| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "messages.h" |
| #include "tree-mod-log.h" |
| #include "disk-io.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "tree-checker.h" |
| |
| struct tree_mod_root { |
| u64 logical; |
| u8 level; |
| }; |
| |
| struct tree_mod_elem { |
| struct rb_node node; |
| u64 logical; |
| u64 seq; |
| enum btrfs_mod_log_op op; |
| |
| /* |
| * This is used for BTRFS_MOD_LOG_KEY_* and BTRFS_MOD_LOG_MOVE_KEYS |
| * operations. |
| */ |
| int slot; |
| |
| /* This is used for BTRFS_MOD_LOG_KEY* and BTRFS_MOD_LOG_ROOT_REPLACE. */ |
| u64 generation; |
| |
| /* Those are used for op == BTRFS_MOD_LOG_KEY_{REPLACE,REMOVE}. */ |
| struct btrfs_disk_key key; |
| u64 blockptr; |
| |
| /* This is used for op == BTRFS_MOD_LOG_MOVE_KEYS. */ |
| struct { |
| int dst_slot; |
| int nr_items; |
| } move; |
| |
| /* This is used for op == BTRFS_MOD_LOG_ROOT_REPLACE. */ |
| struct tree_mod_root old_root; |
| }; |
| |
| /* |
| * Pull a new tree mod seq number for our operation. |
| */ |
| static u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) |
| { |
| return atomic64_inc_return(&fs_info->tree_mod_seq); |
| } |
| |
| /* |
| * This adds a new blocker to the tree mod log's blocker list if the @elem |
| * passed does not already have a sequence number set. So when a caller expects |
| * to record tree modifications, it should ensure to set elem->seq to zero |
| * before calling btrfs_get_tree_mod_seq. |
| * Returns a fresh, unused tree log modification sequence number, even if no new |
| * blocker was added. |
| */ |
| u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, |
| struct btrfs_seq_list *elem) |
| { |
| write_lock(&fs_info->tree_mod_log_lock); |
| if (!elem->seq) { |
| elem->seq = btrfs_inc_tree_mod_seq(fs_info); |
| list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); |
| set_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags); |
| } |
| write_unlock(&fs_info->tree_mod_log_lock); |
| |
| return elem->seq; |
| } |
| |
| void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, |
| struct btrfs_seq_list *elem) |
| { |
| struct rb_root *tm_root; |
| struct rb_node *node; |
| struct rb_node *next; |
| struct tree_mod_elem *tm; |
| u64 min_seq = BTRFS_SEQ_LAST; |
| u64 seq_putting = elem->seq; |
| |
| if (!seq_putting) |
| return; |
| |
| write_lock(&fs_info->tree_mod_log_lock); |
| list_del(&elem->list); |
| elem->seq = 0; |
| |
| if (list_empty(&fs_info->tree_mod_seq_list)) { |
| clear_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags); |
| } else { |
| struct btrfs_seq_list *first; |
| |
| first = list_first_entry(&fs_info->tree_mod_seq_list, |
| struct btrfs_seq_list, list); |
| if (seq_putting > first->seq) { |
| /* |
| * Blocker with lower sequence number exists, we cannot |
| * remove anything from the log. |
| */ |
| write_unlock(&fs_info->tree_mod_log_lock); |
| return; |
| } |
| min_seq = first->seq; |
| } |
| |
| /* |
| * Anything that's lower than the lowest existing (read: blocked) |
| * sequence number can be removed from the tree. |
| */ |
| tm_root = &fs_info->tree_mod_log; |
| for (node = rb_first(tm_root); node; node = next) { |
| next = rb_next(node); |
| tm = rb_entry(node, struct tree_mod_elem, node); |
| if (tm->seq >= min_seq) |
| continue; |
| rb_erase(node, tm_root); |
| kfree(tm); |
| } |
| write_unlock(&fs_info->tree_mod_log_lock); |
| } |
| |
| /* |
| * Key order of the log: |
| * node/leaf start address -> sequence |
| * |
| * The 'start address' is the logical address of the *new* root node for root |
| * replace operations, or the logical address of the affected block for all |
| * other operations. |
| */ |
| static noinline int tree_mod_log_insert(struct btrfs_fs_info *fs_info, |
| struct tree_mod_elem *tm) |
| { |
| struct rb_root *tm_root; |
| struct rb_node **new; |
| struct rb_node *parent = NULL; |
| struct tree_mod_elem *cur; |
