RFC 4291.
*
* Finally, RFC 4291 section 2.5.4 states: All Global Unicast addresses other
* than those that start with binary 000 have a 64-bit interface ID field
* (i.e., n + m = 64).
*/
static bool ipv6_pdp_addr_equal(const struct in6_addr *a,
const struct in6_addr *b)
{
return a->s6_addr32[0] == b->s6_addr32[0] &&
a->s6_addr32[1] == b->s6_addr32[1];
}
static struct pdp_ctx *ipv6_pdp_find(struct gtp_dev *gtp,
const struct in6_addr *ms_addr)
{
struct hlist_head *head;
struct pdp_ctx *pdp;
head = &gtp->addr_hash[ipv6_hashfn(ms_addr) % gtp->hash_size];
hlist_for_each_entry_rcu(pdp, head, hlist_addr) {
if (pdp->af == AF_INET6 &&
ipv6_pdp_addr_equal(&pdp->ms.addr6, ms_addr))
return pdp;
}
return NULL;
}
static bool gtp_check_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx,
unsigned int hdrlen, unsigned int role)
{
struct iphdr *iph;
if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr)))
return false;
iph = (struct iphdr *)(skb->data + hdrlen);
if (role == GTP_ROLE_SGSN)
return iph->daddr == pctx->ms.addr.s_addr;
else
return iph->saddr == pctx->ms.addr.s_addr;
}
static bool gtp_check_ms_ipv6(struct sk_buff *skb, struct pdp_ctx *pctx,
unsigned int hdrlen, unsigned int role)
{
struct ipv6hdr *ip6h;
int ret;
if (!pskb_may_pull(skb, hdrlen + sizeof(struct ipv6hdr)))
return false;
ip6h = (struct ipv6hdr *)(skb->data + hdrlen);
if ((ipv6_addr_type(&ip6h->saddr) & IPV6_ADDR_LINKLOCAL) ||
(ipv6_addr_type(&ip6h->daddr) & IPV6_ADDR_LINKLOCAL))
return false;
if (role == GTP_ROLE_SGSN) {
ret = ipv6_pdp_addr_equal(&ip6h->daddr, &pctx->ms.addr6);
} else {
ret = ipv6_pdp_addr_equal(&ip6h->saddr, &pctx->ms.addr6);
}
return ret;
}
/* Check if the inner IP address in this packet is assigned to any
* existing mobile subscriber.
*/
static bool gtp_check_ms(struct sk_buff *skb, struct pdp_ctx *pctx,
unsigned int hdrlen, unsigned int role,
__u16 inner_proto)
{
switch (inner_proto) {
case ETH_P_IP:
return gtp_check_ms_ipv4(skb, pctx, hdrlen, role);
case ETH_P_IPV6:
return gtp_check_ms_ipv6(skb, pctx, hdrlen, role);
}
return false;
}
static int gtp_inner_proto(struct sk_buff *skb, unsigned int hdrlen,
__u16 *inner_proto)
{
__u8 *ip_version, _ip_version;
ip_version = skb_header_pointer(skb, hdrlen, sizeof(*ip_version),
&_ip_version);
if (!ip_version)
return -1;
switch (*ip_version & 0xf0) {
case 0x40:
*inner_proto = ETH_P_IP;
break;
case 0x60:
*inner_proto = ETH_P_IPV6;
break;
default:
return -1;
}
return 0;
}
static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb,
unsigned int hdrlen, unsigned int role, __u16 inner_proto)
{
if (!gtp_check_ms(skb, pctx, hdrlen, role, inner_proto)) {
netdev_dbg(pctx->dev, "No PDP ctx for this MS\n");
return 1;
}
/* Get rid of the GTP + UDP headers. */
if (iptunnel_pull_header(skb, hdrlen, htons(inner_proto),
!net_eq(sock_net(pctx->sk), dev_net(pctx->dev)))) {
pctx->dev->stats.rx_length_errors++;
goto err;
}
netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n");
/* Now that the UDP and the GTP header have been removed, set up the
* new network header. This is required by the upper layer to
* calculate the transport header.
*/
skb_reset_network_header(skb);
skb_reset_mac_header(skb);
skb->dev = pctx->dev;
dev_sw_netstats_rx_add(pctx->dev, skb->len);
__netif_rx(skb);
return 0;
err:
pctx->dev->stats.rx_dropped++;
return -1;
}
static struct rtable *ip4_route_output_gtp(struct flowi4 *fl4,
const struct sock *sk,
__be32 daddr, __be32 saddr)
{
memset(fl4, 0, sizeof(*fl4));
fl4->flowi4_oif = sk->sk_bound_dev_if;
fl4->daddr = daddr;
fl4->saddr = saddr;
fl4->flowi4_tos = ip_sock_rt_tos(sk);
fl4->flowi4_scope = ip_sock_rt_scope(sk);
fl4->flowi4_proto = sk->sk_protocol;
return ip_route_output_key(sock_net(sk), fl4);
}
static struct rt6_info *ip6_route_output_gtp(struct net *net,
struct flowi6 *fl6,
const struct sock *sk,
const struct in6_addr *daddr,
struct in6_addr *saddr)
{
struct dst_entry *dst;
memset(fl6, 0, sizeof(*fl6));
fl6->flowi6_oif = sk->sk_bound_dev_if;
fl6->daddr = *daddr;
fl6->saddr = *saddr;
fl6->flowi6_proto = sk->sk_protocol;
dst = ipv6_stub->ipv6_dst_lookup_flow(net, sk, fl6, NULL);
if (IS_ERR(dst))
return ERR_PTR(-ENETUNREACH);
return (struct rt6_info *)dst;
}
/* GSM TS 09.60. 7.3
* In all Path Management messages:
* - TID: is not used and shall be set to 0.
* - Flow Label is not used and shall be set to 0
* In signalling messages:
* - number: this field is not yet used in signalling messages.
* It shall be set to 255 by the sender and shall be ignored
* by the receiver
* Returns true if the echo req was correct, false otherwise.
*/
static bool gtp0_validate_echo_hdr(struct gtp0_header *gtp0)
{
return !(gtp0->tid || (gtp0->flags ^ 0x1e) ||
gtp0->number != 0xff || gtp0->flow);
}
/* msg_type has to be GTP_ECHO_REQ or GTP_ECHO_RSP */
static void gtp0_build_echo_msg(struct gtp0_header *hdr, __u8 msg_type)
{
int len_pkt, len_hdr;
hdr->flags = 0x1e; /* v0, GTP-non-prime. */
hdr->type = msg_type;
/* GSM TS 09.60. 7.3 In all Path Management Flow Label and TID
* are not used and shall be set to 0.
*/
hdr->flow = 0;
hdr->tid = 0;
hdr->number = 0xff;
hdr->spare[0] = 0xff;
hdr->spare[1] = 0xff;
hdr->spare[2] = 0xff;
len_pkt = sizeof(struct gtp0_packet);
len_hdr = sizeof(struct gtp0_header);
if (msg_type == GTP_ECHO_RSP)
hdr->length = htons(len_pkt - len_hdr);
else
hdr->length = 0;
}
static int gtp0_send_echo_resp_ip(struct gtp_dev *gtp, struct sk_buff *skb)
{
struct iphdr *iph = ip_hdr(skb);
struct flowi4 fl4;
struct rtable *rt;
/* find route to the sender,
* src address becomes dst address and vice versa.
*/
rt = ip4_route_output_gtp(&fl4, gtp->sk0, iph->saddr, iph->daddr);
if (IS_ERR(rt)) {
netdev_dbg(gtp->dev, "no route for echo response from %pI4\n",
&iph->saddr);
return -1;
}
udp_tunnel_xmit_skb(rt, gtp->sk0, skb,
fl4.saddr, fl4.daddr,
iph->tos,
ip4_dst_hoplimit(&rt->dst),
0,
htons(GTP0_PORT), htons(GTP0_PORT),
!net_eq(sock_net(gtp->sk1u),
dev_net(gtp->dev)),
false);
return 0;
}
static int gtp0_send_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
{
struct gtp0_packet *gtp_pkt;
struct gtp0_header *gtp0;
__be16 seq;
gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
if (!gtp0_validate_echo_hdr(gtp0))
return -1;
seq = gtp0->seq;
/* pull GTP and UDP headers */
skb_pull_data(skb, sizeof(struct gtp0_header) + sizeof(struct udphdr));
gtp_pkt = skb_push(skb, sizeof(struct gtp0_packet));
memset(gtp_pkt, 0, sizeof(struct gtp0_packet));
gtp0_build_echo_msg(&gtp_pkt->gtp0_h, GTP_ECHO_RSP);
/* GSM TS 09.60. 7.3 The Sequence Number in a signalling response
* message shall be copied from the signalling request message
* that the GSN is replying to.
