| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * STM32 Timer Encoder and Counter driver |
| * |
| * Copyright (C) STMicroelectronics 2018 |
| * |
| * Author: Benjamin Gaignard <benjamin.gaignard@st.com> |
| * |
| */ |
| #include <linux/counter.h> |
| #include <linux/interrupt.h> |
| #include <linux/mfd/stm32-timers.h> |
| #include <linux/mod_devicetable.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/platform_device.h> |
| #include <linux/types.h> |
| |
| #define TIM_CCMR_CCXS (BIT(8) | BIT(0)) |
| #define TIM_CCMR_MASK (TIM_CCMR_CC1S | TIM_CCMR_CC2S | \ |
| TIM_CCMR_IC1F | TIM_CCMR_IC2F) |
| #define TIM_CCER_MASK (TIM_CCER_CC1P | TIM_CCER_CC1NP | \ |
| TIM_CCER_CC2P | TIM_CCER_CC2NP) |
| |
| #define STM32_CH1_SIG 0 |
| #define STM32_CH2_SIG 1 |
| #define STM32_CLOCK_SIG 2 |
| #define STM32_CH3_SIG 3 |
| #define STM32_CH4_SIG 4 |
| |
| struct stm32_timer_regs { |
| u32 cr1; |
| u32 cnt; |
| u32 smcr; |
| u32 arr; |
| }; |
| |
| struct stm32_timer_cnt { |
| struct regmap *regmap; |
| struct clk *clk; |
| u32 max_arr; |
| bool enabled; |
| struct stm32_timer_regs bak; |
| bool has_encoder; |
| unsigned int nchannels; |
| unsigned int nr_irqs; |
| spinlock_t lock; /* protects nb_ovf */ |
| u64 nb_ovf; |
| }; |
| |
| static const enum counter_function stm32_count_functions[] = { |
| COUNTER_FUNCTION_INCREASE, |
| COUNTER_FUNCTION_QUADRATURE_X2_A, |
| COUNTER_FUNCTION_QUADRATURE_X2_B, |
| COUNTER_FUNCTION_QUADRATURE_X4, |
| }; |
| |
| static int stm32_count_read(struct counter_device *counter, |
| struct counter_count *count, u64 *val) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 cnt; |
| |
| regmap_read(priv->regmap, TIM_CNT, &cnt); |
| *val = cnt; |
| |
| return 0; |
| } |
| |
| static int stm32_count_write(struct counter_device *counter, |
| struct counter_count *count, const u64 val) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 ceiling; |
| |
| regmap_read(priv->regmap, TIM_ARR, &ceiling); |
| if (val > ceiling) |
| return -EINVAL; |
| |
| return regmap_write(priv->regmap, TIM_CNT, val); |
| } |
| |
| static int stm32_count_function_read(struct counter_device *counter, |
| struct counter_count *count, |
| enum counter_function *function) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 smcr; |
| |
| regmap_read(priv->regmap, TIM_SMCR, &smcr); |
| |
| switch (smcr & TIM_SMCR_SMS) { |
| case TIM_SMCR_SMS_SLAVE_MODE_DISABLED: |
| *function = COUNTER_FUNCTION_INCREASE; |
| return 0; |
| case TIM_SMCR_SMS_ENCODER_MODE_1: |
| *function = COUNTER_FUNCTION_QUADRATURE_X2_A; |
| return 0; |
| case TIM_SMCR_SMS_ENCODER_MODE_2: |
| *function = COUNTER_FUNCTION_QUADRATURE_X2_B; |
| return 0; |
| case TIM_SMCR_SMS_ENCODER_MODE_3: |
| *function = COUNTER_FUNCTION_QUADRATURE_X4; |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int stm32_count_function_write(struct counter_device *counter, |
| struct counter_count *count, |
| enum counter_function function) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 cr1, sms; |
| |
| switch (function) { |
| case COUNTER_FUNCTION_INCREASE: |
| sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED; |
| break; |
| case COUNTER_FUNCTION_QUADRATURE_X2_A: |
| if (!priv->has_encoder) |
| return -EOPNOTSUPP; |
| sms = TIM_SMCR_SMS_ENCODER_MODE_1; |
| break; |
| case COUNTER_FUNCTION_QUADRATURE_X2_B: |
| if (!priv->has_encoder) |
| return -EOPNOTSUPP; |
| sms = TIM_SMCR_SMS_ENCODER_MODE_2; |
| break; |
| case COUNTER_FUNCTION_QUADRATURE_X4: |
| if (!priv->has_encoder) |
| return -EOPNOTSUPP; |
| sms = TIM_SMCR_SMS_ENCODER_MODE_3; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* Store enable status */ |
| regmap_read(priv->regmap, TIM_CR1, &cr1); |
| |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); |
| |
| regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms); |
| |
| /* Make sure that registers are updated */ |
| regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG); |
| |
| /* Restore the enable status */ |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1); |
| |
| return 0; |
| } |
| |
| static int stm32_count_direction_read(struct counter_device *counter, |