| |
| lockdep_assert_held_write(&fs_info->tree_mod_log_lock); |
| |
| tm->seq = btrfs_inc_tree_mod_seq(fs_info); |
| |
| tm_root = &fs_info->tree_mod_log; |
| new = &tm_root->rb_node; |
| while (*new) { |
| cur = rb_entry(*new, struct tree_mod_elem, node); |
| parent = *new; |
| if (cur->logical < tm->logical) |
| new = &((*new)->rb_left); |
| else if (cur->logical > tm->logical) |
| new = &((*new)->rb_right); |
| else if (cur->seq < tm->seq) |
| new = &((*new)->rb_left); |
| else if (cur->seq > tm->seq) |
| new = &((*new)->rb_right); |
| else |
| return -EEXIST; |
| } |
| |
| rb_link_node(&tm->node, parent, new); |
| rb_insert_color(&tm->node, tm_root); |
| return 0; |
| } |
| |
| /* |
| * Determines if logging can be omitted. Returns true if it can. Otherwise, it |
| * returns false with the tree_mod_log_lock acquired. The caller must hold |
| * this until all tree mod log insertions are recorded in the rb tree and then |
| * write unlock fs_info::tree_mod_log_lock. |
| */ |
| static bool tree_mod_dont_log(struct btrfs_fs_info *fs_info, const struct extent_buffer *eb) |
| { |
| if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) |
| return true; |
| if (eb && btrfs_header_level(eb) == 0) |
| return true; |
| |
| write_lock(&fs_info->tree_mod_log_lock); |
| if (list_empty(&(fs_info)->tree_mod_seq_list)) { |
| write_unlock(&fs_info->tree_mod_log_lock); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ |
| static bool tree_mod_need_log(const struct btrfs_fs_info *fs_info, |
| const struct extent_buffer *eb) |
| { |
| if (!test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags)) |
| return false; |
| if (eb && btrfs_header_level(eb) == 0) |
| return false; |
| |
| return true; |
| } |
| |
| static struct tree_mod_elem *alloc_tree_mod_elem(const struct extent_buffer *eb, |
| int slot, |
| enum btrfs_mod_log_op op) |
| { |
| struct tree_mod_elem *tm; |
| |
| tm = kzalloc(sizeof(*tm), GFP_NOFS); |
| if (!tm) |
| return NULL; |
| |
| tm->logical = eb->start; |
| if (op != BTRFS_MOD_LOG_KEY_ADD) { |
| btrfs_node_key(eb, &tm->key, slot); |
| tm->blockptr = btrfs_node_blockptr(eb, slot); |
| } |
| tm->op = op; |
| tm->slot = slot; |
| tm->generation = btrfs_node_ptr_generation(eb, slot); |
| RB_CLEAR_NODE(&tm->node); |
| |
| return tm; |
| } |
| |
| int btrfs_tree_mod_log_insert_key(const struct extent_buffer *eb, int slot, |
| enum btrfs_mod_log_op op) |
| { |
| struct tree_mod_elem *tm; |
| int ret = 0; |
| |
| if (!tree_mod_need_log(eb->fs_info, eb)) |
| return 0; |
| |
| tm = alloc_tree_mod_elem(eb, slot, op); |
| if (!tm) |
| ret = -ENOMEM; |
| |
| if (tree_mod_dont_log(eb->fs_info, eb)) { |
| kfree(tm); |
| /* |
| * Don't error if we failed to allocate memory because we don't |
| * need to log. |
| */ |
| return 0; |
| } else if (ret != 0) { |
| /* |
| * We previously failed to allocate memory and we need to log, |
| * so we have to fail. |
| */ |
| goto out_unlock; |
| } |
| |
| ret = tree_mod_log_insert(eb->fs_info, tm); |
| out_unlock: |
| write_unlock(&eb->fs_info->tree_mod_log_lock); |
| if (ret) |
| kfree(tm); |
| |
| return ret; |
| } |
| |
| static struct tree_mod_elem *tree_mod_log_alloc_move(const struct extent_buffer *eb, |
| int dst_slot, int src_slot, |
| int nr_items) |
| { |
| struct tree_mod_elem *tm; |
| |
| tm = kzalloc(sizeof(*tm), GFP_NOFS); |
| if (!tm) |
| return ERR_PTR(-ENOMEM); |
| |
| tm->logical = eb->start; |
| tm->slot = src_slot; |
| tm->move.dst_slot = dst_slot; |
| tm->move.nr_items = nr_items; |
| tm->op = BTRFS_MOD_LOG_MOVE_KEYS; |
| RB_CLEAR_NODE(&tm->node); |
| |
| return tm; |
| } |
| |
| int btrfs_tree_mod_log_insert_move(const struct extent_buffer *eb, |
| int dst_slot, int src_slot, |
| int nr_items) |
| { |
| struct tree_mod_elem *tm = NULL; |
| struct tree_mod_elem **tm_list = NULL; |
| int ret = 0; |
| int i; |
| bool locked = false; |
| |
| if (!tree_mod_need_log(eb->fs_info, eb)) |