*/
gtp_pkt->gtp0_h.seq = seq;
gtp_pkt->ie.tag = GTPIE_RECOVERY;
gtp_pkt->ie.val = gtp->restart_count;
switch (gtp->sk0->sk_family) {
case AF_INET:
if (gtp0_send_echo_resp_ip(gtp, skb) < 0)
return -1;
break;
case AF_INET6:
return -1;
}
return 0;
}
static int gtp_genl_fill_echo(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
int flags, u32 type, struct echo_info echo)
{
void *genlh;
genlh = genlmsg_put(skb, snd_portid, snd_seq, &gtp_genl_family, flags,
type);
if (!genlh)
goto failure;
if (nla_put_u32(skb, GTPA_VERSION, echo.gtp_version) ||
nla_put_be32(skb, GTPA_PEER_ADDRESS, echo.peer.addr.s_addr) ||
nla_put_be32(skb, GTPA_MS_ADDRESS, echo.ms.addr.s_addr))
goto failure;
genlmsg_end(skb, genlh);
return 0;
failure:
genlmsg_cancel(skb, genlh);
return -EMSGSIZE;
}
static void gtp0_handle_echo_resp_ip(struct sk_buff *skb, struct echo_info *echo)
{
struct iphdr *iph = ip_hdr(skb);
echo->ms.addr.s_addr = iph->daddr;
echo->peer.addr.s_addr = iph->saddr;
echo->gtp_version = GTP_V0;
}
static int gtp0_handle_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
{
struct gtp0_header *gtp0;
struct echo_info echo;
struct sk_buff *msg;
int ret;
gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
if (!gtp0_validate_echo_hdr(gtp0))
return -1;
switch (gtp->sk0->sk_family) {
case AF_INET:
gtp0_handle_echo_resp_ip(skb, &echo);
break;
case AF_INET6:
return -1;
}
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (!msg)
return -ENOMEM;
ret = gtp_genl_fill_echo(msg, 0, 0, 0, GTP_CMD_ECHOREQ, echo);
if (ret < 0) {
nlmsg_free(msg);
return ret;
}
return genlmsg_multicast_netns(&gtp_genl_family, dev_net(gtp->dev),
msg, 0, GTP_GENL_MCGRP, GFP_ATOMIC);
}
static int gtp_proto_to_family(__u16 proto)
{
switch (proto) {
case ETH_P_IP:
return AF_INET;
case ETH_P_IPV6:
return AF_INET6;
default:
WARN_ON_ONCE(1);
break;
}
return AF_UNSPEC;
}
/* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */
static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
{
unsigned int hdrlen = sizeof(struct udphdr) +
sizeof(struct gtp0_header);
struct gtp0_header *gtp0;
struct pdp_ctx *pctx;
__u16 inner_proto;
if (!pskb_may_pull(skb, hdrlen))
return -1;
gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
if ((gtp0->flags >> 5) != GTP_V0)
return 1;
/* If the sockets were created in kernel, it means that
* there is no daemon running in userspace which would
* handle echo request.
*/
if (gtp0->type == GTP_ECHO_REQ && gtp->sk_created)
return gtp0_send_echo_resp(gtp, skb);
if (gtp0->type == GTP_ECHO_RSP && gtp->sk_created)
return gtp0_handle_echo_resp(gtp, skb);
if (gtp0->type != GTP_TPDU)
return 1;
if (gtp_inner_proto(skb, hdrlen, &inner_proto) < 0) {
netdev_dbg(gtp->dev, "GTP packet does not encapsulate an IP packet\n");
return -1;
}
pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid),
gtp_proto_to_family(inner_proto));
if (!pctx) {
netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
return 1;
}
return gtp_rx(pctx, skb, hdrlen, gtp->role, inner_proto);
}
/* msg_type has to be GTP_ECHO_REQ or GTP_ECHO_RSP */
static void gtp1u_build_echo_msg(struct gtp1_header_long *hdr, __u8 msg_type)
{
int len_pkt, len_hdr;
/* S flag must be set to 1 */
hdr->flags = 0x32; /* v1, GTP-non-prime. */
hdr->type = msg_type;
/* 3GPP TS 29.281 5.1 - TEID has to be set to 0 */
hdr->tid = 0;
/* seq, npdu and next should be counted to the length of the GTP packet
* that's why szie of gtp1_header should be subtracted,
* not size of gtp1_header_long.
*/
len_hdr = sizeof(struct gtp1_header);
if (msg_type == GTP_ECHO_RSP) {
len_pkt = sizeof(struct gtp1u_packet);
hdr->length = htons(len_pkt - len_hdr);
} else {
/* GTP_ECHO_REQ does not carry GTP Information Element,
* the why gtp1_header_long is used here.
*/
len_pkt = sizeof(struct gtp1_header_long);
hdr->length = htons(len_pkt - len_hdr);
}
}
static int gtp1u_send_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
{
struct gtp1_header_long *gtp1u;
struct gtp1u_packet *gtp_pkt;
struct rtable *rt;
struct flowi4 fl4;
struct iphdr *iph;
gtp1u = (struct gtp1_header_long *)(skb->data + sizeof(struct udphdr));
/* 3GPP TS 29.281 5.1 - For the Echo Request, Echo Response,
* Error Indication and Supported Extension Headers Notification
* messages, the S flag shall be set to 1 and TEID shall be set to 0.
*/
if (!(gtp1u->flags & GTP1_F_SEQ) || gtp1u->tid)
return -1;
/* pull GTP and UDP headers */
skb_pull_data(skb,
sizeof(struct gtp1_header_long) + sizeof(struct udphdr));
gtp_pkt = skb_push(skb, sizeof(struct gtp1u_packet));
memset(gtp_pkt, 0, sizeof(struct gtp1u_packet));
gtp1u_build_echo_msg(&gtp_pkt->gtp1u_h, GTP_ECHO_RSP);
/* 3GPP TS 29.281 7.7.2 - The Restart Counter value in the
* Recovery information element shall not be used, i.e. it shall
* be set to zero by the sender and shall be ignored by the receiver.
* The Recovery information element is mandatory due to backwards
* compatibility reasons.
*/
gtp_pkt->ie.tag = GTPIE_RECOVERY;
gtp_pkt->ie.val = 0;
iph = ip_hdr(skb);
/* find route to the sender,
* src address becomes dst address and vice versa.
*/
rt = ip4_route_output_gtp(&fl4, gtp->sk1u, iph->saddr, iph->daddr);
if (IS_ERR(rt)) {
netdev_dbg(gtp->dev, "no route for echo response from %pI4\n",
&iph->saddr);
return -1;
}
udp_tunnel_xmit_skb(rt, gtp->sk1u, skb,
fl4.saddr, fl4.daddr,
iph->tos,
ip4_dst_hoplimit(&rt->dst),
0,
htons(GTP1U_PORT), htons(GTP1U_PORT),
!net_eq(sock_net(gtp->sk1u),
dev_net(gtp->dev)),
false);
return 0;
}
static int gtp1u_handle_echo_resp(struct gtp_dev *gtp, struct sk_buff *skb)
{
struct gtp1_header_long *gtp1u;
struct echo_info echo;
struct sk_buff *msg;
struct iphdr *iph;
int ret;
gtp1u = (struct gtp1_header_long *)(skb->data + sizeof(struct udphdr));
/* 3GPP TS 29.281 5.1 - For the Echo Request, Echo Response,
* Error Indication and Supported Extension Headers Notification
* messages, the S flag shall be set to 1 and TEID shall be set to 0.
*/
if (!(gtp1u->flags & GTP1_F_SEQ) || gtp1u->tid)
return -1;
iph = ip_hdr(skb);
echo.ms.addr.s_addr = iph->daddr;
echo.peer.addr.s_addr = iph->saddr;
echo.gtp_version = GTP_V1;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (!msg)
return -ENOMEM;
ret = gtp_genl_fill_echo(msg, 0, 0, 0, GTP_CMD_ECHOREQ, echo);
if (ret < 0) {
nlmsg_free(msg);
return ret;
}
return genlmsg_multicast_netns(&gtp_genl_family, dev_net(gtp->dev),
msg, 0, GTP_GENL_MCGRP, GFP_ATOMIC);
}
static int gtp_parse_exthdrs(struct sk_buff *skb, unsigned int *hdrlen)
{
struct gtp_ext_hdr *gtp_exthdr, _gtp_exthdr;
unsigned int offset = *hdrlen;
__u8 *next_type, _next_type;
/* From 29.060: "The Extension Header Length field specifies the length
* of the particular Extension header in 4 octets units."