| struct counter_count *count, |
| enum counter_count_direction *direction) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 cr1; |
| |
| regmap_read(priv->regmap, TIM_CR1, &cr1); |
| *direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD : |
| COUNTER_COUNT_DIRECTION_FORWARD; |
| |
| return 0; |
| } |
| |
| static int stm32_count_ceiling_read(struct counter_device *counter, |
| struct counter_count *count, u64 *ceiling) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 arr; |
| |
| regmap_read(priv->regmap, TIM_ARR, &arr); |
| |
| *ceiling = arr; |
| |
| return 0; |
| } |
| |
| static int stm32_count_ceiling_write(struct counter_device *counter, |
| struct counter_count *count, u64 ceiling) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| |
| if (ceiling > priv->max_arr) |
| return -ERANGE; |
| |
| /* TIMx_ARR register shouldn't be buffered (ARPE=0) */ |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0); |
| regmap_write(priv->regmap, TIM_ARR, ceiling); |
| |
| return 0; |
| } |
| |
| static int stm32_count_enable_read(struct counter_device *counter, |
| struct counter_count *count, u8 *enable) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 cr1; |
| |
| regmap_read(priv->regmap, TIM_CR1, &cr1); |
| |
| *enable = cr1 & TIM_CR1_CEN; |
| |
| return 0; |
| } |
| |
| static int stm32_count_enable_write(struct counter_device *counter, |
| struct counter_count *count, u8 enable) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 cr1; |
| |
| if (enable) { |
| regmap_read(priv->regmap, TIM_CR1, &cr1); |
| if (!(cr1 & TIM_CR1_CEN)) |
| clk_enable(priv->clk); |
| |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, |
| TIM_CR1_CEN); |
| } else { |
| regmap_read(priv->regmap, TIM_CR1, &cr1); |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); |
| if (cr1 & TIM_CR1_CEN) |
| clk_disable(priv->clk); |
| } |
| |
| /* Keep enabled state to properly handle low power states */ |
| priv->enabled = enable; |
| |
| return 0; |
| } |
| |
| static int stm32_count_prescaler_read(struct counter_device *counter, |
| struct counter_count *count, u64 *prescaler) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 psc; |
| |
| regmap_read(priv->regmap, TIM_PSC, &psc); |
| |
| *prescaler = psc + 1; |
| |
| return 0; |
| } |
| |
| static int stm32_count_prescaler_write(struct counter_device *counter, |
| struct counter_count *count, u64 prescaler) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 psc; |
| |
| if (!prescaler || prescaler > MAX_TIM_PSC + 1) |
| return -ERANGE; |
| |
| psc = prescaler - 1; |
| |
| return regmap_write(priv->regmap, TIM_PSC, psc); |
| } |
| |
| static int stm32_count_cap_read(struct counter_device *counter, |
| struct counter_count *count, |
| size_t ch, u64 *cap) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 ccrx; |
| |
| if (ch >= priv->nchannels) |
| return -EOPNOTSUPP; |
| |
| switch (ch) { |
| case 0: |
| regmap_read(priv->regmap, TIM_CCR1, &ccrx); |
| break; |
| case 1: |
| regmap_read(priv->regmap, TIM_CCR2, &ccrx); |
| break; |
| case 2: |
| regmap_read(priv->regmap, TIM_CCR3, &ccrx); |
| break; |
| case 3: |
| regmap_read(priv->regmap, TIM_CCR4, &ccrx); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx); |
| |
| *cap = ccrx; |
| |
| return 0; |
| } |
| |
| static int stm32_count_nb_ovf_read(struct counter_device *counter, |
| struct counter_count *count, u64 *val) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| unsigned long irqflags; |
| |
| spin_lock_irqsave(&priv->lock, irqflags); |
| *val = priv->nb_ovf; |
| spin_unlock_irqrestore(&priv->lock, irqflags); |
| |
| return 0; |
| } |
| |
| static int stm32_count_nb_ovf_write(struct counter_device *counter, |
| struct counter_count *count, u64 val) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| unsigned long irqflags; |
| |
| spin_lock_irqsave(&priv->lock, irqflags); |
| priv->nb_ovf = val; |
| spin_unlock_irqrestore(&priv->lock, irqflags); |
| |
| return 0; |
| } |
| |
| static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4); |
| |
| static struct counter_comp stm32_count_ext[] = { |