| return 0; |
| |
| tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); |
| if (!tm_list) { |
| ret = -ENOMEM; |
| goto lock; |
| } |
| |
| tm = tree_mod_log_alloc_move(eb, dst_slot, src_slot, nr_items); |
| if (IS_ERR(tm)) { |
| ret = PTR_ERR(tm); |
| tm = NULL; |
| goto lock; |
| } |
| |
| for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { |
| tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, |
| BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING); |
| if (!tm_list[i]) { |
| ret = -ENOMEM; |
| goto lock; |
| } |
| } |
| |
| lock: |
| if (tree_mod_dont_log(eb->fs_info, eb)) { |
| /* |
| * Don't error if we failed to allocate memory because we don't |
| * need to log. |
| */ |
| ret = 0; |
| goto free_tms; |
| } |
| locked = true; |
| |
| /* |
| * We previously failed to allocate memory and we need to log, so we |
| * have to fail. |
| */ |
| if (ret != 0) |
| goto free_tms; |
| |
| /* |
| * When we override something during the move, we log these removals. |
| * This can only happen when we move towards the beginning of the |
| * buffer, i.e. dst_slot < src_slot. |
| */ |
| for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { |
| ret = tree_mod_log_insert(eb->fs_info, tm_list[i]); |
| if (ret) |
| goto free_tms; |
| } |
| |
| ret = tree_mod_log_insert(eb->fs_info, tm); |
| if (ret) |
| goto free_tms; |
| write_unlock(&eb->fs_info->tree_mod_log_lock); |
| kfree(tm_list); |
| |
| return 0; |
| |
| free_tms: |
| if (tm_list) { |
| for (i = 0; i < nr_items; i++) { |
| if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) |
| rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); |
| kfree(tm_list[i]); |
| } |
| } |
| if (locked) |
| write_unlock(&eb->fs_info->tree_mod_log_lock); |
| kfree(tm_list); |
| kfree(tm); |
| |
| return ret; |
| } |
| |
| static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, |
| struct tree_mod_elem **tm_list, |
| int nritems) |
| { |
| int i, j; |
| int ret; |
| |
| for (i = nritems - 1; i >= 0; i--) { |
| ret = tree_mod_log_insert(fs_info, tm_list[i]); |
| if (ret) { |
| for (j = nritems - 1; j > i; j--) |
| rb_erase(&tm_list[j]->node, |
| &fs_info->tree_mod_log); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int btrfs_tree_mod_log_insert_root(struct extent_buffer *old_root, |
| struct extent_buffer *new_root, |
| bool log_removal) |
| { |
| struct btrfs_fs_info *fs_info = old_root->fs_info; |
| struct tree_mod_elem *tm = NULL; |
| struct tree_mod_elem **tm_list = NULL; |
| int nritems = 0; |
| int ret = 0; |
| int i; |
| |
| if (!tree_mod_need_log(fs_info, NULL)) |
| return 0; |
| |
| if (log_removal && btrfs_header_level(old_root) > 0) { |
| nritems = btrfs_header_nritems(old_root); |
| tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), |
| GFP_NOFS); |
| if (!tm_list) { |
| ret = -ENOMEM; |
| goto lock; |
| } |
| for (i = 0; i < nritems; i++) { |
| tm_list[i] = alloc_tree_mod_elem(old_root, i, |
| BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING); |
| if (!tm_list[i]) { |
| ret = -ENOMEM; |
| goto lock; |
| } |
| } |
| } |
| |
| tm = kzalloc(sizeof(*tm), GFP_NOFS); |
| if (!tm) { |
| ret = -ENOMEM; |
| goto lock; |
| } |
| |
| tm->logical = new_root->start; |
| tm->old_root.logical = old_root->start; |
| tm->old_root.level = btrfs_header_level(old_root); |
| tm->generation = btrfs_header_generation(old_root); |
| tm->op = BTRFS_MOD_LOG_ROOT_REPLACE; |
| |
| lock: |
| if (tree_mod_dont_log(fs_info, NULL)) { |
| /* |
| * Don't error if we failed to allocate memory because we don't |
| * need to log. |
| */ |
| ret = 0; |
| goto free_tms; |
| } else if (ret != 0) { |
| /* |
| * We previously failed to allocate memory and we need to log, |
| * so we have to fail. |
| */ |
| goto out_unlock; |
| } |
| |
| if (tm_list) |
| ret = tree_mod_log_free_eb(fs_info, tm_list, nritems); |
| if (!ret) |
| ret = tree_mod_log_insert(fs_info, tm); |
