| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2017-2018, Intel Corporation. All rights reserved |
| * Copyright Altera Corporation (C) 2014-2016. All rights reserved. |
| * Copyright 2011-2012 Calxeda, Inc. |
| */ |
| |
| #include <asm/cacheflush.h> |
| #include <linux/ctype.h> |
| #include <linux/delay.h> |
| #include <linux/edac.h> |
| #include <linux/firmware/intel/stratix10-smc.h> |
| #include <linux/genalloc.h> |
| #include <linux/interrupt.h> |
| #include <linux/irqchip/chained_irq.h> |
| #include <linux/kernel.h> |
| #include <linux/mfd/altera-sysmgr.h> |
| #include <linux/mfd/syscon.h> |
| #include <linux/notifier.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/panic_notifier.h> |
| #include <linux/platform_device.h> |
| #include <linux/property.h> |
| #include <linux/regmap.h> |
| #include <linux/types.h> |
| #include <linux/uaccess.h> |
| |
| #include "altera_edac.h" |
| #include "edac_module.h" |
| |
| #define EDAC_MOD_STR "altera_edac" |
| #define EDAC_DEVICE "Altera" |
| |
| #ifdef CONFIG_EDAC_ALTERA_SDRAM |
| static const struct altr_sdram_prv_data c5_data = { |
| .ecc_ctrl_offset = CV_CTLCFG_OFST, |
| .ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN, |
| .ecc_stat_offset = CV_DRAMSTS_OFST, |
| .ecc_stat_ce_mask = CV_DRAMSTS_SBEERR, |
| .ecc_stat_ue_mask = CV_DRAMSTS_DBEERR, |
| .ecc_saddr_offset = CV_ERRADDR_OFST, |
| .ecc_daddr_offset = CV_ERRADDR_OFST, |
| .ecc_cecnt_offset = CV_SBECOUNT_OFST, |
| .ecc_uecnt_offset = CV_DBECOUNT_OFST, |
| .ecc_irq_en_offset = CV_DRAMINTR_OFST, |
| .ecc_irq_en_mask = CV_DRAMINTR_INTREN, |
| .ecc_irq_clr_offset = CV_DRAMINTR_OFST, |
| .ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN), |
| .ecc_cnt_rst_offset = CV_DRAMINTR_OFST, |
| .ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR, |
| .ce_ue_trgr_offset = CV_CTLCFG_OFST, |
| .ce_set_mask = CV_CTLCFG_GEN_SB_ERR, |
| .ue_set_mask = CV_CTLCFG_GEN_DB_ERR, |
| }; |
| |
| static const struct altr_sdram_prv_data a10_data = { |
| .ecc_ctrl_offset = A10_ECCCTRL1_OFST, |
| .ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN, |
| .ecc_stat_offset = A10_INTSTAT_OFST, |
| .ecc_stat_ce_mask = A10_INTSTAT_SBEERR, |
| .ecc_stat_ue_mask = A10_INTSTAT_DBEERR, |
| .ecc_saddr_offset = A10_SERRADDR_OFST, |
| .ecc_daddr_offset = A10_DERRADDR_OFST, |
| .ecc_irq_en_offset = A10_ERRINTEN_OFST, |
| .ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK, |
| .ecc_irq_clr_offset = A10_INTSTAT_OFST, |
| .ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR), |
| .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST, |
| .ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK, |
| .ce_ue_trgr_offset = A10_DIAGINTTEST_OFST, |
| .ce_set_mask = A10_DIAGINT_TSERRA_MASK, |
| .ue_set_mask = A10_DIAGINT_TDERRA_MASK, |
| }; |
| |
| /*********************** EDAC Memory Controller Functions ****************/ |
| |
| /* The SDRAM controller uses the EDAC Memory Controller framework. */ |
| |
| static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id) |
| { |
| struct mem_ctl_info *mci = dev_id; |
| struct altr_sdram_mc_data *drvdata = mci->pvt_info; |
| const struct altr_sdram_prv_data *priv = drvdata->data; |
| u32 status, err_count = 1, err_addr; |
| |
| regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status); |
| |
| if (status & priv->ecc_stat_ue_mask) { |
| regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset, |
| &err_addr); |
| if (priv->ecc_uecnt_offset) |
| regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset, |
| &err_count); |
| panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n", |
| err_count, err_addr); |
| } |
| if (status & priv->ecc_stat_ce_mask) { |
| regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset, |
| &err_addr); |
| if (priv->ecc_uecnt_offset) |
| regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset, |
| &err_count); |
| edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count, |
| err_addr >> PAGE_SHIFT, |
| err_addr & ~PAGE_MASK, 0, |
| 0, 0, -1, mci->ctl_name, ""); |
| /* Clear IRQ to resume */ |
| regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset, |
| priv->ecc_irq_clr_mask); |
| |
| return IRQ_HANDLED; |
| } |
| return IRQ_NONE; |
| } |
| |
| static ssize_t altr_sdr_mc_err_inject_write(struct file *file, |
| const char __user *data, |
| size_t count, loff_t *ppos) |
| { |
| struct mem_ctl_info *mci = file->private_data; |
| struct altr_sdram_mc_data *drvdata = mci->pvt_info; |
| const struct altr_sdram_prv_data *priv = drvdata->data; |
| u32 *ptemp; |
| dma_addr_t dma_handle; |
| u32 reg, read_reg; |
| |
| ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL); |
| if (!ptemp) { |
| dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); |
| edac_printk(KERN_ERR, EDAC_MC, |
| "Inject: Buffer Allocation error\n"); |
| return -ENOMEM; |
| } |
| |
| regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset, |
| &read_reg); |
| read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask); |
| |
| /* Error are injected by writing a word while the SBE or DBE |
| * bit in the CTLCFG register is set. Reading the word will |
| * trigger the SBE or DBE error and the corresponding IRQ. |
| */ |
| if (count == 3) { |
| edac_printk(KERN_ALERT, EDAC_MC, |
| "Inject Double bit error\n"); |
| local_irq_disable(); |
| regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, |
| (read_reg | priv->ue_set_mask)); |
| local_irq_enable(); |
| } else { |
| edac_printk(KERN_ALERT, EDAC_MC, |
| "Inject Single bit error\n"); |
| local_irq_disable(); |
| regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, |
| (read_reg | priv->ce_set_mask)); |
| local_irq_enable(); |
| } |
| |
| ptemp[0] = 0x5A5A5A5A; |
| ptemp[1] = 0xA5A5A5A5; |
| |
| /* Clear the error injection bits */ |
| regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg); |
| /* Ensure it has been written out */ |
| wmb(); |
| |
| /* |
| * To trigger the error, we need to read the data back |
| * (the data was written with errors above). |
| * The READ_ONCE macros and printk are used to prevent the |
| * the compiler optimizing these reads out. |
| */ |
| reg = READ_ONCE(ptemp[0]); |
| read_reg = READ_ONCE(ptemp[1]); |
| /* Force Read */ |
| rmb(); |
| |
| edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n", |
| reg, read_reg); |
| |
| dma_free_coherent(mci->pdev, 16, ptemp, dma_handle); |
| |
| return count; |
| } |
| |
| static const struct file_operations altr_sdr_mc_debug_inject_fops = { |
| .open = simple_open, |
| .write = altr_sdr_mc_err_inject_write, |
| .llseek = generic_file_llseek, |
| }; |
| |
| static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci) |
| { |
| if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) |
| return; |
| |
| if (!mci->debugfs) |