| COUNTER_COMP_DIRECTION(stm32_count_direction_read), |
| COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write), |
| COUNTER_COMP_CEILING(stm32_count_ceiling_read, |
| stm32_count_ceiling_write), |
| COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read, |
| stm32_count_prescaler_write), |
| COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array), |
| COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write), |
| }; |
| |
| static const enum counter_synapse_action stm32_clock_synapse_actions[] = { |
| COUNTER_SYNAPSE_ACTION_RISING_EDGE, |
| }; |
| |
| static const enum counter_synapse_action stm32_synapse_actions[] = { |
| COUNTER_SYNAPSE_ACTION_NONE, |
| COUNTER_SYNAPSE_ACTION_BOTH_EDGES |
| }; |
| |
| static int stm32_action_read(struct counter_device *counter, |
| struct counter_count *count, |
| struct counter_synapse *synapse, |
| enum counter_synapse_action *action) |
| { |
| enum counter_function function; |
| int err; |
| |
| err = stm32_count_function_read(counter, count, &function); |
| if (err) |
| return err; |
| |
| switch (function) { |
| case COUNTER_FUNCTION_INCREASE: |
| /* counts on internal clock when CEN=1 */ |
| if (synapse->signal->id == STM32_CLOCK_SIG) |
| *action = COUNTER_SYNAPSE_ACTION_RISING_EDGE; |
| else |
| *action = COUNTER_SYNAPSE_ACTION_NONE; |
| return 0; |
| case COUNTER_FUNCTION_QUADRATURE_X2_A: |
| /* counts up/down on TI1FP1 edge depending on TI2FP2 level */ |
| if (synapse->signal->id == STM32_CH1_SIG) |
| *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; |
| else |
| *action = COUNTER_SYNAPSE_ACTION_NONE; |
| return 0; |
| case COUNTER_FUNCTION_QUADRATURE_X2_B: |
| /* counts up/down on TI2FP2 edge depending on TI1FP1 level */ |
| if (synapse->signal->id == STM32_CH2_SIG) |
| *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; |
| else |
| *action = COUNTER_SYNAPSE_ACTION_NONE; |
| return 0; |
| case COUNTER_FUNCTION_QUADRATURE_X4: |
| /* counts up/down on both TI1FP1 and TI2FP2 edges */ |
| if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG) |
| *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES; |
| else |
| *action = COUNTER_SYNAPSE_ACTION_NONE; |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| struct stm32_count_cc_regs { |
| u32 ccmr_reg; |
| u32 ccmr_mask; |
| u32 ccmr_bits; |
| u32 ccer_bits; |
| }; |
| |
| static const struct stm32_count_cc_regs stm32_cc[] = { |
| { TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1, |
| TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP }, |
| { TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2, |
| TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP }, |
| { TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3, |
| TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP }, |
| { TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4, |
| TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP }, |
| }; |
| |
| static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch, |
| bool enable) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| const struct stm32_count_cc_regs *cc; |
| u32 ccmr, ccer; |
| |
| if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) { |
| dev_err(counter->parent, "invalid ch: %d\n", ch); |
| return -EINVAL; |
| } |
| |
| cc = &stm32_cc[ch]; |
| |
| /* |
| * configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2... |
| * Select both edges / non-inverted to trigger a capture. |
| */ |
| if (enable) { |
| /* first clear possibly latched capture flag upon enabling */ |
| if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits)) |
| regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch)); |
| regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask, |
| cc->ccmr_bits); |
| regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits); |
| } else { |
| regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits); |
| regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask); |
| } |
| |
| regmap_read(priv->regmap, cc->ccmr_reg, &ccmr); |
| regmap_read(priv->regmap, TIM_CCER, &ccer); |
| dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis", |