*
* This length field includes length field size itself (1 byte),
* payload (variable length) and next type (1 byte). The extension
* header is aligned to to 4 bytes.
*/
do {
gtp_exthdr = skb_header_pointer(skb, offset, sizeof(*gtp_exthdr),
&_gtp_exthdr);
if (!gtp_exthdr || !gtp_exthdr->len)
return -1;
offset += gtp_exthdr->len * 4;
/* From 29.060: "If no such Header follows, then the value of
* the Next Extension Header Type shall be 0."
*/
next_type = skb_header_pointer(skb, offset - 1,
sizeof(_next_type), &_next_type);
if (!next_type)
return -1;
} while (*next_type != 0);
*hdrlen = offset;
return 0;
}
static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
{
unsigned int hdrlen = sizeof(struct udphdr) +
sizeof(struct gtp1_header);
struct gtp1_header *gtp1;
struct pdp_ctx *pctx;
__u16 inner_proto;
if (!pskb_may_pull(skb, hdrlen))
return -1;
gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
if ((gtp1->flags >> 5) != GTP_V1)
return 1;
/* If the sockets were created in kernel, it means that
* there is no daemon running in userspace which would
* handle echo request.
*/
if (gtp1->type == GTP_ECHO_REQ && gtp->sk_created)
return gtp1u_send_echo_resp(gtp, skb);
if (gtp1->type == GTP_ECHO_RSP && gtp->sk_created)
return gtp1u_handle_echo_resp(gtp, skb);
if (gtp1->type != GTP_TPDU)
return 1;
/* From 29.060: "This field shall be present if and only if any one or
* more of the S, PN and E flags are set.".
*
* If any of the bit is set, then the remaining ones also have to be
* set.
*/
if (gtp1->flags & GTP1_F_MASK)
hdrlen += 4;
/* Make sure the header is larger enough, including extensions. */
if (!pskb_may_pull(skb, hdrlen))
return -1;
if (gtp_inner_proto(skb, hdrlen, &inner_proto) < 0) {
netdev_dbg(gtp->dev, "GTP packet does not encapsulate an IP packet\n");
return -1;
}
gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid),
gtp_proto_to_family(inner_proto));
if (!pctx) {
netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
return 1;
}
if (gtp1->flags & GTP1_F_EXTHDR &&
gtp_parse_exthdrs(skb, &hdrlen) < 0)
return -1;
return gtp_rx(pctx, skb, hdrlen, gtp->role, inner_proto);
}
static void __gtp_encap_destroy(struct sock *sk)
{
struct gtp_dev *gtp;
lock_sock(sk);
gtp = sk->sk_user_data;
if (gtp) {
if (gtp->sk0 == sk)
gtp->sk0 = NULL;
else
gtp->sk1u = NULL;
WRITE_ONCE(udp_sk(sk)->encap_type, 0);
rcu_assign_sk_user_data(sk, NULL);
release_sock(sk);
sock_put(sk);
return;
}
release_sock(sk);
}
static void gtp_encap_destroy(struct sock *sk)
{
rtnl_lock();
__gtp_encap_destroy(sk);
rtnl_unlock();
}
static void gtp_encap_disable_sock(struct sock *sk)
{
if (!sk)
return;
__gtp_encap_destroy(sk);
}
static void gtp_encap_disable(struct gtp_dev *gtp)
{
if (gtp->sk_created) {
udp_tunnel_sock_release(gtp->sk0->sk_socket);
udp_tunnel_sock_release(gtp->sk1u->sk_socket);
gtp->sk_created = false;
gtp->sk0 = NULL;
gtp->sk1u = NULL;
} else {
gtp_encap_disable_sock(gtp->sk0);
gtp_encap_disable_sock(gtp->sk1u);
}
}
/* UDP encapsulation receive handler. See net/ipv4/udp.c.
* Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket.
*/
static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb)
{
struct gtp_dev *gtp;
int ret = 0;
gtp = rcu_dereference_sk_user_data(sk);
if (!gtp)
return 1;
netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk);
switch (READ_ONCE(udp_sk(sk)->encap_type)) {
case UDP_ENCAP_GTP0:
netdev_dbg(gtp->dev, "received GTP0 packet\n");
ret = gtp0_udp_encap_recv(gtp, skb);
break;
case UDP_ENCAP_GTP1U:
netdev_dbg(gtp->dev, "received GTP1U packet\n");
ret = gtp1u_udp_encap_recv(gtp, skb);
break;
default:
ret = -1; /* Shouldn't happen. */
}
switch (ret) {
case 1:
netdev_dbg(gtp->dev, "pass up to the process\n");
break;
case 0:
break;
case -1:
netdev_dbg(gtp->dev, "GTP packet has been dropped\n");
kfree_skb(skb);
ret = 0;
break;
}
return ret;
}
static void gtp_dev_uninit(struct net_device *dev)
{
struct gtp_dev *gtp = netdev_priv(dev);
gtp_encap_disable(gtp);
}
static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
{
int payload_len = skb->len;
struct gtp0_header *gtp0;
gtp0 = skb_push(skb, sizeof(*gtp0));
gtp0->flags = 0x1e; /* v0, GTP-non-prime. */
gtp0->type = GTP_TPDU;
gtp0->length = htons(payload_len);
gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff);
gtp0->flow = htons(pctx->u.v0.flow);
gtp0->number = 0xff;
gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff;
gtp0->tid = cpu_to_be64(pctx->u.v0.tid);
}
static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
{
int payload_len = skb->len;
struct gtp1_header *gtp1;
gtp1 = skb_push(skb, sizeof(*gtp1));
/* Bits 8 7 6 5 4 3 2 1
* +--+--+--+--+--+--+--+--+
* |version |PT| 0| E| S|PN|
* +--+--+--+--+--+--+--+--+
* 0 0 1 1 1 0 0 0
*/
gtp1->flags = 0x30; /* v1, GTP-non-prime. */
gtp1->type = GTP_TPDU;
gtp1->length = htons(payload_len);
gtp1->tid = htonl(pctx->u.v1.o_tei);
/* TODO: Support for extension header, sequence number and N-PDU.
* Update the length field if any of them is available.