| return; |
| |
| edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci, |
| &altr_sdr_mc_debug_inject_fops); |
| } |
| |
| /* Get total memory size from Open Firmware DTB */ |
| static unsigned long get_total_mem(void) |
| { |
| struct device_node *np = NULL; |
| struct resource res; |
| int ret; |
| unsigned long total_mem = 0; |
| |
| for_each_node_by_type(np, "memory") { |
| ret = of_address_to_resource(np, 0, &res); |
| if (ret) |
| continue; |
| |
| total_mem += resource_size(&res); |
| } |
| edac_dbg(0, "total_mem 0x%lx\n", total_mem); |
| return total_mem; |
| } |
| |
| static const struct of_device_id altr_sdram_ctrl_of_match[] = { |
| { .compatible = "altr,sdram-edac", .data = &c5_data}, |
| { .compatible = "altr,sdram-edac-a10", .data = &a10_data}, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match); |
| |
| static int a10_init(struct regmap *mc_vbase) |
| { |
| if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST, |
| A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "Error setting SB IRQ mode\n"); |
| return -ENODEV; |
| } |
| |
| if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "Error setting trigger count\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static int a10_unmask_irq(struct platform_device *pdev, u32 mask) |
| { |
| void __iomem *sm_base; |
| int ret = 0; |
| |
| if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32), |
| dev_name(&pdev->dev))) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "Unable to request mem region\n"); |
| return -EBUSY; |
| } |
| |
| sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32)); |
| if (!sm_base) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "Unable to ioremap device\n"); |
| |
| ret = -ENOMEM; |
| goto release; |
| } |
| |
| iowrite32(mask, sm_base); |
| |
| iounmap(sm_base); |
| |
| release: |
| release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32)); |
| |
| return ret; |
| } |
| |
| static int altr_sdram_probe(struct platform_device *pdev) |
| { |
| struct edac_mc_layer layers[2]; |
| struct mem_ctl_info *mci; |
| struct altr_sdram_mc_data *drvdata; |
| const struct altr_sdram_prv_data *priv; |
| struct regmap *mc_vbase; |
| struct dimm_info *dimm; |
| u32 read_reg; |
| int irq, irq2, res = 0; |
| unsigned long mem_size, irqflags = 0; |
| |
| /* Grab the register range from the sdr controller in device tree */ |
| mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, |
| "altr,sdr-syscon"); |
| if (IS_ERR(mc_vbase)) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "regmap for altr,sdr-syscon lookup failed.\n"); |
| return -ENODEV; |
| } |
| |
| /* Check specific dependencies for the module */ |
| priv = device_get_match_data(&pdev->dev); |
| |
| /* Validate the SDRAM controller has ECC enabled */ |
| if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) || |
| ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "No ECC/ECC disabled [0x%08X]\n", read_reg); |
| return -ENODEV; |
| } |
| |
| /* Grab memory size from device tree. */ |
| mem_size = get_total_mem(); |
| if (!mem_size) { |
| edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n"); |
| return -ENODEV; |
| } |
| |
| /* Ensure the SDRAM Interrupt is disabled */ |
| if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset, |
| priv->ecc_irq_en_mask, 0)) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "Error disabling SDRAM ECC IRQ\n"); |
| return -ENODEV; |
| } |
| |
| /* Toggle to clear the SDRAM Error count */ |
| if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, |
| priv->ecc_cnt_rst_mask, |
| priv->ecc_cnt_rst_mask)) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "Error clearing SDRAM ECC count\n"); |
| return -ENODEV; |
| } |
| |
| if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset, |
| priv->ecc_cnt_rst_mask, 0)) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "Error clearing SDRAM ECC count\n"); |
| return -ENODEV; |
| } |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "No irq %d in DT\n", irq); |
| return irq; |
| } |
| |
| /* Arria10 has a 2nd IRQ */ |
| irq2 = platform_get_irq(pdev, 1); |
| |
| layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; |
| layers[0].size = 1; |
| layers[0].is_virt_csrow = true; |
| layers[1].type = EDAC_MC_LAYER_CHANNEL; |
| layers[1].size = 1; |
| layers[1].is_virt_csrow = false; |
| mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, |
| sizeof(struct altr_sdram_mc_data)); |
| if (!mci) |
| return -ENOMEM; |
| |
| mci->pdev = &pdev->dev; |
| drvdata = mci->pvt_info; |
| drvdata->mc_vbase = mc_vbase; |
| drvdata->data = priv; |
| platform_set_drvdata(pdev, mci); |
| |
| if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { |
| edac_printk(KERN_ERR, EDAC_MC, |
| "Unable to get managed device resource\n"); |
| res = -ENOMEM; |
| goto free; |
| } |
| |
| mci->mtype_cap = MEM_FLAG_DDR3; |
| mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED; |
| mci->edac_cap = EDAC_FLAG_SECDED; |
| mci->mod_name = EDAC_MOD_STR; |
| mci->ctl_name = dev_name(&pdev->dev); |
| mci->scrub_mode = SCRUB_SW_SRC; |
| mci->dev_name = dev_name(&pdev->dev); |
| |
| dimm = *mci->dimms; |
| dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1; |
| dimm->grain = 8; |
| dimm->dtype = DEV_X8; |
| dimm->mtype = MEM_DDR3; |
| dimm->edac_mode = EDAC_SECDED; |
| |
| res = edac_mc_add_mc(mci); |
| if (res < 0) |
| goto err; |
| |
| /* Only the Arria10 has separate IRQs */ |
| if (of_machine_is_compatible("altr,socfpga-arria10")) { |
| /* Arria10 specific initialization */ |
| res = a10_init(mc_vbase); |
| if (res < 0) |
| goto err2; |
| |
| res = devm_request_irq(&pdev->dev, irq2, |
| altr_sdram_mc_err_handler, |
| IRQF_SHARED, dev_name(&pdev->dev), mci); |
| if (res < 0) { |
| edac_mc_printk(mci, KERN_ERR, |
| "Unable to request irq %d\n", irq2); |
| res = -ENODEV; |
| goto err2; |
| } |
| |
| res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK); |
| if (res < 0) |
| goto err2; |
| |
| irqflags = IRQF_SHARED; |
| } |
| |
| res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler, |
| irqflags, dev_name(&pdev->dev), mci); |
| if (res < 0) { |
| edac_mc_printk(mci, KERN_ERR, |
| "Unable to request irq %d\n", irq); |
| res = -ENODEV; |
| goto err2; |
| } |
| |
| /* Infrastructure ready - enable the IRQ */ |
| if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset, |
| priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) { |
| edac_mc_printk(mci, KERN_ERR, |
| "Error enabling SDRAM ECC IRQ\n"); |
| res = -ENODEV; |
| goto err2; |
| } |
| |
| altr_sdr_mc_create_debugfs_nodes(mci); |
| |
| devres_close_group(&pdev->dev, NULL); |
| |
| return 0; |
| |
| err2: |
| edac_mc_del_mc(&pdev->dev); |
| err: |
| devres_release_group(&pdev->dev, NULL); |
| free: |
| edac_mc_free(mci); |