| ch, ccmr, ccer); |
| |
| return 0; |
| } |
| |
| static int stm32_count_events_configure(struct counter_device *counter) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| struct counter_event_node *event_node; |
| u32 dier = 0; |
| int i, ret; |
| |
| list_for_each_entry(event_node, &counter->events_list, l) { |
| switch (event_node->event) { |
| case COUNTER_EVENT_OVERFLOW_UNDERFLOW: |
| /* first clear possibly latched UIF before enabling */ |
| if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE)) |
| regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF); |
| dier |= TIM_DIER_UIE; |
| break; |
| case COUNTER_EVENT_CAPTURE: |
| ret = stm32_count_capture_configure(counter, event_node->channel, true); |
| if (ret) |
| return ret; |
| dier |= TIM_DIER_CC_IE(event_node->channel); |
| break; |
| default: |
| /* should never reach this path */ |
| return -EINVAL; |
| } |
| } |
| |
| /* Enable / disable all events at once, from events_list, so write all DIER bits */ |
| regmap_write(priv->regmap, TIM_DIER, dier); |
| |
| /* check for disabled capture events */ |
| for (i = 0 ; i < priv->nchannels; i++) { |
| if (!(dier & TIM_DIER_CC_IE(i))) { |
| ret = stm32_count_capture_configure(counter, i, false); |
| if (ret) |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int stm32_count_watch_validate(struct counter_device *counter, |
| const struct counter_watch *watch) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| |
| /* Interrupts are optional */ |
| if (!priv->nr_irqs) |
| return -EOPNOTSUPP; |
| |
| switch (watch->event) { |
| case COUNTER_EVENT_CAPTURE: |
| if (watch->channel >= priv->nchannels) { |
| dev_err(counter->parent, "Invalid channel %d\n", watch->channel); |
| return -EINVAL; |
| } |
| return 0; |
| case COUNTER_EVENT_OVERFLOW_UNDERFLOW: |
| return 0; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static const struct counter_ops stm32_timer_cnt_ops = { |
| .count_read = stm32_count_read, |
| .count_write = stm32_count_write, |
| .function_read = stm32_count_function_read, |
| .function_write = stm32_count_function_write, |
| .action_read = stm32_action_read, |
| .events_configure = stm32_count_events_configure, |
| .watch_validate = stm32_count_watch_validate, |
| }; |
| |
| static int stm32_count_clk_get_freq(struct counter_device *counter, |
| struct counter_signal *signal, u64 *freq) |
| { |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| |
| *freq = clk_get_rate(priv->clk); |
| |
| return 0; |
| } |
| |
| static struct counter_comp stm32_count_clock_ext[] = { |
| COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq), |
| }; |
| |
| static struct counter_signal stm32_signals[] = { |
| /* |
| * Need to declare all the signals as a static array, and keep the signals order here, |
| * even if they're unused or unexisting on some timer instances. It's an abstraction, |
| * e.g. high level view of the counter features. |
| * |
| * Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2", |
| * and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used, |
| * to indicate that a signal doesn't affect the counter. |
| */ |
| { |
| .id = STM32_CH1_SIG, |
| .name = "Channel 1" |
| }, |
| { |
| .id = STM32_CH2_SIG, |
| .name = "Channel 2" |
| }, |
| { |
| .id = STM32_CLOCK_SIG, |
| .name = "Clock", |
| .ext = stm32_count_clock_ext, |
| .num_ext = ARRAY_SIZE(stm32_count_clock_ext), |
| }, |
| { |
| .id = STM32_CH3_SIG, |
| .name = "Channel 3" |
| }, |
| { |
| .id = STM32_CH4_SIG, |
| .name = "Channel 4" |
| }, |
| }; |
| |
| static struct counter_synapse stm32_count_synapses[] = { |
| { |
| .actions_list = stm32_synapse_actions, |
| .num_actions = ARRAY_SIZE(stm32_synapse_actions), |
| .signal = &stm32_signals[STM32_CH1_SIG] |
| }, |
| { |
| .actions_list = stm32_synapse_actions, |
| .num_actions = ARRAY_SIZE(stm32_synapse_actions), |
| .signal = &stm32_signals[STM32_CH2_SIG] |
| }, |
| { |
| .actions_list = stm32_clock_synapse_actions, |
| .num_actions = ARRAY_SIZE(stm32_clock_synapse_actions), |
| .signal = &stm32_signals[STM32_CLOCK_SIG] |
| }, |
| { |
| .actions_list = stm32_synapse_actions, |