| |
| out_unlock: |
| write_unlock(&fs_info->tree_mod_log_lock); |
| if (ret) |
| goto free_tms; |
| kfree(tm_list); |
| |
| return ret; |
| |
| free_tms: |
| if (tm_list) { |
| for (i = 0; i < nritems; i++) |
| kfree(tm_list[i]); |
| kfree(tm_list); |
| } |
| kfree(tm); |
| |
| return ret; |
| } |
| |
| static struct tree_mod_elem *__tree_mod_log_search(struct btrfs_fs_info *fs_info, |
| u64 start, u64 min_seq, |
| bool smallest) |
| { |
| struct rb_root *tm_root; |
| struct rb_node *node; |
| struct tree_mod_elem *cur = NULL; |
| struct tree_mod_elem *found = NULL; |
| |
| read_lock(&fs_info->tree_mod_log_lock); |
| tm_root = &fs_info->tree_mod_log; |
| node = tm_root->rb_node; |
| while (node) { |
| cur = rb_entry(node, struct tree_mod_elem, node); |
| if (cur->logical < start) { |
| node = node->rb_left; |
| } else if (cur->logical > start) { |
| node = node->rb_right; |
| } else if (cur->seq < min_seq) { |
| node = node->rb_left; |
| } else if (!smallest) { |
| /* We want the node with the highest seq */ |
| if (found) |
| BUG_ON(found->seq > cur->seq); |
| found = cur; |
| node = node->rb_left; |
| } else if (cur->seq > min_seq) { |
| /* We want the node with the smallest seq */ |
| if (found) |
| BUG_ON(found->seq < cur->seq); |
| found = cur; |
| node = node->rb_right; |
| } else { |
| found = cur; |
| break; |
| } |
| } |
| read_unlock(&fs_info->tree_mod_log_lock); |
| |
| return found; |
| } |
| |
| /* |
| * This returns the element from the log with the smallest time sequence |
| * value that's in the log (the oldest log item). Any element with a time |
| * sequence lower than min_seq will be ignored. |
| */ |
| static struct tree_mod_elem *tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, |
| u64 start, u64 min_seq) |
| { |
| return __tree_mod_log_search(fs_info, start, min_seq, true); |
| } |
| |
| /* |
| * This returns the element from the log with the largest time sequence |
| * value that's in the log (the most recent log item). Any element with |
| * a time sequence lower than min_seq will be ignored. |
| */ |
| static struct tree_mod_elem *tree_mod_log_search(struct btrfs_fs_info *fs_info, |
| u64 start, u64 min_seq) |
| { |
| return __tree_mod_log_search(fs_info, start, min_seq, false); |
| } |
| |
| int btrfs_tree_mod_log_eb_copy(struct extent_buffer *dst, |
| const struct extent_buffer *src, |
| unsigned long dst_offset, |
| unsigned long src_offset, |
| int nr_items) |
| { |
| struct btrfs_fs_info *fs_info = dst->fs_info; |
| int ret = 0; |
| struct tree_mod_elem **tm_list = NULL; |
| struct tree_mod_elem **tm_list_add = NULL; |
| struct tree_mod_elem **tm_list_rem = NULL; |
| int i; |
| bool locked = false; |
| struct tree_mod_elem *dst_move_tm = NULL; |
| struct tree_mod_elem *src_move_tm = NULL; |
| u32 dst_move_nr_items = btrfs_header_nritems(dst) - dst_offset; |
| u32 src_move_nr_items = btrfs_header_nritems(src) - (src_offset + nr_items); |
| |
| if (!tree_mod_need_log(fs_info, NULL)) |
| return 0; |
| |
| if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) |
| return 0; |
| |
| tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), |
| GFP_NOFS); |
| if (!tm_list) { |
| ret = -ENOMEM; |
| goto lock; |
| } |
| |
| if (dst_move_nr_items) { |
| dst_move_tm = tree_mod_log_alloc_move(dst, dst_offset + nr_items, |
| dst_offset, dst_move_nr_items); |
| if (IS_ERR(dst_move_tm)) { |
| ret = PTR_ERR(dst_move_tm); |
| dst_move_tm = NULL; |
| goto lock; |
| } |
| } |
| if (src_move_nr_items) { |
| src_move_tm = tree_mod_log_alloc_move(src, src_offset, |
| src_offset + nr_items, |
| src_move_nr_items); |
| if (IS_ERR(src_move_tm)) { |
| ret = PTR_ERR(src_move_tm); |
| src_move_tm = NULL; |
| goto lock; |
| } |
| } |
| |
| tm_list_add = tm_list; |
| tm_list_rem = tm_list + nr_items; |
| for (i = 0; i < nr_items; i++) { |
| tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, |
| BTRFS_MOD_LOG_KEY_REMOVE); |