| edac_printk(KERN_ERR, EDAC_MC, |
| "EDAC Probe Failed; Error %d\n", res); |
| |
| return res; |
| } |
| |
| static void altr_sdram_remove(struct platform_device *pdev) |
| { |
| struct mem_ctl_info *mci = platform_get_drvdata(pdev); |
| |
| edac_mc_del_mc(&pdev->dev); |
| edac_mc_free(mci); |
| platform_set_drvdata(pdev, NULL); |
| } |
| |
| /* |
| * If you want to suspend, need to disable EDAC by removing it |
| * from the device tree or defconfig. |
| */ |
| #ifdef CONFIG_PM |
| static int altr_sdram_prepare(struct device *dev) |
| { |
| pr_err("Suspend not allowed when EDAC is enabled.\n"); |
| |
| return -EPERM; |
| } |
| |
| static const struct dev_pm_ops altr_sdram_pm_ops = { |
| .prepare = altr_sdram_prepare, |
| }; |
| #endif |
| |
| static struct platform_driver altr_sdram_edac_driver = { |
| .probe = altr_sdram_probe, |
| .remove_new = altr_sdram_remove, |
| .driver = { |
| .name = "altr_sdram_edac", |
| #ifdef CONFIG_PM |
| .pm = &altr_sdram_pm_ops, |
| #endif |
| .of_match_table = altr_sdram_ctrl_of_match, |
| }, |
| }; |
| |
| module_platform_driver(altr_sdram_edac_driver); |
| |
| #endif /* CONFIG_EDAC_ALTERA_SDRAM */ |
| |
| /************************* EDAC Parent Probe *************************/ |
| |
| static const struct of_device_id altr_edac_device_of_match[]; |
| |
| static const struct of_device_id altr_edac_of_match[] = { |
| { .compatible = "altr,socfpga-ecc-manager" }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, altr_edac_of_match); |
| |
| static int altr_edac_probe(struct platform_device *pdev) |
| { |
| of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match, |
| NULL, &pdev->dev); |
| return 0; |
| } |
| |
| static struct platform_driver altr_edac_driver = { |
| .probe = altr_edac_probe, |
| .driver = { |
| .name = "socfpga_ecc_manager", |
| .of_match_table = altr_edac_of_match, |
| }, |
| }; |
| module_platform_driver(altr_edac_driver); |
| |
| /************************* EDAC Device Functions *************************/ |
| |
| /* |
| * EDAC Device Functions (shared between various IPs). |
| * The discrete memories use the EDAC Device framework. The probe |
| * and error handling functions are very similar between memories |
| * so they are shared. The memory allocation and freeing for EDAC |
| * trigger testing are different for each memory. |
| */ |
| |
| #ifdef CONFIG_EDAC_ALTERA_OCRAM |
| static const struct edac_device_prv_data ocramecc_data; |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_L2C |
| static const struct edac_device_prv_data l2ecc_data; |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_OCRAM |
| static const struct edac_device_prv_data a10_ocramecc_data; |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_L2C |
| static const struct edac_device_prv_data a10_l2ecc_data; |
| #endif |
| |
| static irqreturn_t altr_edac_device_handler(int irq, void *dev_id) |
| { |
| irqreturn_t ret_value = IRQ_NONE; |
| struct edac_device_ctl_info *dci = dev_id; |
| struct altr_edac_device_dev *drvdata = dci->pvt_info; |
| const struct edac_device_prv_data *priv = drvdata->data; |
| |
| if (irq == drvdata->sb_irq) { |
| if (priv->ce_clear_mask) |
| writel(priv->ce_clear_mask, drvdata->base); |
| edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name); |
| ret_value = IRQ_HANDLED; |
| } else if (irq == drvdata->db_irq) { |
| if (priv->ue_clear_mask) |
| writel(priv->ue_clear_mask, drvdata->base); |
| edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name); |
| panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); |
| ret_value = IRQ_HANDLED; |
| } else { |
| WARN_ON(1); |
| } |
| |
| return ret_value; |
| } |
| |
| static ssize_t __maybe_unused |
| altr_edac_device_trig(struct file *file, const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| |
| { |
| u32 *ptemp, i, error_mask; |
| int result = 0; |
| u8 trig_type; |
| unsigned long flags; |
| struct edac_device_ctl_info *edac_dci = file->private_data; |
| struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; |
| const struct edac_device_prv_data *priv = drvdata->data; |
| void *generic_ptr = edac_dci->dev; |
| |
| if (!user_buf || get_user(trig_type, user_buf)) |
| return -EFAULT; |
| |
| if (!priv->alloc_mem) |
| return -ENOMEM; |
| |
| /* |
| * Note that generic_ptr is initialized to the device * but in |
| * some alloc_functions, this is overridden and returns data. |
| */ |
| ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr); |
| if (!ptemp) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "Inject: Buffer Allocation error\n"); |
| return -ENOMEM; |
| } |
| |
| if (trig_type == ALTR_UE_TRIGGER_CHAR) |
| error_mask = priv->ue_set_mask; |
| else |
| error_mask = priv->ce_set_mask; |
| |
| edac_printk(KERN_ALERT, EDAC_DEVICE, |
| "Trigger Error Mask (0x%X)\n", error_mask); |
| |
| local_irq_save(flags); |
| /* write ECC corrupted data out. */ |
| for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) { |
| /* Read data so we're in the correct state */ |
| rmb(); |
| if (READ_ONCE(ptemp[i])) |
| result = -1; |
| /* Toggle Error bit (it is latched), leave ECC enabled */ |
| writel(error_mask, (drvdata->base + priv->set_err_ofst)); |
| writel(priv->ecc_enable_mask, (drvdata->base + |
| priv->set_err_ofst)); |
| ptemp[i] = i; |
| } |
| /* Ensure it has been written out */ |
| wmb(); |
| local_irq_restore(flags); |
| |
| if (result) |
| edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n"); |
| |
| /* Read out written data. ECC error caused here */ |
| for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++) |
| if (READ_ONCE(ptemp[i]) != i) |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "Read doesn't match written data\n"); |
| |
| if (priv->free_mem) |
| priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr); |
| |
| return count; |
| } |
| |
| static const struct file_operations altr_edac_device_inject_fops __maybe_unused = { |
| .open = simple_open, |
| .write = altr_edac_device_trig, |
| .llseek = generic_file_llseek, |
| }; |
| |
| static ssize_t __maybe_unused |
| altr_edac_a10_device_trig(struct file *file, const char __user *user_buf, |
| size_t count, loff_t *ppos); |
| |
| static const struct file_operations altr_edac_a10_device_inject_fops __maybe_unused = { |
| .open = simple_open, |
| .write = altr_edac_a10_device_trig, |
| .llseek = generic_file_llseek, |
| }; |
| |
| static ssize_t __maybe_unused |
| altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf, |
| size_t count, loff_t *ppos); |
| |
| static const struct file_operations altr_edac_a10_device_inject2_fops __maybe_unused = { |
| .open = simple_open, |
| .write = altr_edac_a10_device_trig2, |
| .llseek = generic_file_llseek, |
| }; |
| |
| static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci, |