| .num_actions = ARRAY_SIZE(stm32_synapse_actions), |
| .signal = &stm32_signals[STM32_CH3_SIG] |
| }, |
| { |
| .actions_list = stm32_synapse_actions, |
| .num_actions = ARRAY_SIZE(stm32_synapse_actions), |
| .signal = &stm32_signals[STM32_CH4_SIG] |
| }, |
| }; |
| |
| static struct counter_count stm32_counts = { |
| .id = 0, |
| .name = "STM32 Timer Counter", |
| .functions_list = stm32_count_functions, |
| .num_functions = ARRAY_SIZE(stm32_count_functions), |
| .synapses = stm32_count_synapses, |
| .num_synapses = ARRAY_SIZE(stm32_count_synapses), |
| .ext = stm32_count_ext, |
| .num_ext = ARRAY_SIZE(stm32_count_ext) |
| }; |
| |
| static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr) |
| { |
| struct counter_device *counter = ptr; |
| struct stm32_timer_cnt *const priv = counter_priv(counter); |
| u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */ |
| u32 sr, dier; |
| int i; |
| |
| regmap_read(priv->regmap, TIM_SR, &sr); |
| regmap_read(priv->regmap, TIM_DIER, &dier); |
| /* |
| * Some status bits in SR don't match with the enable bits in DIER. Only take care of |
| * the possibly enabled bits in DIER (that matches in between SR and DIER). |
| */ |
| dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE); |
| sr &= dier; |
| |
| if (sr & TIM_SR_UIF) { |
| spin_lock(&priv->lock); |
| priv->nb_ovf++; |
| spin_unlock(&priv->lock); |
| counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0); |
| dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n"); |
| /* SR flags can be cleared by writing 0, only clear relevant flag */ |
| clr &= ~TIM_SR_UIF; |
| } |
| |
| /* Check capture events */ |
| for (i = 0 ; i < priv->nchannels; i++) { |
| if (sr & TIM_SR_CC_IF(i)) { |
| counter_push_event(counter, COUNTER_EVENT_CAPTURE, i); |
| clr &= ~TIM_SR_CC_IF(i); |
| dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i); |
| } |
| } |
| |
| regmap_write(priv->regmap, TIM_SR, clr); |
| |
| return IRQ_HANDLED; |
| }; |
| |
| static void stm32_timer_cnt_detect_channels(struct device *dev, |
| struct stm32_timer_cnt *priv) |
| { |
| u32 ccer, ccer_backup; |
| |
| regmap_read(priv->regmap, TIM_CCER, &ccer_backup); |
| regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE); |
| regmap_read(priv->regmap, TIM_CCER, &ccer); |
| regmap_write(priv->regmap, TIM_CCER, ccer_backup); |
| priv->nchannels = hweight32(ccer & TIM_CCER_CCXE); |
| |
| dev_dbg(dev, "has %d cc channels\n", priv->nchannels); |
| } |
| |
| /* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */ |
| #define STM32_TIM_ENCODER_SUPPORTED (BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7)) |
| |
| static const char * const stm32_timer_trigger_compat[] = { |
| "st,stm32-timer-trigger", |
| "st,stm32h7-timer-trigger", |
| }; |
| |
| static int stm32_timer_cnt_probe_encoder(struct device *dev, |
| struct stm32_timer_cnt *priv) |
| { |
| struct device *parent = dev->parent; |
| struct device_node *tnode = NULL, *pnode = parent->of_node; |
| int i, ret; |
| u32 idx; |
| |
| /* |
| * Need to retrieve the trigger node index from DT, to be able |
| * to determine if the counter supports encoder mode. It also |
| * enforce backward compatibility, and allow to support other |
| * counter modes in this driver (when the timer doesn't support |
| * encoder). |
| */ |
| for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++) |
| tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]); |
| if (!tnode) { |
| dev_err(dev, "Can't find trigger node\n"); |
| return -ENODATA; |
| } |
| |
| ret = of_property_read_u32(tnode, "reg", &idx); |
| if (ret) { |
| dev_err(dev, "Can't get index (%d)\n", ret); |
| return ret; |
| } |
| |
| priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx)); |
| |
| dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no"); |
| |
| return 0; |
| } |
| |
| static int stm32_timer_cnt_probe(struct platform_device *pdev) |
| { |
| struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent); |
| struct device *dev = &pdev->dev; |
| struct stm32_timer_cnt *priv; |
| struct counter_device *counter; |
| int i, ret; |
| |