*/
}
struct gtp_pktinfo {
struct sock *sk;
union {
struct flowi4 fl4;
struct flowi6 fl6;
};
union {
struct rtable *rt;
struct rt6_info *rt6;
};
struct pdp_ctx *pctx;
struct net_device *dev;
__u8 tos;
__be16 gtph_port;
};
static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo)
{
switch (pktinfo->pctx->gtp_version) {
case GTP_V0:
pktinfo->gtph_port = htons(GTP0_PORT);
gtp0_push_header(skb, pktinfo->pctx);
break;
case GTP_V1:
pktinfo->gtph_port = htons(GTP1U_PORT);
gtp1_push_header(skb, pktinfo->pctx);
break;
}
}
static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo,
struct sock *sk, __u8 tos,
struct pdp_ctx *pctx, struct rtable *rt,
struct flowi4 *fl4,
struct net_device *dev)
{
pktinfo->sk = sk;
pktinfo->tos = tos;
pktinfo->pctx = pctx;
pktinfo->rt = rt;
pktinfo->fl4 = *fl4;
pktinfo->dev = dev;
}
static void gtp_set_pktinfo_ipv6(struct gtp_pktinfo *pktinfo,
struct sock *sk, __u8 tos,
struct pdp_ctx *pctx, struct rt6_info *rt6,
struct flowi6 *fl6,
struct net_device *dev)
{
pktinfo->sk = sk;
pktinfo->tos = tos;
pktinfo->pctx = pctx;
pktinfo->rt6 = rt6;
pktinfo->fl6 = *fl6;
pktinfo->dev = dev;
}
static int gtp_build_skb_outer_ip4(struct sk_buff *skb, struct net_device *dev,
struct gtp_pktinfo *pktinfo,
struct pdp_ctx *pctx, __u8 tos,
__be16 frag_off)
{
struct rtable *rt;
struct flowi4 fl4;
__be16 df;
int mtu;
rt = ip4_route_output_gtp(&fl4, pctx->sk, pctx->peer.addr.s_addr,
inet_sk(pctx->sk)->inet_saddr);
if (IS_ERR(rt)) {
netdev_dbg(dev, "no route to SSGN %pI4\n",
&pctx->peer.addr.s_addr);
dev->stats.tx_carrier_errors++;
goto err;
}
if (rt->dst.dev == dev) {
netdev_dbg(dev, "circular route to SSGN %pI4\n",
&pctx->peer.addr.s_addr);
dev->stats.collisions++;
goto err_rt;
}
/* This is similar to tnl_update_pmtu(). */
df = frag_off;
if (df) {
mtu = dst_mtu(&rt->dst) - dev->hard_header_len -
sizeof(struct iphdr) - sizeof(struct udphdr);
switch (pctx->gtp_version) {
case GTP_V0:
mtu -= sizeof(struct gtp0_header);
break;
case GTP_V1:
mtu -= sizeof(struct gtp1_header);
break;
}
} else {
mtu = dst_mtu(&rt->dst);
}
skb_dst_update_pmtu_no_confirm(skb, mtu);
if (frag_off & htons(IP_DF) &&
((!skb_is_gso(skb) && skb->len > mtu) ||
(skb_is_gso(skb) && !skb_gso_validate_network_len(skb, mtu)))) {
netdev_dbg(dev, "packet too big, fragmentation needed\n");
icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
htonl(mtu));
goto err_rt;
}
gtp_set_pktinfo_ipv4(pktinfo, pctx->sk, tos, pctx, rt, &fl4, dev);
gtp_push_header(skb, pktinfo);
return 0;
err_rt:
ip_rt_put(rt);
err:
return -EBADMSG;
}
static int gtp_build_skb_outer_ip6(struct net *net, struct sk_buff *skb,
struct net_device *dev,
struct gtp_pktinfo *pktinfo,
struct pdp_ctx *pctx, __u8 tos)
{
struct dst_entry *dst;
struct rt6_info *rt;
struct flowi6 fl6;
int mtu;
rt = ip6_route_output_gtp(net, &fl6, pctx->sk, &pctx->peer.addr6,
&inet6_sk(pctx->sk)->saddr);
if (IS_ERR(rt)) {
netdev_dbg(dev, "no route to SSGN %pI6\n",
&pctx->peer.addr6);
dev->stats.tx_carrier_errors++;
goto err;
}
dst = &rt->dst;
if (rt->dst.dev == dev) {
netdev_dbg(dev, "circular route to SSGN %pI6\n",
&pctx->peer.addr6);
dev->stats.collisions++;
goto err_rt;
}
mtu = dst_mtu(&rt->dst) - dev->hard_header_len -
sizeof(struct ipv6hdr) - sizeof(struct udphdr);
switch (pctx->gtp_version) {
case GTP_V0:
mtu -= sizeof(struct gtp0_header);
break;
case GTP_V1:
mtu -= sizeof(struct gtp1_header);
break;
}
skb_dst_update_pmtu_no_confirm(skb, mtu);
if ((!skb_is_gso(skb) && skb->len > mtu) ||
(skb_is_gso(skb) && !skb_gso_validate_network_len(skb, mtu))) {
netdev_dbg(dev, "packet too big, fragmentation needed\n");
icmpv6_ndo_send(skb, ICMPV6_PKT_TOOBIG, 0, mtu);
goto err_rt;
}
gtp_set_pktinfo_ipv6(pktinfo, pctx->sk, tos, pctx, rt, &fl6, dev);
gtp_push_header(skb, pktinfo);
return 0;
err_rt:
dst_release(dst);
err:
return -EBADMSG;
}
static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev,
struct gtp_pktinfo *pktinfo)
{
struct gtp_dev *gtp = netdev_priv(dev);
struct net *net = gtp->net;
struct pdp_ctx *pctx;
struct iphdr *iph;
int ret;
/* Read the IP destination address and resolve the PDP context.
* Prepend PDP header with TEI/TID from PDP ctx.
*/
iph = ip_hdr(skb);
if (gtp->role == GTP_ROLE_SGSN)
pctx = ipv4_pdp_find(gtp, iph->saddr);
else
pctx = ipv4_pdp_find(gtp, iph->daddr);
if (!pctx) {
netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n",
&iph->daddr);
return -ENOENT;
}
netdev_dbg(dev, "found PDP context %p\n", pctx);
switch (pctx->sk->sk_family) {
case AF_INET:
ret = gtp_build_skb_outer_ip4(skb, dev, pktinfo, pctx,
iph->tos, iph->frag_off);
break;
case AF_INET6:
ret = gtp_build_skb_outer_ip6(net, skb, dev, pktinfo, pctx,
iph->tos);
break;
default:
ret = -1;
WARN_ON_ONCE(1);
break;
}
if (ret < 0)
return ret;
netdev_dbg(dev, "gtp -> IP src: %pI4 dst: %pI4\n",
&iph->saddr, &iph->daddr);
return 0;
}
static int gtp_build_skb_ip6(struct sk_buff *skb, struct net_device *dev,
struct gtp_pktinfo *pktinfo)
{
struct gtp_dev *gtp = netdev_priv(dev);
struct net *net = gtp->net;
struct pdp_ctx *pctx;
struct ipv6hdr *ip6h;
__u8 tos;
int ret;
/* Read the IP destination address and resolve the PDP context.
* Prepend PDP header with TEI/TID from PDP ctx.
*/
ip6h = ipv6_hdr(skb);
if (gtp->role == GTP_ROLE_SGSN)
pctx = ipv6_pdp_find(gtp, &ip6h->saddr);
else
pctx = ipv6_pdp_find(gtp, &ip6h->daddr);
if (!pctx) {
netdev_dbg(dev, "no PDP ctx found for %pI6, skip\n",
&ip6h->daddr);
return -ENOENT;
}
netdev_dbg(dev, "found PDP context %p\n", pctx);
tos = ipv6_get_dsfield(ip6h);
switch (pctx->sk->sk_family) {
case AF_INET:
ret = gtp_build_skb_outer_ip4(skb, dev, pktinfo, pctx, tos, 0);
break;
case AF_INET6:
ret = gtp_build_skb_outer_ip6(net, skb, dev, pktinfo, pctx, tos);
break;
default:
ret = -1;
WARN_ON_ONCE(1);
break;
}
if (ret < 0)
return ret;
netdev_dbg(dev, "gtp -> IP src: %pI6 dst: %pI6\n",
&ip6h->saddr, &ip6h->daddr);
return 0;
}
static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned int proto = ntohs(skb->protocol);
struct gtp_pktinfo pktinfo;
int err;
/* Ensure there is sufficient headroom. */
if (skb_cow_head(skb, dev->needed_headroom))
goto tx_err;
if (!pskb_inet_may_pull(skb))
goto tx_err;
skb_reset_inner_headers(skb);
/* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */
rcu_read_lock();
switch (proto) {
case ETH_P_IP:
err = gtp_build_skb_ip4(skb, dev, &pktinfo);
break;
case ETH_P_IPV6:
err = gtp_build_skb_ip6(skb, dev, &pktinfo);
break;
default:
err = -EOPNOTSUPP;
break;
}
rcu_read_unlock();
if (err < 0)
goto tx_err;
switch (pktinfo.pctx->sk->sk_family) {
case AF_INET:
udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb,
pktinfo.fl4.saddr, pktinfo.fl4.daddr,
pktinfo.tos,
ip4_dst_hoplimit(&pktinfo.rt->dst),
0,
pktinfo.gtph_port, pktinfo.gtph_port,
!net_eq(sock_net(pktinfo.pctx->sk),
dev_net(dev)),
false);
break;
case AF_INET6:
#if IS_ENABLED(CONFIG_IPV6)
udp_tunnel6_xmit_skb(&pktinfo.rt6->dst, pktinfo.sk, skb, dev,
&pktinfo.fl6.saddr, &pktinfo.fl6.daddr,
pktinfo.tos,
ip6_dst_hoplimit(&pktinfo.rt->dst),
0,
pktinfo.gtph_port, pktinfo.gtph_port,
false);
#else