| const struct edac_device_prv_data *priv) |
| { |
| struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; |
| |
| if (!IS_ENABLED(CONFIG_EDAC_DEBUG)) |
| return; |
| |
| drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name); |
| if (!drvdata->debugfs_dir) |
| return; |
| |
| if (!edac_debugfs_create_file("altr_trigger", S_IWUSR, |
| drvdata->debugfs_dir, edac_dci, |
| priv->inject_fops)) |
| debugfs_remove_recursive(drvdata->debugfs_dir); |
| } |
| |
| static const struct of_device_id altr_edac_device_of_match[] = { |
| #ifdef CONFIG_EDAC_ALTERA_L2C |
| { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data }, |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_OCRAM |
| { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data }, |
| #endif |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, altr_edac_device_of_match); |
| |
| /* |
| * altr_edac_device_probe() |
| * This is a generic EDAC device driver that will support |
| * various Altera memory devices such as the L2 cache ECC and |
| * OCRAM ECC as well as the memories for other peripherals. |
| * Module specific initialization is done by passing the |
| * function index in the device tree. |
| */ |
| static int altr_edac_device_probe(struct platform_device *pdev) |
| { |
| struct edac_device_ctl_info *dci; |
| struct altr_edac_device_dev *drvdata; |
| struct resource *r; |
| int res = 0; |
| struct device_node *np = pdev->dev.of_node; |
| char *ecc_name = (char *)np->name; |
| static int dev_instance; |
| |
| if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "Unable to open devm\n"); |
| return -ENOMEM; |
| } |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!r) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "Unable to get mem resource\n"); |
| res = -ENODEV; |
| goto fail; |
| } |
| |
| if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r), |
| dev_name(&pdev->dev))) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "%s:Error requesting mem region\n", ecc_name); |
| res = -EBUSY; |
| goto fail; |
| } |
| |
| dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name, |
| 1, ecc_name, 1, 0, dev_instance++); |
| |
| if (!dci) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "%s: Unable to allocate EDAC device\n", ecc_name); |
| res = -ENOMEM; |
| goto fail; |
| } |
| |
| drvdata = dci->pvt_info; |
| dci->dev = &pdev->dev; |
| platform_set_drvdata(pdev, dci); |
| drvdata->edac_dev_name = ecc_name; |
| |
| drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r)); |
| if (!drvdata->base) { |
| res = -ENOMEM; |
| goto fail1; |
| } |
| |
| /* Get driver specific data for this EDAC device */ |
| drvdata->data = of_match_node(altr_edac_device_of_match, np)->data; |
| |
| /* Check specific dependencies for the module */ |
| if (drvdata->data->setup) { |
| res = drvdata->data->setup(drvdata); |
| if (res) |
| goto fail1; |
| } |
| |
| drvdata->sb_irq = platform_get_irq(pdev, 0); |
| res = devm_request_irq(&pdev->dev, drvdata->sb_irq, |
| altr_edac_device_handler, |
| 0, dev_name(&pdev->dev), dci); |
| if (res) |
| goto fail1; |
| |
| drvdata->db_irq = platform_get_irq(pdev, 1); |
| res = devm_request_irq(&pdev->dev, drvdata->db_irq, |
| altr_edac_device_handler, |
| 0, dev_name(&pdev->dev), dci); |
| if (res) |
| goto fail1; |
| |
| dci->mod_name = "Altera ECC Manager"; |
| dci->dev_name = drvdata->edac_dev_name; |
| |
| res = edac_device_add_device(dci); |
| if (res) |
| goto fail1; |
| |
| altr_create_edacdev_dbgfs(dci, drvdata->data); |
| |
| devres_close_group(&pdev->dev, NULL); |
| |
| return 0; |
| |
| fail1: |
| edac_device_free_ctl_info(dci); |
| fail: |
| devres_release_group(&pdev->dev, NULL); |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "%s:Error setting up EDAC device: %d\n", ecc_name, res); |
| |
| return res; |
| } |
| |
| static void altr_edac_device_remove(struct platform_device *pdev) |
| { |
| struct edac_device_ctl_info *dci = platform_get_drvdata(pdev); |
| struct altr_edac_device_dev *drvdata = dci->pvt_info; |
| |
| debugfs_remove_recursive(drvdata->debugfs_dir); |
| edac_device_del_device(&pdev->dev); |
| edac_device_free_ctl_info(dci); |
| } |
| |
| static struct platform_driver altr_edac_device_driver = { |
| .probe = altr_edac_device_probe, |
| .remove_new = altr_edac_device_remove, |
| .driver = { |
| .name = "altr_edac_device", |
| .of_match_table = altr_edac_device_of_match, |
| }, |
| }; |
| module_platform_driver(altr_edac_device_driver); |
| |
| /******************* Arria10 Device ECC Shared Functions *****************/ |
| |
| /* |
| * Test for memory's ECC dependencies upon entry because platform specific |
| * startup should have initialized the memory and enabled the ECC. |
| * Can't turn on ECC here because accessing un-initialized memory will |
| * cause CE/UE errors possibly causing an ABORT. |
| */ |
| static int __maybe_unused |
| altr_check_ecc_deps(struct altr_edac_device_dev *device) |
| { |
| void __iomem *base = device->base; |
| const struct edac_device_prv_data *prv = device->data; |
| |
| if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask) |
| return 0; |
| |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "%s: No ECC present or ECC disabled.\n", |
| device->edac_dev_name); |
| return -ENODEV; |
| } |
| |
| static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id) |
| { |
| struct altr_edac_device_dev *dci = dev_id; |
| void __iomem *base = dci->base; |
| |
| if (irq == dci->sb_irq) { |
| writel(ALTR_A10_ECC_SERRPENA, |
| base + ALTR_A10_ECC_INTSTAT_OFST); |
| edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); |
| |
| return IRQ_HANDLED; |
| } else if (irq == dci->db_irq) { |
| writel(ALTR_A10_ECC_DERRPENA, |
| base + ALTR_A10_ECC_INTSTAT_OFST); |
| edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); |
| if (dci->data->panic) |
| panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); |
| |
| return IRQ_HANDLED; |
| } |
| |
| WARN_ON(1); |
| |
| return IRQ_NONE; |
| } |
| |
| /******************* Arria10 Memory Buffer Functions *********************/ |
| |
| static inline int a10_get_irq_mask(struct device_node *np) |
| { |
| int irq; |
| const u32 *handle = of_get_property(np, "interrupts", NULL); |
| |
| if (!handle) |
| return -ENODEV; |
| irq = be32_to_cpup(handle); |
| return irq; |
| } |
| |
| static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr) |
| { |
| u32 value = readl(ioaddr); |
| |
| value |= bit_mask; |
| writel(value, ioaddr); |
| } |
| |
| static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr) |
| { |
| u32 value = readl(ioaddr); |
| |
| value &= ~bit_mask; |
| writel(value, ioaddr); |
| } |
| |
| static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr) |
| { |
| u32 value = readl(ioaddr); |
| |