| if (!tm_list_rem[i]) { |
| ret = -ENOMEM; |
| goto lock; |
| } |
| |
| tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, |
| BTRFS_MOD_LOG_KEY_ADD); |
| if (!tm_list_add[i]) { |
| ret = -ENOMEM; |
| goto lock; |
| } |
| } |
| |
| lock: |
| if (tree_mod_dont_log(fs_info, NULL)) { |
| /* |
| * Don't error if we failed to allocate memory because we don't |
| * need to log. |
| */ |
| ret = 0; |
| goto free_tms; |
| } |
| locked = true; |
| |
| /* |
| * We previously failed to allocate memory and we need to log, so we |
| * have to fail. |
| */ |
| if (ret != 0) |
| goto free_tms; |
| |
| if (dst_move_tm) { |
| ret = tree_mod_log_insert(fs_info, dst_move_tm); |
| if (ret) |
| goto free_tms; |
| } |
| for (i = 0; i < nr_items; i++) { |
| ret = tree_mod_log_insert(fs_info, tm_list_rem[i]); |
| if (ret) |
| goto free_tms; |
| ret = tree_mod_log_insert(fs_info, tm_list_add[i]); |
| if (ret) |
| goto free_tms; |
| } |
| if (src_move_tm) { |
| ret = tree_mod_log_insert(fs_info, src_move_tm); |
| if (ret) |
| goto free_tms; |
| } |
| |
| write_unlock(&fs_info->tree_mod_log_lock); |
| kfree(tm_list); |
| |
| return 0; |
| |
| free_tms: |
| if (dst_move_tm && !RB_EMPTY_NODE(&dst_move_tm->node)) |
| rb_erase(&dst_move_tm->node, &fs_info->tree_mod_log); |
| kfree(dst_move_tm); |
| if (src_move_tm && !RB_EMPTY_NODE(&src_move_tm->node)) |
| rb_erase(&src_move_tm->node, &fs_info->tree_mod_log); |
| kfree(src_move_tm); |
| if (tm_list) { |
| for (i = 0; i < nr_items * 2; i++) { |
| if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) |
| rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); |
| kfree(tm_list[i]); |
| } |
| } |
| if (locked) |
| write_unlock(&fs_info->tree_mod_log_lock); |
| kfree(tm_list); |
| |
| return ret; |
| } |
| |
| int btrfs_tree_mod_log_free_eb(struct extent_buffer *eb) |
| { |
| struct tree_mod_elem **tm_list = NULL; |
| int nritems = 0; |
| int i; |
| int ret = 0; |
| |
| if (!tree_mod_need_log(eb->fs_info, eb)) |
| return 0; |
| |
| nritems = btrfs_header_nritems(eb); |
| tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); |
| if (!tm_list) { |
| ret = -ENOMEM; |
| goto lock; |
| } |
| |
| for (i = 0; i < nritems; i++) { |
| tm_list[i] = alloc_tree_mod_elem(eb, i, |
| BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING); |
| if (!tm_list[i]) { |
| ret = -ENOMEM; |
| goto lock; |
| } |
| } |
| |
| lock: |
| if (tree_mod_dont_log(eb->fs_info, eb)) { |
| /* |
| * Don't error if we failed to allocate memory because we don't |
| * need to log. |
| */ |
| ret = 0; |
| goto free_tms; |
| } else if (ret != 0) { |
| /* |
| * We previously failed to allocate memory and we need to log, |
| * so we have to fail. |
| */ |
| goto out_unlock; |
| } |
| |
| ret = tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); |
| out_unlock: |
| write_unlock(&eb->fs_info->tree_mod_log_lock); |
| if (ret) |
| goto free_tms; |
| kfree(tm_list); |
| |
| return 0; |
| |
| free_tms: |
| if (tm_list) { |
| for (i = 0; i < nritems; i++) |
| kfree(tm_list[i]); |
| kfree(tm_list); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Returns the logical address of the oldest predecessor of the given root. |
| * Entries older than time_seq are ignored. |
| */ |
| static struct tree_mod_elem *tree_mod_log_oldest_root(struct extent_buffer *eb_root, |
| u64 time_seq) |
| { |
| struct tree_mod_elem *tm; |
| struct tree_mod_elem *found = NULL; |
| u64 root_logical = eb_root->start; |
| bool looped = false; |
| |
| if (!time_seq) |
| return NULL; |
| |
| /* |
| * The very last operation that's logged for a root is the replacement |
| * operation (if it is replaced at all). This has the logical address |
| * of the *new* root, making it the very first operation that's logged |
| * for this root. |
| */ |
| while (1) { |
| tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, |
| time_seq); |
| if (!looped && !tm) |