goto tx_err;
#endif
break;
}
return NETDEV_TX_OK;
tx_err:
dev->stats.tx_errors++;
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static const struct net_device_ops gtp_netdev_ops = {
.ndo_uninit = gtp_dev_uninit,
.ndo_start_xmit = gtp_dev_xmit,
};
static const struct device_type gtp_type = {
.name = "gtp",
};
#define GTP_TH_MAXLEN (sizeof(struct udphdr) + sizeof(struct gtp0_header))
#define GTP_IPV4_MAXLEN (sizeof(struct iphdr) + GTP_TH_MAXLEN)
static void gtp_link_setup(struct net_device *dev)
{
struct gtp_dev *gtp = netdev_priv(dev);
dev->netdev_ops = &gtp_netdev_ops;
dev->needs_free_netdev = true;
SET_NETDEV_DEVTYPE(dev, &gtp_type);
dev->hard_header_len = 0;
dev->addr_len = 0;
dev->mtu = ETH_DATA_LEN - GTP_IPV4_MAXLEN;
/* Zero header length. */
dev->type = ARPHRD_NONE;
dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
dev->pcpu_stat_type = NETDEV_PCPU_STAT_TSTATS;
dev->priv_flags |= IFF_NO_QUEUE;
dev->lltx = true;
netif_keep_dst(dev);
dev->needed_headroom = LL_MAX_HEADER + GTP_IPV4_MAXLEN;
gtp->dev = dev;
}
static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize);
static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]);
static void gtp_destructor(struct net_device *dev)
{
struct gtp_dev *gtp = netdev_priv(dev);
kfree(gtp->addr_hash);
kfree(gtp->tid_hash);
}
static int gtp_sock_udp_config(struct udp_port_cfg *udp_conf,
const struct nlattr *nla, int family)
{
udp_conf->family = family;
switch (udp_conf->family) {
case AF_INET:
udp_conf->local_ip.s_addr = nla_get_be32(nla);
break;
#if IS_ENABLED(CONFIG_IPV6)
case AF_INET6:
udp_conf->local_ip6 = nla_get_in6_addr(nla);
break;
#endif
default:
return -EOPNOTSUPP;
}
return 0;
}
static struct sock *gtp_create_sock(int type, struct gtp_dev *gtp,
const struct nlattr *nla, int family)
{
struct udp_tunnel_sock_cfg tuncfg = {};
struct udp_port_cfg udp_conf = {};
struct net *net = gtp->net;
struct socket *sock;
int err;
if (nla) {
err = gtp_sock_udp_config(&udp_conf, nla, family);
if (err < 0)
return ERR_PTR(err);
} else {
udp_conf.local_ip.s_addr = htonl(INADDR_ANY);
udp_conf.family = AF_INET;
}
if (type == UDP_ENCAP_GTP0)
udp_conf.local_udp_port = htons(GTP0_PORT);
else if (type == UDP_ENCAP_GTP1U)
udp_conf.local_udp_port = htons(GTP1U_PORT);
else
return ERR_PTR(-EINVAL);
err = udp_sock_create(net, &udp_conf, &sock);
if (err)
return ERR_PTR(err);
tuncfg.sk_user_data = gtp;
tuncfg.encap_type = type;
tuncfg.encap_rcv = gtp_encap_recv;
tuncfg.encap_destroy = NULL;
setup_udp_tunnel_sock(net, sock, &tuncfg);
return sock->sk;
}
static int gtp_create_sockets(struct gtp_dev *gtp, const struct nlattr *nla,
int family)
{
struct sock *sk1u;
struct sock *sk0;
sk0 = gtp_create_sock(UDP_ENCAP_GTP0, gtp, nla, family);
if (IS_ERR(sk0))
return PTR_ERR(sk0);
sk1u = gtp_create_sock(UDP_ENCAP_GTP1U, gtp, nla, family);
if (IS_ERR(sk1u)) {
udp_tunnel_sock_release(sk0->sk_socket);
return PTR_ERR(sk1u);
}
gtp->sk_created = true;
gtp->sk0 = sk0;
gtp->sk1u = sk1u;
return 0;
}
#define GTP_TH_MAXLEN (sizeof(struct udphdr) + sizeof(struct gtp0_header))
#define GTP_IPV6_MAXLEN (sizeof(struct ipv6hdr) + GTP_TH_MAXLEN)
static int gtp_newlink(struct net *src_net, struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
unsigned int role = GTP_ROLE_GGSN;
struct gtp_dev *gtp;
struct gtp_net *gn;
int hashsize, err;
#if !IS_ENABLED(CONFIG_IPV6)
if (data[IFLA_GTP_LOCAL6])
return -EAFNOSUPPORT;
#endif
gtp = netdev_priv(dev);
if (!data[IFLA_GTP_PDP_HASHSIZE]) {
hashsize = 1024;
} else {
hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]);
if (!hashsize)
hashsize = 1024;
}
if (data[IFLA_GTP_ROLE]) {
role = nla_get_u32(data[IFLA_GTP_ROLE]);
if (role > GTP_ROLE_SGSN)
return -EINVAL;
}
gtp->role = role;
if (!data[IFLA_GTP_RESTART_COUNT])
gtp->restart_count = 0;
else
gtp->restart_count = nla_get_u8(data[IFLA_GTP_RESTART_COUNT]);
gtp->net = src_net;
err = gtp_hashtable_new(gtp, hashsize);
if (err < 0)
return err;
if (data[IFLA_GTP_CREATE_SOCKETS]) {
if (data[IFLA_GTP_LOCAL6])
err = gtp_create_sockets(gtp, data[IFLA_GTP_LOCAL6], AF_INET6);
else
err = gtp_create_sockets(gtp, data[IFLA_GTP_LOCAL], AF_INET);
} else {
err = gtp_encap_enable(gtp, data);
}
if (err < 0)
goto out_hashtable;
if ((gtp->sk0 && gtp->sk0->sk_family == AF_INET6) ||
(gtp->sk1u && gtp->sk1u->sk_family == AF_INET6)) {
dev->mtu = ETH_DATA_LEN - GTP_IPV6_MAXLEN;
dev->needed_headroom = LL_MAX_HEADER + GTP_IPV6_MAXLEN;
}
err = register_netdevice(dev);
if (err < 0) {
netdev_dbg(dev, "failed to register new netdev %d\n", err);
goto out_encap;
}
gn = net_generic(dev_net(dev), gtp_net_id);
list_add_rcu(&gtp->list, &gn->gtp_dev_list);
dev->priv_destructor = gtp_destructor;
netdev_dbg(dev, "registered new GTP interface\n");
return 0;
out_encap:
gtp_encap_disable(gtp);
out_hashtable:
kfree(gtp->addr_hash);
kfree(gtp->tid_hash);
return err;
}
static void gtp_dellink(struct net_device *dev, struct list_head *head)
{
struct gtp_dev *gtp = netdev_priv(dev);
struct hlist_node *next;
struct pdp_ctx *pctx;
int i;
for (i = 0; i < gtp->hash_size; i++)
hlist_for_each_entry_safe(pctx, next, &gtp->tid_hash[i], hlist_tid)
pdp_context_delete(pctx);
list_del_rcu(&gtp->list);
unregister_netdevice_queue(dev, head);
}
static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = {
[IFLA_GTP_FD0] = { .type = NLA_U32 },
[IFLA_GTP_FD1] = { .type = NLA_U32 },
[IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 },
[IFLA_GTP_ROLE] = { .type = NLA_U32 },
[IFLA_GTP_CREATE_SOCKETS] = { .type = NLA_U8 },
[IFLA_GTP_RESTART_COUNT] = { .type = NLA_U8 },
[IFLA_GTP_LOCAL] = { .type = NLA_U32 },
[IFLA_GTP_LOCAL6] = { .len = sizeof(struct in6_addr) },
};
static int gtp_validate(struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
if (!data)
return -EINVAL;
return 0;
}
static size_t gtp_get_size(const struct net_device *dev)
{
return nla_total_size(sizeof(__u32)) + /* IFLA_GTP_PDP_HASHSIZE */
nla_total_size(sizeof(__u32)) + /* IFLA_GTP_ROLE */
nla_total_size(sizeof(__u8)); /* IFLA_GTP_RESTART_COUNT */
}
static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev)
{
struct gtp_dev *gtp = netdev_priv(dev);
if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size))
goto nla_put_failure;
if (nla_put_u32(skb, IFLA_GTP_ROLE, gtp->role))
goto nla_put_failure;
if (nla_put_u8(skb, IFLA_GTP_RESTART_COUNT, gtp->restart_count))
goto nla_put_failure;
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static struct rtnl_link_ops gtp_link_ops __read_mostly = {
.kind = "gtp",
.maxtype = IFLA_GTP_MAX,
.policy = gtp_policy,
.priv_size = sizeof(struct gtp_dev),
.setup = gtp_link_setup,
.validate = gtp_validate,
.newlink = gtp_newlink,
.dellink = gtp_dellink,
.get_size = gtp_get_size,
.fill_info = gtp_fill_info,
};
static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize)
{
int i;
gtp->addr_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
GFP_KERNEL | __GFP_NOWARN);
if (gtp->addr_hash == NULL)
return -ENOMEM;
gtp->tid_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
GFP_KERNEL | __GFP_NOWARN);
if (gtp->tid_hash == NULL)