| return (value & bit_mask) ? 1 : 0; |
| } |
| |
| /* |
| * This function uses the memory initialization block in the Arria10 ECC |
| * controller to initialize/clear the entire memory data and ECC data. |
| */ |
| static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port) |
| { |
| int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US; |
| u32 init_mask, stat_mask, clear_mask; |
| int ret = 0; |
| |
| if (port) { |
| init_mask = ALTR_A10_ECC_INITB; |
| stat_mask = ALTR_A10_ECC_INITCOMPLETEB; |
| clear_mask = ALTR_A10_ECC_ERRPENB_MASK; |
| } else { |
| init_mask = ALTR_A10_ECC_INITA; |
| stat_mask = ALTR_A10_ECC_INITCOMPLETEA; |
| clear_mask = ALTR_A10_ECC_ERRPENA_MASK; |
| } |
| |
| ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST)); |
| while (limit--) { |
| if (ecc_test_bits(stat_mask, |
| (ioaddr + ALTR_A10_ECC_INITSTAT_OFST))) |
| break; |
| udelay(1); |
| } |
| if (limit < 0) |
| ret = -EBUSY; |
| |
| /* Clear any pending ECC interrupts */ |
| writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST)); |
| |
| return ret; |
| } |
| |
| static __init int __maybe_unused |
| altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask, |
| u32 ecc_ctrl_en_mask, bool dual_port) |
| { |
| int ret = 0; |
| void __iomem *ecc_block_base; |
| struct regmap *ecc_mgr_map; |
| char *ecc_name; |
| struct device_node *np_eccmgr; |
| |
| ecc_name = (char *)np->name; |
| |
| /* Get the ECC Manager - parent of the device EDACs */ |
| np_eccmgr = of_get_parent(np); |
| |
| ecc_mgr_map = |
| altr_sysmgr_regmap_lookup_by_phandle(np_eccmgr, |
| "altr,sysmgr-syscon"); |
| |
| of_node_put(np_eccmgr); |
| if (IS_ERR(ecc_mgr_map)) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "Unable to get syscon altr,sysmgr-syscon\n"); |
| return -ENODEV; |
| } |
| |
| /* Map the ECC Block */ |
| ecc_block_base = of_iomap(np, 0); |
| if (!ecc_block_base) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "Unable to map %s ECC block\n", ecc_name); |
| return -ENODEV; |
| } |
| |
| /* Disable ECC */ |
| regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask); |
| writel(ALTR_A10_ECC_SERRINTEN, |
| (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST)); |
| ecc_clear_bits(ecc_ctrl_en_mask, |
| (ecc_block_base + ALTR_A10_ECC_CTRL_OFST)); |
| /* Ensure all writes complete */ |
| wmb(); |
| /* Use HW initialization block to initialize memory for ECC */ |
| ret = altr_init_memory_port(ecc_block_base, 0); |
| if (ret) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "ECC: cannot init %s PORTA memory\n", ecc_name); |
| goto out; |
| } |
| |
| if (dual_port) { |
| ret = altr_init_memory_port(ecc_block_base, 1); |
| if (ret) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "ECC: cannot init %s PORTB memory\n", |
| ecc_name); |
| goto out; |
| } |
| } |
| |
| /* Interrupt mode set to every SBERR */ |
| regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST, |
| ALTR_A10_ECC_INTMODE); |
| /* Enable ECC */ |
| ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base + |
| ALTR_A10_ECC_CTRL_OFST)); |
| writel(ALTR_A10_ECC_SERRINTEN, |
| (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST)); |
| regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask); |
| /* Ensure all writes complete */ |
| wmb(); |
| out: |
| iounmap(ecc_block_base); |
| return ret; |
| } |
| |
| static int validate_parent_available(struct device_node *np); |
| static const struct of_device_id altr_edac_a10_device_of_match[]; |
| static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat) |
| { |
| int irq; |
| struct device_node *child, *np; |
| |
| np = of_find_compatible_node(NULL, NULL, |
| "altr,socfpga-a10-ecc-manager"); |
| if (!np) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n"); |
| return -ENODEV; |
| } |
| |
| for_each_child_of_node(np, child) { |
| const struct of_device_id *pdev_id; |
| const struct edac_device_prv_data *prv; |
| |
| if (!of_device_is_available(child)) |
| continue; |
| if (!of_device_is_compatible(child, compat)) |
| continue; |
| |
| if (validate_parent_available(child)) |
| continue; |
| |
| irq = a10_get_irq_mask(child); |
| if (irq < 0) |
| continue; |
| |
| /* Get matching node and check for valid result */ |
| pdev_id = of_match_node(altr_edac_a10_device_of_match, child); |
| if (IS_ERR_OR_NULL(pdev_id)) |
| continue; |
| |
| /* Validate private data pointer before dereferencing */ |
| prv = pdev_id->data; |
| if (!prv) |
| continue; |
| |
| altr_init_a10_ecc_block(child, BIT(irq), |
| prv->ecc_enable_mask, 0); |
| } |
| |
| of_node_put(np); |
| return 0; |
| } |
| |
| /*********************** SDRAM EDAC Device Functions *********************/ |
| |
| #ifdef CONFIG_EDAC_ALTERA_SDRAM |
| |
| /* |
| * A legacy U-Boot bug only enabled memory mapped access to the ECC Enable |
| * register if ECC is enabled. Linux checks the ECC Enable register to |
| * determine ECC status. |
| * Use an SMC call (which always works) to determine ECC enablement. |
| */ |
| static int altr_s10_sdram_check_ecc_deps(struct altr_edac_device_dev *device) |
| { |
| const struct edac_device_prv_data *prv = device->data; |
| unsigned long sdram_ecc_addr; |
| struct arm_smccc_res result; |
| struct device_node *np; |
| phys_addr_t sdram_addr; |
| u32 read_reg; |
| int ret; |
| |
| np = of_find_compatible_node(NULL, NULL, "altr,sdr-ctl"); |
| if (!np) |
| goto sdram_err; |
| |
| sdram_addr = of_translate_address(np, of_get_address(np, 0, |
| NULL, NULL)); |
| of_node_put(np); |
| sdram_ecc_addr = (unsigned long)sdram_addr + prv->ecc_en_ofst; |
| arm_smccc_smc(INTEL_SIP_SMC_REG_READ, sdram_ecc_addr, |
| 0, 0, 0, 0, 0, 0, &result); |
| read_reg = (unsigned int)result.a1; |
| ret = (int)result.a0; |
| if (!ret && (read_reg & prv->ecc_enable_mask)) |
| return 0; |
| |
| sdram_err: |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "%s: No ECC present or ECC disabled.\n", |
| device->edac_dev_name); |
| return -ENODEV; |
| } |
| |
| static const struct edac_device_prv_data s10_sdramecc_data = { |
| .setup = altr_s10_sdram_check_ecc_deps, |
| .ce_clear_mask = ALTR_S10_ECC_SERRPENA, |
| .ue_clear_mask = ALTR_S10_ECC_DERRPENA, |
| .ecc_enable_mask = ALTR_S10_ECC_EN, |
| .ecc_en_ofst = ALTR_S10_ECC_CTRL_SDRAM_OFST, |
| .ce_set_mask = ALTR_S10_ECC_TSERRA, |
| .ue_set_mask = ALTR_S10_ECC_TDERRA, |
| .set_err_ofst = ALTR_S10_ECC_INTTEST_OFST, |
| .ecc_irq_handler = altr_edac_a10_ecc_irq, |
| .inject_fops = &altr_edac_a10_device_inject_fops, |
| }; |
| #endif /* CONFIG_EDAC_ALTERA_SDRAM */ |
| |
| /*********************** OCRAM EDAC Device Functions *********************/ |
| |
| #ifdef CONFIG_EDAC_ALTERA_OCRAM |
| |
| static void *ocram_alloc_mem(size_t size, void **other) |
| { |
| struct device_node *np; |
| struct gen_pool *gp; |
| void *sram_addr; |