| return NULL; |
| /* |
| * If there are no tree operation for the oldest root, we simply |
| * return it. This should only happen if that (old) root is at |
| * level 0. |
| */ |
| if (!tm) |
| break; |
| |
| /* |
| * If there's an operation that's not a root replacement, we |
| * found the oldest version of our root. Normally, we'll find a |
| * BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. |
| */ |
| if (tm->op != BTRFS_MOD_LOG_ROOT_REPLACE) |
| break; |
| |
| found = tm; |
| root_logical = tm->old_root.logical; |
| looped = true; |
| } |
| |
| /* If there's no old root to return, return what we found instead */ |
| if (!found) |
| found = tm; |
| |
| return found; |
| } |
| |
| |
| /* |
| * tm is a pointer to the first operation to rewind within eb. Then, all |
| * previous operations will be rewound (until we reach something older than |
| * time_seq). |
| */ |
| static void tree_mod_log_rewind(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *eb, |
| u64 time_seq, |
| struct tree_mod_elem *first_tm) |
| { |
| u32 n; |
| struct rb_node *next; |
| struct tree_mod_elem *tm = first_tm; |
| unsigned long o_dst; |
| unsigned long o_src; |
| unsigned long p_size = sizeof(struct btrfs_key_ptr); |
| /* |
| * max_slot tracks the maximum valid slot of the rewind eb at every |
| * step of the rewind. This is in contrast with 'n' which eventually |
| * matches the number of items, but can be wrong during moves or if |
| * removes overlap on already valid slots (which is probably separately |
| * a bug). We do this to validate the offsets of memmoves for rewinding |
| * moves and detect invalid memmoves. |
| * |
| * Since a rewind eb can start empty, max_slot is a signed integer with |
| * a special meaning for -1, which is that no slot is valid to move out |
| * of. Any other negative value is invalid. |
| */ |
| int max_slot; |
| int move_src_end_slot; |
| int move_dst_end_slot; |
| |
| n = btrfs_header_nritems(eb); |
| max_slot = n - 1; |
| read_lock(&fs_info->tree_mod_log_lock); |
| while (tm && tm->seq >= time_seq) { |
| ASSERT(max_slot >= -1); |
| /* |
| * All the operations are recorded with the operator used for |
| * the modification. As we're going backwards, we do the |
| * opposite of each operation here. |
| */ |
| switch (tm->op) { |
| case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING: |
| BUG_ON(tm->slot < n); |
| fallthrough; |
| case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_MOVING: |
| case BTRFS_MOD_LOG_KEY_REMOVE: |
| btrfs_set_node_key(eb, &tm->key, tm->slot); |
| btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); |
| btrfs_set_node_ptr_generation(eb, tm->slot, |
| tm->generation); |
| n++; |
| if (tm->slot > max_slot) |
| max_slot = tm->slot; |
| break; |
| case BTRFS_MOD_LOG_KEY_REPLACE: |
| BUG_ON(tm->slot >= n); |
| btrfs_set_node_key(eb, &tm->key, tm->slot); |
| btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); |
| btrfs_set_node_ptr_generation(eb, tm->slot, |
| tm->generation); |
| break; |
| case BTRFS_MOD_LOG_KEY_ADD: |
| /* |
| * It is possible we could have already removed keys |
| * behind the known max slot, so this will be an |
| * overestimate. In practice, the copy operation |
| * inserts them in increasing order, and overestimating |
| * just means we miss some warnings, so it's OK. It |
| * isn't worth carefully tracking the full array of |
| * valid slots to check against when moving. |
| */ |
| if (tm->slot == max_slot) |
| max_slot--; |
| /* if a move operation is needed it's in the log */ |
| n--; |
| break; |
| case BTRFS_MOD_LOG_MOVE_KEYS: |
| ASSERT(tm->move.nr_items > 0); |
| move_src_end_slot = tm->move.dst_slot + tm->move.nr_items - 1; |
| move_dst_end_slot = tm->slot + tm->move.nr_items - 1; |
| o_dst = btrfs_node_key_ptr_offset(eb, tm->slot); |
| o_src = btrfs_node_key_ptr_offset(eb, tm->move.dst_slot); |
| if (WARN_ON(move_src_end_slot > max_slot || |