| if (IS_ERR_OR_NULL(ddata)) |
| return -EINVAL; |
| |
| counter = devm_counter_alloc(dev, sizeof(*priv)); |
| if (!counter) |
| return -ENOMEM; |
| |
| priv = counter_priv(counter); |
| |
| priv->regmap = ddata->regmap; |
| priv->clk = ddata->clk; |
| priv->max_arr = ddata->max_arr; |
| priv->nr_irqs = ddata->nr_irqs; |
| |
| ret = stm32_timer_cnt_probe_encoder(dev, priv); |
| if (ret) |
| return ret; |
| |
| stm32_timer_cnt_detect_channels(dev, priv); |
| |
| counter->name = dev_name(dev); |
| counter->parent = dev; |
| counter->ops = &stm32_timer_cnt_ops; |
| counter->counts = &stm32_counts; |
| counter->num_counts = 1; |
| counter->signals = stm32_signals; |
| counter->num_signals = ARRAY_SIZE(stm32_signals); |
| |
| spin_lock_init(&priv->lock); |
| |
| platform_set_drvdata(pdev, priv); |
| |
| /* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */ |
| if (priv->nr_irqs == 1) { |
| /* All events reported through the global interrupt */ |
| ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr, |
| 0, dev_name(dev), counter); |
| if (ret) { |
| dev_err(dev, "Failed to request irq %d (err %d)\n", |
| ddata->irq[0], ret); |
| return ret; |
| } |
| } else { |
| for (i = 0; i < priv->nr_irqs; i++) { |
| /* |
| * Only take care of update IRQ for overflow events, and cc for |
| * capture events. |
| */ |
| if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC) |
| continue; |
| |
| ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr, |
| 0, dev_name(dev), counter); |
| if (ret) { |
| dev_err(dev, "Failed to request irq %d (err %d)\n", |
| ddata->irq[i], ret); |
| return ret; |
| } |
| } |
| } |
| |
| /* Reset input selector to its default input */ |
| regmap_write(priv->regmap, TIM_TISEL, 0x0); |
| |
| /* Register Counter device */ |
| ret = devm_counter_add(dev, counter); |
| if (ret < 0) |
| dev_err_probe(dev, ret, "Failed to add counter\n"); |
| |
| return ret; |
| } |
| |
| static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev) |
| { |
| struct stm32_timer_cnt *priv = dev_get_drvdata(dev); |
| |
| /* Only take care of enabled counter: don't disturb other MFD child */ |
| if (priv->enabled) { |
| /* Backup registers that may get lost in low power mode */ |
| regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr); |
| regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr); |
| regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt); |
| regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1); |
| |
| /* Disable the counter */ |
| regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0); |
| clk_disable(priv->clk); |
| } |
| |
| return pinctrl_pm_select_sleep_state(dev); |
| } |
| |
| static int __maybe_unused stm32_timer_cnt_resume(struct device *dev) |
| { |
| struct stm32_timer_cnt *priv = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = pinctrl_pm_select_default_state(dev); |
| if (ret) |
| return ret; |
| |
| if (priv->enabled) { |
| clk_enable(priv->clk); |
| |
| /* Restore registers that may have been lost */ |
| regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr); |
| regmap_write(priv->regmap, TIM_ARR, priv->bak.arr); |
| regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt); |
| |
| /* Also re-enables the counter */ |
| regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1); |
| } |
| |
| return 0; |
| } |
| |
| static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend, |
| stm32_timer_cnt_resume); |
| |
| static const struct of_device_id stm32_timer_cnt_of_match[] = { |
| { .compatible = "st,stm32-timer-counter", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match); |
| |
| static struct platform_driver stm32_timer_cnt_driver = { |
| .probe = stm32_timer_cnt_probe, |
| .driver = { |
| .name = "stm32-timer-counter", |
| .of_match_table = stm32_timer_cnt_of_match, |
| .pm = &stm32_timer_cnt_pm_ops, |
| }, |
| }; |
| module_platform_driver(stm32_timer_cnt_driver); |
| |
| MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>"); |
| MODULE_ALIAS("platform:stm32-timer-counter"); |
| MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_IMPORT_NS(COUNTER); |