| |
| np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc"); |
| if (!np) |
| return NULL; |
| |
| gp = of_gen_pool_get(np, "iram", 0); |
| of_node_put(np); |
| if (!gp) |
| return NULL; |
| |
| sram_addr = (void *)gen_pool_alloc(gp, size); |
| if (!sram_addr) |
| return NULL; |
| |
| memset(sram_addr, 0, size); |
| /* Ensure data is written out */ |
| wmb(); |
| |
| /* Remember this handle for freeing later */ |
| *other = gp; |
| |
| return sram_addr; |
| } |
| |
| static void ocram_free_mem(void *p, size_t size, void *other) |
| { |
| gen_pool_free((struct gen_pool *)other, (unsigned long)p, size); |
| } |
| |
| static const struct edac_device_prv_data ocramecc_data = { |
| .setup = altr_check_ecc_deps, |
| .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR), |
| .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR), |
| .alloc_mem = ocram_alloc_mem, |
| .free_mem = ocram_free_mem, |
| .ecc_enable_mask = ALTR_OCR_ECC_EN, |
| .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET, |
| .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS), |
| .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD), |
| .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET, |
| .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE, |
| .inject_fops = &altr_edac_device_inject_fops, |
| }; |
| |
| static int __maybe_unused |
| altr_check_ocram_deps_init(struct altr_edac_device_dev *device) |
| { |
| void __iomem *base = device->base; |
| int ret; |
| |
| ret = altr_check_ecc_deps(device); |
| if (ret) |
| return ret; |
| |
| /* Verify OCRAM has been initialized */ |
| if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA, |
| (base + ALTR_A10_ECC_INITSTAT_OFST))) |
| return -ENODEV; |
| |
| /* Enable IRQ on Single Bit Error */ |
| writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST)); |
| /* Ensure all writes complete */ |
| wmb(); |
| |
| return 0; |
| } |
| |
| static const struct edac_device_prv_data a10_ocramecc_data = { |
| .setup = altr_check_ocram_deps_init, |
| .ce_clear_mask = ALTR_A10_ECC_SERRPENA, |
| .ue_clear_mask = ALTR_A10_ECC_DERRPENA, |
| .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM, |
| .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL, |
| .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, |
| .ce_set_mask = ALTR_A10_ECC_TSERRA, |
| .ue_set_mask = ALTR_A10_ECC_TDERRA, |
| .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, |
| .ecc_irq_handler = altr_edac_a10_ecc_irq, |
| .inject_fops = &altr_edac_a10_device_inject2_fops, |
| /* |
| * OCRAM panic on uncorrectable error because sleep/resume |
| * functions and FPGA contents are stored in OCRAM. Prefer |
| * a kernel panic over executing/loading corrupted data. |
| */ |
| .panic = true, |
| }; |
| |
| #endif /* CONFIG_EDAC_ALTERA_OCRAM */ |
| |
| /********************* L2 Cache EDAC Device Functions ********************/ |
| |
| #ifdef CONFIG_EDAC_ALTERA_L2C |
| |
| static void *l2_alloc_mem(size_t size, void **other) |
| { |
| struct device *dev = *other; |
| void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL); |
| |
| if (!ptemp) |
| return NULL; |
| |
| /* Make sure everything is written out */ |
| wmb(); |
| |
| /* |
| * Clean all cache levels up to LoC (includes L2) |
| * This ensures the corrupted data is written into |
| * L2 cache for readback test (which causes ECC error). |
| */ |
| flush_cache_all(); |
| |
| return ptemp; |
| } |
| |
| static void l2_free_mem(void *p, size_t size, void *other) |
| { |
| struct device *dev = other; |
| |
| if (dev && p) |
| devm_kfree(dev, p); |
| } |
| |
| /* |
| * altr_l2_check_deps() |
| * Test for L2 cache ECC dependencies upon entry because |
| * platform specific startup should have initialized the L2 |
| * memory and enabled the ECC. |
| * Bail if ECC is not enabled. |
| * Note that L2 Cache Enable is forced at build time. |
| */ |
| static int altr_l2_check_deps(struct altr_edac_device_dev *device) |
| { |
| void __iomem *base = device->base; |
| const struct edac_device_prv_data *prv = device->data; |
| |
| if ((readl(base) & prv->ecc_enable_mask) == |
| prv->ecc_enable_mask) |
| return 0; |
| |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "L2: No ECC present, or ECC disabled\n"); |
| return -ENODEV; |
| } |
| |
| static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id) |
| { |
| struct altr_edac_device_dev *dci = dev_id; |
| |
| if (irq == dci->sb_irq) { |
| regmap_write(dci->edac->ecc_mgr_map, |
| A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, |
| A10_SYSGMR_MPU_CLEAR_L2_ECC_SB); |
| edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name); |
| |
| return IRQ_HANDLED; |
| } else if (irq == dci->db_irq) { |
| regmap_write(dci->edac->ecc_mgr_map, |
| A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST, |
| A10_SYSGMR_MPU_CLEAR_L2_ECC_MB); |
| edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name); |
| panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n"); |
| |
| return IRQ_HANDLED; |
| } |
| |
| WARN_ON(1); |
| |
| return IRQ_NONE; |
| } |
| |
| static const struct edac_device_prv_data l2ecc_data = { |
| .setup = altr_l2_check_deps, |
| .ce_clear_mask = 0, |
| .ue_clear_mask = 0, |
| .alloc_mem = l2_alloc_mem, |
| .free_mem = l2_free_mem, |
| .ecc_enable_mask = ALTR_L2_ECC_EN, |
| .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS), |
| .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD), |
| .set_err_ofst = ALTR_L2_ECC_REG_OFFSET, |
| .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, |
| .inject_fops = &altr_edac_device_inject_fops, |
| }; |
| |
| static const struct edac_device_prv_data a10_l2ecc_data = { |
| .setup = altr_l2_check_deps, |
| .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR, |
| .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR, |
| .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2, |
| .alloc_mem = l2_alloc_mem, |
| .free_mem = l2_free_mem, |
| .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL, |
| .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK, |
| .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK, |
| .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST, |
| .ecc_irq_handler = altr_edac_a10_l2_irq, |
| .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE, |
| .inject_fops = &altr_edac_device_inject_fops, |
| }; |
| |
| #endif /* CONFIG_EDAC_ALTERA_L2C */ |
| |
| /********************* Ethernet Device Functions ********************/ |
| |
| #ifdef CONFIG_EDAC_ALTERA_ETHERNET |
| |
| static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev) |
| { |
| int ret; |
| |
| ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc"); |
| if (ret) |
| return ret; |
| |
| return altr_check_ecc_deps(dev); |
| } |
| |