| tm->move.nr_items <= 0)) { |
| btrfs_warn(fs_info, |
| "move from invalid tree mod log slot eb %llu slot %d dst_slot %d nr_items %d seq %llu n %u max_slot %d", |
| eb->start, tm->slot, |
| tm->move.dst_slot, tm->move.nr_items, |
| tm->seq, n, max_slot); |
| } |
| memmove_extent_buffer(eb, o_dst, o_src, |
| tm->move.nr_items * p_size); |
| max_slot = move_dst_end_slot; |
| break; |
| case BTRFS_MOD_LOG_ROOT_REPLACE: |
| /* |
| * This operation is special. For roots, this must be |
| * handled explicitly before rewinding. |
| * For non-roots, this operation may exist if the node |
| * was a root: root A -> child B; then A gets empty and |
| * B is promoted to the new root. In the mod log, we'll |
| * have a root-replace operation for B, a tree block |
| * that is no root. We simply ignore that operation. |
| */ |
| break; |
| } |
| next = rb_next(&tm->node); |
| if (!next) |
| break; |
| tm = rb_entry(next, struct tree_mod_elem, node); |
| if (tm->logical != first_tm->logical) |
| break; |
| } |
| read_unlock(&fs_info->tree_mod_log_lock); |
| btrfs_set_header_nritems(eb, n); |
| } |
| |
| /* |
| * Called with eb read locked. If the buffer cannot be rewound, the same buffer |
| * is returned. If rewind operations happen, a fresh buffer is returned. The |
| * returned buffer is always read-locked. If the returned buffer is not the |
| * input buffer, the lock on the input buffer is released and the input buffer |
| * is freed (its refcount is decremented). |
| */ |
| struct extent_buffer *btrfs_tree_mod_log_rewind(struct btrfs_fs_info *fs_info, |
| struct btrfs_path *path, |
| struct extent_buffer *eb, |
| u64 time_seq) |
| { |
| struct extent_buffer *eb_rewin; |
| struct tree_mod_elem *tm; |
| |
| if (!time_seq) |
| return eb; |
| |
| if (btrfs_header_level(eb) == 0) |
| return eb; |
| |
| tm = tree_mod_log_search(fs_info, eb->start, time_seq); |
| if (!tm) |
| return eb; |
| |
| if (tm->op == BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) { |
| BUG_ON(tm->slot != 0); |
| eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); |
| if (!eb_rewin) { |
| btrfs_tree_read_unlock(eb); |
| free_extent_buffer(eb); |
| return NULL; |
| } |
| btrfs_set_header_bytenr(eb_rewin, eb->start); |
| btrfs_set_header_backref_rev(eb_rewin, |
| btrfs_header_backref_rev(eb)); |
| btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); |
| btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); |
| } else { |
| eb_rewin = btrfs_clone_extent_buffer(eb); |
| if (!eb_rewin) { |
| btrfs_tree_read_unlock(eb); |
| free_extent_buffer(eb); |
| return NULL; |
| } |
| } |
| |
| btrfs_tree_read_unlock(eb); |
| free_extent_buffer(eb); |
| |
| btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin), |
| eb_rewin, btrfs_header_level(eb_rewin)); |
| btrfs_tree_read_lock(eb_rewin); |
| tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); |
| WARN_ON(btrfs_header_nritems(eb_rewin) > |
| BTRFS_NODEPTRS_PER_BLOCK(fs_info)); |
| |
| return eb_rewin; |
| } |
| |
| /* |
| * Rewind the state of @root's root node to the given @time_seq value. |
| * If there are no changes, the current root->root_node is returned. If anything |
| * changed in between, there's a fresh buffer allocated on which the rewind |
| * operations are done. In any case, the returned buffer is read locked. |
| * Returns NULL on error (with no locks held). |
| */ |
| struct extent_buffer *btrfs_get_old_root(struct btrfs_root *root, u64 time_seq) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct tree_mod_elem *tm; |
| struct extent_buffer *eb = NULL; |
| struct extent_buffer *eb_root; |
| u64 eb_root_owner = 0; |
| struct extent_buffer *old; |
| struct tree_mod_root *old_root = NULL; |
| u64 old_generation = 0; |
| u64 logical; |
| int level; |
| |
| eb_root = btrfs_read_lock_root_node(root); |
| tm = tree_mod_log_oldest_root(eb_root, time_seq); |
| if (!tm) |