goto err1;
gtp->hash_size = hsize;
for (i = 0; i < hsize; i++) {
INIT_HLIST_HEAD(&gtp->addr_hash[i]);
INIT_HLIST_HEAD(&gtp->tid_hash[i]);
}
return 0;
err1:
kfree(gtp->addr_hash);
return -ENOMEM;
}
static struct sock *gtp_encap_enable_socket(int fd, int type,
struct gtp_dev *gtp)
{
struct udp_tunnel_sock_cfg tuncfg = {NULL};
struct socket *sock;
struct sock *sk;
int err;
pr_debug("enable gtp on %d, %d\n", fd, type);
sock = sockfd_lookup(fd, &err);
if (!sock) {
pr_debug("gtp socket fd=%d not found\n", fd);
return ERR_PTR(err);
}
sk = sock->sk;
if (sk->sk_protocol != IPPROTO_UDP ||
sk->sk_type != SOCK_DGRAM ||
(sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) {
pr_debug("socket fd=%d not UDP\n", fd);
sk = ERR_PTR(-EINVAL);
goto out_sock;
}
if (sk->sk_family == AF_INET6 &&
!sk->sk_ipv6only) {
sk = ERR_PTR(-EADDRNOTAVAIL);
goto out_sock;
}
lock_sock(sk);
if (sk->sk_user_data) {
sk = ERR_PTR(-EBUSY);
goto out_rel_sock;
}
sock_hold(sk);
tuncfg.sk_user_data = gtp;
tuncfg.encap_type = type;
tuncfg.encap_rcv = gtp_encap_recv;
tuncfg.encap_destroy = gtp_encap_destroy;
setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg);
out_rel_sock:
release_sock(sock->sk);
out_sock:
sockfd_put(sock);
return sk;
}
static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[])
{
struct sock *sk1u = NULL;
struct sock *sk0 = NULL;
if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1])
return -EINVAL;
if (data[IFLA_GTP_FD0]) {
u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]);
sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
if (IS_ERR(sk0))
return PTR_ERR(sk0);
}
if (data[IFLA_GTP_FD1]) {
u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]);
sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
if (IS_ERR(sk1u)) {
gtp_encap_disable_sock(sk0);
return PTR_ERR(sk1u);
}
}
gtp->sk0 = sk0;
gtp->sk1u = sk1u;
if (sk0 && sk1u &&
sk0->sk_family != sk1u->sk_family) {
gtp_encap_disable_sock(sk0);
gtp_encap_disable_sock(sk1u);
return -EINVAL;
}
return 0;
}
static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[])
{
struct gtp_dev *gtp = NULL;
struct net_device *dev;
struct net *net;
/* Examine the link attributes and figure out which network namespace
* we are talking about.
*/
if (nla[GTPA_NET_NS_FD])
net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD]));
else
net = get_net(src_net);
if (IS_ERR(net))
return NULL;
/* Check if there's an existing gtpX device to configure */
dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK]));
if (dev && dev->netdev_ops == &gtp_netdev_ops)
gtp = netdev_priv(dev);
put_net(net);
return gtp;
}
static void gtp_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
{
pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]);
switch (pctx->gtp_version) {
case GTP_V0:
/* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow
* label needs to be the same for uplink and downlink packets,
* so let's annotate this.
*/
pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]);
pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]);
break;
case GTP_V1:
pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]);
pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]);
break;
default:
break;
}
}
static void ip_pdp_peer_fill(struct pdp_ctx *pctx, struct genl_info *info)
{
if (info->attrs[GTPA_PEER_ADDRESS]) {
pctx->peer.addr.s_addr =
nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
} else if (info->attrs[GTPA_PEER_ADDR6]) {
pctx->peer.addr6 = nla_get_in6_addr(info->attrs[GTPA_PEER_ADDR6]);
}
}
static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
{
ip_pdp_peer_fill(pctx, info);
pctx->ms.addr.s_addr =
nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
gtp_pdp_fill(pctx, info);
}
static bool ipv6_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
{
ip_pdp_peer_fill(pctx, info);
pctx->ms.addr6 = nla_get_in6_addr(info->attrs[GTPA_MS_ADDR6]);
if (pctx->ms.addr6.s6_addr32[2] ||
pctx->ms.addr6.s6_addr32[3])
return false;
gtp_pdp_fill(pctx, info);
return true;
}
static struct pdp_ctx *gtp_pdp_add(struct gtp_dev *gtp, struct sock *sk,
struct genl_info *info)
{
struct pdp_ctx *pctx, *pctx_tid = NULL;
struct net_device *dev = gtp->dev;
u32 hash_ms, hash_tid = 0;
struct in6_addr ms_addr6;
unsigned int version;
bool found = false;
__be32 ms_addr;
int family;
version = nla_get_u32(info->attrs[GTPA_VERSION]);
if (info->attrs[GTPA_FAMILY])
family = nla_get_u8(info->attrs[GTPA_FAMILY]);
else
family = AF_INET;
#if !IS_ENABLED(CONFIG_IPV6)
if (family == AF_INET6)
return ERR_PTR(-EAFNOSUPPORT);
#endif
if (!info->attrs[GTPA_PEER_ADDRESS] &&
!info->attrs[GTPA_PEER_ADDR6])
return ERR_PTR(-EINVAL);
if ((info->attrs[GTPA_PEER_ADDRESS] &&
sk->sk_family == AF_INET6) ||
(info->attrs[GTPA_PEER_ADDR6] &&
sk->sk_family == AF_INET))
return ERR_PTR(-EAFNOSUPPORT);
switch (family) {
case AF_INET:
if (!info->attrs[GTPA_MS_ADDRESS] ||
info->attrs[GTPA_MS_ADDR6])
return ERR_PTR(-EINVAL);
ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size;
pctx = ipv4_pdp_find(gtp, ms_addr);
break;
case AF_INET6:
if (!info->attrs[GTPA_MS_ADDR6] ||
info->attrs[GTPA_MS_ADDRESS])
return ERR_PTR(-EINVAL);
ms_addr6 = nla_get_in6_addr(info->attrs[GTPA_MS_ADDR6]);
hash_ms = ipv6_hashfn(&ms_addr6) % gtp->hash_size;
pctx = ipv6_pdp_find(gtp, &ms_addr6);
break;
default:
return ERR_PTR(-EAFNOSUPPORT);
}
if (pctx)
found = true;
if (version == GTP_V0)
pctx_tid = gtp0_pdp_find(gtp,
nla_get_u64(info->attrs[GTPA_TID]),
family);
else if (version == GTP_V1)
pctx_tid = gtp1_pdp_find(gtp,
nla_get_u32(info->attrs[GTPA_I_TEI]),
family);
if (pctx_tid)
found = true;
if (found) {
if (info->nlhdr->nlmsg_flags & NLM_F_EXCL)
return ERR_PTR(-EEXIST);
if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE)
return ERR_PTR(-EOPNOTSUPP);
if (pctx && pctx_tid)
return ERR_PTR(-EEXIST);
if (!pctx)
pctx = pctx_tid;
switch (pctx->af) {
case AF_INET:
ipv4_pdp_fill(pctx, info);
break;
case AF_INET6:
if (!ipv6_pdp_fill(pctx, info))
return ERR_PTR(-EADDRNOTAVAIL);
break;
}
if (pctx->gtp_version == GTP_V0)
netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n",
pctx->u.v0.tid, pctx);
else if (pctx->gtp_version == GTP_V1)
netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n",
pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
return pctx;
}
pctx = kmalloc(sizeof(*pctx), GFP_ATOMIC);
if (pctx == NULL)
return ERR_PTR(-ENOMEM);
sock_hold(sk);
pctx->sk = sk;
pctx->dev = gtp->dev;
pctx->af = family;
switch (pctx->af) {
case AF_INET:
if (!info->attrs[GTPA_MS_ADDRESS]) {
sock_put(sk);
kfree(pctx);
return ERR_PTR(-EINVAL);
}
ipv4_pdp_fill(pctx, info);
break;
case AF_INET6:
if (!info->attrs[GTPA_MS_ADDR6]) {
sock_put(sk);
kfree(pctx);
return ERR_PTR(-EINVAL);
}
if (!ipv6_pdp_fill(pctx, info)) {
sock_put(sk);
kfree(pctx);
return ERR_PTR(-EADDRNOTAVAIL);
}
break;
}
atomic_set(&pctx->tx_seq, 0);
switch (pctx->gtp_version) {
case GTP_V0:
/* TS 09.60: "The flow label identifies unambiguously a GTP
* flow.". We use the tid for this instead, I cannot find a
* situation in which this doesn't unambiguosly identify the
* PDP context.