| static const struct edac_device_prv_data a10_enetecc_data = { |
| .setup = socfpga_init_ethernet_ecc, |
| .ce_clear_mask = ALTR_A10_ECC_SERRPENA, |
| .ue_clear_mask = ALTR_A10_ECC_DERRPENA, |
| .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, |
| .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, |
| .ce_set_mask = ALTR_A10_ECC_TSERRA, |
| .ue_set_mask = ALTR_A10_ECC_TDERRA, |
| .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, |
| .ecc_irq_handler = altr_edac_a10_ecc_irq, |
| .inject_fops = &altr_edac_a10_device_inject2_fops, |
| }; |
| |
| #endif /* CONFIG_EDAC_ALTERA_ETHERNET */ |
| |
| /********************** NAND Device Functions **********************/ |
| |
| #ifdef CONFIG_EDAC_ALTERA_NAND |
| |
| static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device) |
| { |
| int ret; |
| |
| ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc"); |
| if (ret) |
| return ret; |
| |
| return altr_check_ecc_deps(device); |
| } |
| |
| static const struct edac_device_prv_data a10_nandecc_data = { |
| .setup = socfpga_init_nand_ecc, |
| .ce_clear_mask = ALTR_A10_ECC_SERRPENA, |
| .ue_clear_mask = ALTR_A10_ECC_DERRPENA, |
| .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, |
| .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, |
| .ce_set_mask = ALTR_A10_ECC_TSERRA, |
| .ue_set_mask = ALTR_A10_ECC_TDERRA, |
| .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, |
| .ecc_irq_handler = altr_edac_a10_ecc_irq, |
| .inject_fops = &altr_edac_a10_device_inject_fops, |
| }; |
| |
| #endif /* CONFIG_EDAC_ALTERA_NAND */ |
| |
| /********************** DMA Device Functions **********************/ |
| |
| #ifdef CONFIG_EDAC_ALTERA_DMA |
| |
| static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device) |
| { |
| int ret; |
| |
| ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc"); |
| if (ret) |
| return ret; |
| |
| return altr_check_ecc_deps(device); |
| } |
| |
| static const struct edac_device_prv_data a10_dmaecc_data = { |
| .setup = socfpga_init_dma_ecc, |
| .ce_clear_mask = ALTR_A10_ECC_SERRPENA, |
| .ue_clear_mask = ALTR_A10_ECC_DERRPENA, |
| .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, |
| .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, |
| .ce_set_mask = ALTR_A10_ECC_TSERRA, |
| .ue_set_mask = ALTR_A10_ECC_TDERRA, |
| .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, |
| .ecc_irq_handler = altr_edac_a10_ecc_irq, |
| .inject_fops = &altr_edac_a10_device_inject_fops, |
| }; |
| |
| #endif /* CONFIG_EDAC_ALTERA_DMA */ |
| |
| /********************** USB Device Functions **********************/ |
| |
| #ifdef CONFIG_EDAC_ALTERA_USB |
| |
| static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device) |
| { |
| int ret; |
| |
| ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc"); |
| if (ret) |
| return ret; |
| |
| return altr_check_ecc_deps(device); |
| } |
| |
| static const struct edac_device_prv_data a10_usbecc_data = { |
| .setup = socfpga_init_usb_ecc, |
| .ce_clear_mask = ALTR_A10_ECC_SERRPENA, |
| .ue_clear_mask = ALTR_A10_ECC_DERRPENA, |
| .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, |
| .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, |
| .ce_set_mask = ALTR_A10_ECC_TSERRA, |
| .ue_set_mask = ALTR_A10_ECC_TDERRA, |
| .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, |
| .ecc_irq_handler = altr_edac_a10_ecc_irq, |
| .inject_fops = &altr_edac_a10_device_inject2_fops, |
| }; |
| |
| #endif /* CONFIG_EDAC_ALTERA_USB */ |
| |
| /********************** QSPI Device Functions **********************/ |
| |
| #ifdef CONFIG_EDAC_ALTERA_QSPI |
| |
| static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device) |
| { |
| int ret; |
| |
| ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc"); |
| if (ret) |
| return ret; |
| |
| return altr_check_ecc_deps(device); |
| } |
| |
| static const struct edac_device_prv_data a10_qspiecc_data = { |
| .setup = socfpga_init_qspi_ecc, |
| .ce_clear_mask = ALTR_A10_ECC_SERRPENA, |
| .ue_clear_mask = ALTR_A10_ECC_DERRPENA, |
| .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, |
| .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, |
| .ce_set_mask = ALTR_A10_ECC_TSERRA, |
| .ue_set_mask = ALTR_A10_ECC_TDERRA, |
| .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, |
| .ecc_irq_handler = altr_edac_a10_ecc_irq, |
| .inject_fops = &altr_edac_a10_device_inject_fops, |
| }; |
| |
| #endif /* CONFIG_EDAC_ALTERA_QSPI */ |
| |
| /********************* SDMMC Device Functions **********************/ |
| |
| #ifdef CONFIG_EDAC_ALTERA_SDMMC |
| |
| static const struct edac_device_prv_data a10_sdmmceccb_data; |
| static int altr_portb_setup(struct altr_edac_device_dev *device) |
| { |
| struct edac_device_ctl_info *dci; |
| struct altr_edac_device_dev *altdev; |
| char *ecc_name = "sdmmcb-ecc"; |
| int edac_idx, rc; |
| struct device_node *np; |
| const struct edac_device_prv_data *prv = &a10_sdmmceccb_data; |
| |
| rc = altr_check_ecc_deps(device); |
| if (rc) |
| return rc; |
| |
| np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); |
| if (!np) { |
| edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n"); |
| return -ENODEV; |
| } |
| |
| /* Create the PortB EDAC device */ |
| edac_idx = edac_device_alloc_index(); |
| dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1, |
| ecc_name, 1, 0, edac_idx); |
| if (!dci) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "%s: Unable to allocate PortB EDAC device\n", |
| ecc_name); |
| return -ENOMEM; |
| } |
| |
| /* Initialize the PortB EDAC device structure from PortA structure */ |
| altdev = dci->pvt_info; |
| *altdev = *device; |
| |
| if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| /* Update PortB specific values */ |
| altdev->edac_dev_name = ecc_name; |
| altdev->edac_idx = edac_idx; |
| altdev->edac_dev = dci; |
| altdev->data = prv; |
| dci->dev = &altdev->ddev; |
| dci->ctl_name = "Altera ECC Manager"; |
| dci->mod_name = ecc_name; |
| dci->dev_name = ecc_name; |
| |
| /* |
| * Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly |
| * |
| * FIXME: Instead of ifdefs with different architectures the driver |
| * should properly use compatibles. |
| */ |
| #ifdef CONFIG_64BIT |
| altdev->sb_irq = irq_of_parse_and_map(np, 1); |
| #else |
| altdev->sb_irq = irq_of_parse_and_map(np, 2); |
| #endif |
| if (!altdev->sb_irq) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n"); |
| rc = -ENODEV; |
| goto err_release_group_1; |
| } |
| rc = devm_request_irq(&altdev->ddev, altdev->sb_irq, |
| prv->ecc_irq_handler, |
| IRQF_ONESHOT | IRQF_TRIGGER_HIGH, |
| ecc_name, altdev); |
| if (rc) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n"); |
| goto err_release_group_1; |
| } |
| |
| #ifdef CONFIG_64BIT |