| return eb_root; |
| |
| if (tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) { |
| old_root = &tm->old_root; |
| old_generation = tm->generation; |
| logical = old_root->logical; |
| level = old_root->level; |
| } else { |
| logical = eb_root->start; |
| level = btrfs_header_level(eb_root); |
| } |
| |
| tm = tree_mod_log_search(fs_info, logical, time_seq); |
| if (old_root && tm && tm->op != BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING) { |
| struct btrfs_tree_parent_check check = { 0 }; |
| |
| btrfs_tree_read_unlock(eb_root); |
| free_extent_buffer(eb_root); |
| |
| check.level = level; |
| check.owner_root = btrfs_root_id(root); |
| |
| old = read_tree_block(fs_info, logical, &check); |
| if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { |
| if (!IS_ERR(old)) |
| free_extent_buffer(old); |
| btrfs_warn(fs_info, |
| "failed to read tree block %llu from get_old_root", |
| logical); |
| } else { |
| struct tree_mod_elem *tm2; |
| |
| btrfs_tree_read_lock(old); |
| eb = btrfs_clone_extent_buffer(old); |
| /* |
| * After the lookup for the most recent tree mod operation |
| * above and before we locked and cloned the extent buffer |
| * 'old', a new tree mod log operation may have been added. |
| * So lookup for a more recent one to make sure the number |
| * of mod log operations we replay is consistent with the |
| * number of items we have in the cloned extent buffer, |
| * otherwise we can hit a BUG_ON when rewinding the extent |
| * buffer. |
| */ |
| tm2 = tree_mod_log_search(fs_info, logical, time_seq); |
| btrfs_tree_read_unlock(old); |
| free_extent_buffer(old); |
| ASSERT(tm2); |
| ASSERT(tm2 == tm || tm2->seq > tm->seq); |
| if (!tm2 || tm2->seq < tm->seq) { |
| free_extent_buffer(eb); |
| return NULL; |
| } |
| tm = tm2; |
| } |
| } else if (old_root) { |
| eb_root_owner = btrfs_header_owner(eb_root); |
| btrfs_tree_read_unlock(eb_root); |
| free_extent_buffer(eb_root); |
| eb = alloc_dummy_extent_buffer(fs_info, logical); |
| } else { |
| eb = btrfs_clone_extent_buffer(eb_root); |
| btrfs_tree_read_unlock(eb_root); |
| free_extent_buffer(eb_root); |
| } |
| |
| if (!eb) |
| return NULL; |
| if (old_root) { |
| btrfs_set_header_bytenr(eb, eb->start); |
| btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); |
| btrfs_set_header_owner(eb, eb_root_owner); |
| btrfs_set_header_level(eb, old_root->level); |
| btrfs_set_header_generation(eb, old_generation); |
| } |
| btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, |
| btrfs_header_level(eb)); |
| btrfs_tree_read_lock(eb); |
| if (tm) |
| tree_mod_log_rewind(fs_info, eb, time_seq, tm); |
| else |
| WARN_ON(btrfs_header_level(eb) != 0); |
| WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); |
| |
| return eb; |
| } |
| |
| int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) |
| { |
| struct tree_mod_elem *tm; |
| int level; |
| struct extent_buffer *eb_root = btrfs_root_node(root); |
| |
| tm = tree_mod_log_oldest_root(eb_root, time_seq); |
| if (tm && tm->op == BTRFS_MOD_LOG_ROOT_REPLACE) |
| level = tm->old_root.level; |
| else |
| level = btrfs_header_level(eb_root); |
| |
| free_extent_buffer(eb_root); |
| |
| return level; |
| } |
| |
| /* |
| * Return the lowest sequence number in the tree modification log. |
| * |
| * Return the sequence number of the oldest tree modification log user, which |
| * corresponds to the lowest sequence number of all existing users. If there are |
| * no users it returns 0. |
| */ |
| u64 btrfs_tree_mod_log_lowest_seq(struct btrfs_fs_info *fs_info) |
| { |
| u64 ret = 0; |
| |
| read_lock(&fs_info->tree_mod_log_lock); |
| if (!list_empty(&fs_info->tree_mod_seq_list)) { |
| struct btrfs_seq_list *elem; |
| |
| elem = list_first_entry(&fs_info->tree_mod_seq_list, |
| struct btrfs_seq_list, list); |
| ret = elem->seq; |
| } |
| read_unlock(&fs_info->tree_mod_log_lock); |
| |
| return ret; |
| } |