*/
hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size;
break;
case GTP_V1:
hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size;
break;
}
hlist_add_head_rcu(&pctx->hlist_addr, &gtp->addr_hash[hash_ms]);
hlist_add_head_rcu(&pctx->hlist_tid, &gtp->tid_hash[hash_tid]);
switch (pctx->gtp_version) {
case GTP_V0:
netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
pctx->u.v0.tid, &pctx->peer.addr,
&pctx->ms.addr, pctx);
break;
case GTP_V1:
netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
pctx->u.v1.i_tei, pctx->u.v1.o_tei,
&pctx->peer.addr, &pctx->ms.addr, pctx);
break;
}
return pctx;
}
static void pdp_context_free(struct rcu_head *head)
{
struct pdp_ctx *pctx = container_of(head, struct pdp_ctx, rcu_head);
sock_put(pctx->sk);
kfree(pctx);
}
static void pdp_context_delete(struct pdp_ctx *pctx)
{
hlist_del_rcu(&pctx->hlist_tid);
hlist_del_rcu(&pctx->hlist_addr);
call_rcu(&pctx->rcu_head, pdp_context_free);
}
static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation);
static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info)
{
unsigned int version;
struct pdp_ctx *pctx;
struct gtp_dev *gtp;
struct sock *sk;
int err;
if (!info->attrs[GTPA_VERSION] ||
!info->attrs[GTPA_LINK])
return -EINVAL;
version = nla_get_u32(info->attrs[GTPA_VERSION]);
switch (version) {
case GTP_V0:
if (!info->attrs[GTPA_TID] ||
!info->attrs[GTPA_FLOW])
return -EINVAL;
break;
case GTP_V1:
if (!info->attrs[GTPA_I_TEI] ||
!info->attrs[GTPA_O_TEI])
return -EINVAL;
break;
default:
return -EINVAL;
}
rtnl_lock();
gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
if (!gtp) {
err = -ENODEV;
goto out_unlock;
}
if (version == GTP_V0)
sk = gtp->sk0;
else if (version == GTP_V1)
sk = gtp->sk1u;
else
sk = NULL;
if (!sk) {
err = -ENODEV;
goto out_unlock;
}
pctx = gtp_pdp_add(gtp, sk, info);
if (IS_ERR(pctx)) {
err = PTR_ERR(pctx);
} else {
gtp_tunnel_notify(pctx, GTP_CMD_NEWPDP, GFP_KERNEL);
err = 0;
}
out_unlock:
rtnl_unlock();
return err;
}
static struct pdp_ctx *gtp_find_pdp_by_link(struct net *net,
struct nlattr *nla[])
{
struct gtp_dev *gtp;
int family;
if (nla[GTPA_FAMILY])
family = nla_get_u8(nla[GTPA_FAMILY]);
else
family = AF_INET;
gtp = gtp_find_dev(net, nla);
if (!gtp)
return ERR_PTR(-ENODEV);
if (nla[GTPA_MS_ADDRESS]) {
__be32 ip = nla_get_be32(nla[GTPA_MS_ADDRESS]);
if (family != AF_INET)
return ERR_PTR(-EINVAL);
return ipv4_pdp_find(gtp, ip);
} else if (nla[GTPA_MS_ADDR6]) {
struct in6_addr addr = nla_get_in6_addr(nla[GTPA_MS_ADDR6]);
if (family != AF_INET6)
return ERR_PTR(-EINVAL);
if (addr.s6_addr32[2] ||
addr.s6_addr32[3])
return ERR_PTR(-EADDRNOTAVAIL);
return ipv6_pdp_find(gtp, &addr);
} else if (nla[GTPA_VERSION]) {
u32 gtp_version = nla_get_u32(nla[GTPA_VERSION]);
if (gtp_version == GTP_V0 && nla[GTPA_TID]) {
return gtp0_pdp_find(gtp, nla_get_u64(nla[GTPA_TID]),
family);
} else if (gtp_version == GTP_V1 && nla[GTPA_I_TEI]) {
return gtp1_pdp_find(gtp, nla_get_u32(nla[GTPA_I_TEI]),
family);
}
}
return ERR_PTR(-EINVAL);
}
static struct pdp_ctx *gtp_find_pdp(struct net *net, struct nlattr *nla[])
{
struct pdp_ctx *pctx;
if (nla[GTPA_LINK])
pctx = gtp_find_pdp_by_link(net, nla);
else
pctx = ERR_PTR(-EINVAL);
if (!pctx)
pctx = ERR_PTR(-ENOENT);
return pctx;
}
static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info)
{
struct pdp_ctx *pctx;
int err = 0;
if (!info->attrs[GTPA_VERSION])
return -EINVAL;
rcu_read_lock();
pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
if (IS_ERR(pctx)) {
err = PTR_ERR(pctx);
goto out_unlock;
}
if (pctx->gtp_version == GTP_V0)
netdev_dbg(pctx->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n",
pctx->u.v0.tid, pctx);
else if (pctx->gtp_version == GTP_V1)
netdev_dbg(pctx->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n",
pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
gtp_tunnel_notify(pctx, GTP_CMD_DELPDP, GFP_ATOMIC);
pdp_context_delete(pctx);
out_unlock:
rcu_read_unlock();
return err;
}
static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
int flags, u32 type, struct pdp_ctx *pctx)
{
void *genlh;
genlh = genlmsg_put(skb, snd_portid, snd_seq, &gtp_genl_family, flags,
type);
if (genlh == NULL)
goto nlmsg_failure;
if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) ||
nla_put_u32(skb, GTPA_LINK, pctx->dev->ifindex) ||
nla_put_u8(skb, GTPA_FAMILY, pctx->af))
goto nla_put_failure;
switch (pctx->af) {
case AF_INET:
if (nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms.addr.s_addr))
goto nla_put_failure;
break;
case AF_INET6:
if (nla_put_in6_addr(skb, GTPA_MS_ADDR6, &pctx->ms.addr6))
goto nla_put_failure;
break;
}
switch (pctx->sk->sk_family) {
case AF_INET:
if (nla_put_be32(skb, GTPA_PEER_ADDRESS, pctx->peer.addr.s_addr))
goto nla_put_failure;
break;
case AF_INET6:
if (nla_put_in6_addr(skb, GTPA_PEER_ADDR6, &pctx->peer.addr6))
goto nla_put_failure;
break;
}
switch (pctx->gtp_version) {
case GTP_V0:
if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) ||
nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow))
goto nla_put_failure;
break;
case GTP_V1:
if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) ||
nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei))
goto nla_put_failure;
break;
}
genlmsg_end(skb, genlh);
return 0;
nlmsg_failure:
nla_put_failure:
genlmsg_cancel(skb, genlh);
return -EMSGSIZE;
}
static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation)
{
struct sk_buff *msg;
int ret;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, allocation);
if (!msg)
return -ENOMEM;
ret = gtp_genl_fill_info(msg, 0, 0, 0, cmd, pctx);
if (ret < 0) {
nlmsg_free(msg);
return ret;
}
ret = genlmsg_multicast_netns(&gtp_genl_family, dev_net(pctx->dev), msg,
0, GTP_GENL_MCGRP, GFP_ATOMIC);
return ret;
}
static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info)
{
struct pdp_ctx *pctx = NULL;
struct sk_buff *skb2;
int err;
if (!info->attrs[GTPA_VERSION])
return -EINVAL;
rcu_read_lock();
pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
if (IS_ERR(pctx)) {
err = PTR_ERR(pctx);
goto err_unlock;
}
skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC);
if (skb2 == NULL) {
err = -ENOMEM;
goto err_unlock;
}
err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, info->snd_seq,
0, info->nlhdr->nlmsg_type, pctx);
if (err < 0)
goto err_unlock_free;
rcu_read_unlock();
return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid);
err_unlock_free:
kfree_skb(skb2);
err_unlock:
rcu_read_unlock();
return err;
}
static int gtp_genl_dump_pdp(struct sk_buff *skb,
struct netlink_callback *cb)
{
struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp;
int i, j, bucket = cb->args[0], skip = cb->args[1];
struct net *net = sock_net(skb->sk);
struct pdp_ctx *pctx;
struct gtp_net *gn;
gn = net_generic(net, gtp_net_id);
if (cb->args[4])
return 0;
rcu_read_lock();
list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) {
if (last_gtp && last_gtp != gtp)
continue;
else
last_gtp = NULL;
for (i = bucket; i < gtp->hash_size; i++) {
j = 0;
hlist_for_each_entry_rcu(pctx, &gtp->tid_hash[i],
hlist_tid) {
if (j >= skip &&
gtp_genl_fill_info(skb,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
NLM_F_MULTI,
cb->nlh->nlmsg_type, pctx)) {
cb->args[0] = i;
cb->args[1] = j;
cb->args[2] = (unsigned long)gtp;
goto out;
}
j++;
}
skip = 0;
}
bucket = 0;
}
cb->args[4] = 1;
out:
rcu_read_unlock();
return skb->len;
}
static int gtp_genl_send_echo_req(struct sk_buff *skb, struct genl_info *info)
{
struct sk_buff *skb_to_send;
__be32 src_ip, dst_ip;
unsigned int version;
struct gtp_dev *gtp;
struct flowi4 fl4;
struct rtable *rt;
struct sock *sk;
__be16 port;
int len;
if (!info->attrs[GTPA_VERSION] ||
!info->attrs[GTPA_LINK] ||
!info->attrs[GTPA_PEER_ADDRESS] ||
!info->attrs[GTPA_MS_ADDRESS])
return -EINVAL;
version = nla_get_u32(info->attrs[GTPA_VERSION]);
dst_ip = nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
src_ip = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
if (!gtp)
return -ENODEV;
if (!gtp->sk_created)
return -EOPNOTSUPP;
if (!(gtp->dev->flags & IFF_UP))
return -ENETDOWN;
if (version == GTP_V0) {
struct gtp0_header *gtp0_h;
len = LL_RESERVED_SPACE(gtp->dev) + sizeof(struct gtp0_header) +
sizeof(struct iphdr) + sizeof(struct udphdr);
skb_to_send = netdev_alloc_skb_ip_align(gtp->dev, len);
if (!skb_to_send)
return -ENOMEM;
sk = gtp->sk0;
port = htons(GTP0_PORT);
gtp0_h = skb_push(skb_to_send, sizeof(struct gtp0_header));
memset(gtp0_h, 0, sizeof(struct gtp0_header));
gtp0_build_echo_msg(gtp0_h, GTP_ECHO_REQ);
} else if (version == GTP_V1) {
struct gtp1_header_long *gtp1u_h;
len = LL_RESERVED_SPACE(gtp->dev) +
sizeof(struct gtp1_header_long) +
sizeof(struct iphdr) + sizeof(struct udphdr);
skb_to_send = netdev_alloc_skb_ip_align(gtp->dev, len);
if (!skb_to_send)
return -ENOMEM;
sk = gtp->sk1u;
port = htons(GTP1U_PORT);
gtp1u_h = skb_push(skb_to_send,
sizeof(struct gtp1_header_long));
memset(gtp1u_h, 0, sizeof(struct gtp1_header_long));
gtp1u_build_echo_msg(gtp1u_h, GTP_ECHO_REQ);
} else {
return -ENODEV;
}
rt = ip4_route_output_gtp(&fl4, sk, dst_ip, src_ip);
if (IS_ERR(rt)) {
netdev_dbg(gtp->dev, "no route for echo request to %pI4\n",
&dst_ip);
kfree_skb(skb_to_send);
return -ENODEV;
}
udp_tunnel_xmit_skb(rt, sk, skb_to_send,
fl4.saddr, fl4.daddr,
fl4.flowi4_tos,
ip4_dst_hoplimit(&rt->dst),
0,
port, port,
!net_eq(sock_net(sk),
dev_net(gtp->dev)),
false);
return 0;
}
static const struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = {
[GTPA_LINK] = { .type = NLA_U32, },
[GTPA_VERSION] = { .type = NLA_U32, },
[GTPA_TID] = { .type = NLA_U64, },
[GTPA_PEER_ADDRESS] = { .type = NLA_U32, },
[GTPA_MS_ADDRESS] = { .type = NLA_U32, },
[GTPA_FLOW] = { .type = NLA_U16, },
[GTPA_NET_NS_FD] = { .type = NLA_U32, },
[GTPA_I_TEI] = { .type = NLA_U32, },
[GTPA_O_TEI] = { .type = NLA_U32, },
[GTPA_PEER_ADDR6] = { .len = sizeof(struct in6_addr), },
[GTPA_MS_ADDR6] = { .len = sizeof(struct in6_addr), },
[GTPA_FAMILY] = { .type = NLA_U8, },
};
static const struct genl_small_ops gtp_genl_ops[] = {
{
.cmd = GTP_CMD_NEWPDP,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = gtp_genl_new_pdp,
.flags = GENL_ADMIN_PERM,
},
{
.cmd = GTP_CMD_DELPDP,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = gtp_genl_del_pdp,
.flags = GENL_ADMIN_PERM,
},
{
.cmd = GTP_CMD_GETPDP,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = gtp_genl_get_pdp,
.dumpit = gtp_genl_dump_pdp,
.flags = GENL_ADMIN_PERM,
},
{
.cmd = GTP_CMD_ECHOREQ,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.doit = gtp_genl_send_echo_req,
.flags = GENL_ADMIN_PERM,
},
};
static struct genl_family gtp_genl_family __ro_after_init = {
.name = "gtp",
.version = 0,
.hdrsize = 0,
.maxattr = GTPA_MAX,
.policy = gtp_genl_policy,
.netnsok = true,
.module = THIS_MODULE,
.small_ops = gtp_genl_ops,
.n_small_ops = ARRAY_SIZE(gtp_genl_ops),
.resv_start_op = GTP_CMD_ECHOREQ + 1,
.mcgrps = gtp_genl_mcgrps,
.n_mcgrps = ARRAY_SIZE(gtp_genl_mcgrps),
};
static int __net_init gtp_net_init(struct net *net)
{
struct gtp_net *gn = net_generic(net, gtp_net_id);
INIT_LIST_HEAD(&gn->gtp_dev_list);
return 0;
}
static void __net_exit gtp_net_exit_batch_rtnl(struct list_head *net_list,
struct list_head *dev_to_kill)
{
struct net *net;
list_for_each_entry(net, net_list, exit_list) {
struct gtp_net *gn = net_generic(net, gtp_net_id);
struct gtp_dev *gtp;
list_for_each_entry(gtp, &gn->gtp_dev_list, list)
gtp_dellink(gtp->dev, dev_to_kill);
}
}
static struct pernet_operations gtp_net_ops = {
.init = gtp_net_init,
.exit_batch_rtnl = gtp_net_exit_batch_rtnl,
.id = &gtp_net_id,
.size = sizeof(struct gtp_net),
};
static int __init gtp_init(void)
{
int err;
get_random_bytes(&gtp_h_initval, sizeof(gtp_h_initval));
err = register_pernet_subsys(&gtp_net_ops);
if (err < 0)
goto error_out;
err = rtnl_link_register(&gtp_link_ops);
if (err < 0)
goto unreg_pernet_subsys;
err = genl_register_family(&gtp_genl_family);
if (err < 0)
goto unreg_rtnl_link;
pr_info("GTP module loaded (pdp ctx size %zd bytes)\n",
sizeof(struct pdp_ctx));
return 0;
unreg_rtnl_link:
rtnl_link_unregister(&gtp_link_ops);
unreg_pernet_subsys:
unregister_pernet_subsys(&gtp_net_ops);
error_out:
pr_err("error loading GTP module loaded\n");
return err;
}
late_initcall(gtp_init);
static void __exit gtp_fini(void)
{
genl_unregister_family(&gtp_genl_family);
rtnl_link_unregister(&gtp_link_ops);
unregister_pernet_subsys(&gtp_net_ops);
pr_info("GTP module unloaded\n");
}
module_exit(gtp_fini);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>");
MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic");
MODULE_ALIAS_RTNL_LINK("gtp");
MODULE_ALIAS_GENL_FAMILY("gtp");