| /* Use IRQ to determine SError origin instead of assigning IRQ */ |
| rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq); |
| if (rc) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "Error PortB DBIRQ alloc\n"); |
| goto err_release_group_1; |
| } |
| #else |
| altdev->db_irq = irq_of_parse_and_map(np, 3); |
| if (!altdev->db_irq) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n"); |
| rc = -ENODEV; |
| goto err_release_group_1; |
| } |
| rc = devm_request_irq(&altdev->ddev, altdev->db_irq, |
| prv->ecc_irq_handler, |
| IRQF_ONESHOT | IRQF_TRIGGER_HIGH, |
| ecc_name, altdev); |
| if (rc) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n"); |
| goto err_release_group_1; |
| } |
| #endif |
| |
| rc = edac_device_add_device(dci); |
| if (rc) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "edac_device_add_device portB failed\n"); |
| rc = -ENOMEM; |
| goto err_release_group_1; |
| } |
| altr_create_edacdev_dbgfs(dci, prv); |
| |
| list_add(&altdev->next, &altdev->edac->a10_ecc_devices); |
| |
| devres_remove_group(&altdev->ddev, altr_portb_setup); |
| |
| return 0; |
| |
| err_release_group_1: |
| edac_device_free_ctl_info(dci); |
| devres_release_group(&altdev->ddev, altr_portb_setup); |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "%s:Error setting up EDAC device: %d\n", ecc_name, rc); |
| return rc; |
| } |
| |
| static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device) |
| { |
| int rc = -ENODEV; |
| struct device_node *child; |
| |
| child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc"); |
| if (!child) |
| return -ENODEV; |
| |
| if (!of_device_is_available(child)) |
| goto exit; |
| |
| if (validate_parent_available(child)) |
| goto exit; |
| |
| /* Init portB */ |
| rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK, |
| a10_sdmmceccb_data.ecc_enable_mask, 1); |
| if (rc) |
| goto exit; |
| |
| /* Setup portB */ |
| return altr_portb_setup(device); |
| |
| exit: |
| of_node_put(child); |
| return rc; |
| } |
| |
| static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id) |
| { |
| struct altr_edac_device_dev *ad = dev_id; |
| void __iomem *base = ad->base; |
| const struct edac_device_prv_data *priv = ad->data; |
| |
| if (irq == ad->sb_irq) { |
| writel(priv->ce_clear_mask, |
| base + ALTR_A10_ECC_INTSTAT_OFST); |
| edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name); |
| return IRQ_HANDLED; |
| } else if (irq == ad->db_irq) { |
| writel(priv->ue_clear_mask, |
| base + ALTR_A10_ECC_INTSTAT_OFST); |
| edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name); |
| return IRQ_HANDLED; |
| } |
| |
| WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq); |
| |
| return IRQ_NONE; |
| } |
| |
| static const struct edac_device_prv_data a10_sdmmcecca_data = { |
| .setup = socfpga_init_sdmmc_ecc, |
| .ce_clear_mask = ALTR_A10_ECC_SERRPENA, |
| .ue_clear_mask = ALTR_A10_ECC_DERRPENA, |
| .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, |
| .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, |
| .ce_set_mask = ALTR_A10_ECC_SERRPENA, |
| .ue_set_mask = ALTR_A10_ECC_DERRPENA, |
| .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, |
| .ecc_irq_handler = altr_edac_a10_ecc_irq, |
| .inject_fops = &altr_edac_a10_device_inject_fops, |
| }; |
| |
| static const struct edac_device_prv_data a10_sdmmceccb_data = { |
| .setup = socfpga_init_sdmmc_ecc, |
| .ce_clear_mask = ALTR_A10_ECC_SERRPENB, |
| .ue_clear_mask = ALTR_A10_ECC_DERRPENB, |
| .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL, |
| .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST, |
| .ce_set_mask = ALTR_A10_ECC_TSERRB, |
| .ue_set_mask = ALTR_A10_ECC_TDERRB, |
| .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST, |
| .ecc_irq_handler = altr_edac_a10_ecc_irq_portb, |
| .inject_fops = &altr_edac_a10_device_inject_fops, |
| }; |
| |
| #endif /* CONFIG_EDAC_ALTERA_SDMMC */ |
| |
| /********************* Arria10 EDAC Device Functions *************************/ |
| static const struct of_device_id altr_edac_a10_device_of_match[] = { |
| #ifdef CONFIG_EDAC_ALTERA_L2C |
| { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data }, |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_OCRAM |
| { .compatible = "altr,socfpga-a10-ocram-ecc", |
| .data = &a10_ocramecc_data }, |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_ETHERNET |
| { .compatible = "altr,socfpga-eth-mac-ecc", |
| .data = &a10_enetecc_data }, |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_NAND |
| { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data }, |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_DMA |
| { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data }, |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_USB |
| { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data }, |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_QSPI |
| { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data }, |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_SDMMC |
| { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data }, |
| #endif |
| #ifdef CONFIG_EDAC_ALTERA_SDRAM |
| { .compatible = "altr,sdram-edac-s10", .data = &s10_sdramecc_data }, |
| #endif |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match); |
| |
| /* |
| * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5 |
| * because 2 IRQs are shared among the all ECC peripherals. The ECC |
| * manager manages the IRQs and the children. |
| * Based on xgene_edac.c peripheral code. |
| */ |
| |
| static ssize_t __maybe_unused |
| altr_edac_a10_device_trig(struct file *file, const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct edac_device_ctl_info *edac_dci = file->private_data; |
| struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; |
| const struct edac_device_prv_data *priv = drvdata->data; |
| void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); |
| unsigned long flags; |
| u8 trig_type; |
| |
| if (!user_buf || get_user(trig_type, user_buf)) |
| return -EFAULT; |
| |
| local_irq_save(flags); |
| if (trig_type == ALTR_UE_TRIGGER_CHAR) |
| writel(priv->ue_set_mask, set_addr); |
| else |
| writel(priv->ce_set_mask, set_addr); |
| |
| /* Ensure the interrupt test bits are set */ |
| wmb(); |
| local_irq_restore(flags); |
| |
| return count; |
| } |
| |
| /* |
| * The Stratix10 EDAC Error Injection Functions differ from Arria10 |
| * slightly. A few Arria10 peripherals can use this injection function. |
| * Inject the error into the memory and then readback to trigger the IRQ. |
| */ |
| static ssize_t __maybe_unused |
| altr_edac_a10_device_trig2(struct file *file, const char __user *user_buf, |
| size_t count, loff_t *ppos) |
| { |
| struct edac_device_ctl_info *edac_dci = file->private_data; |
| struct altr_edac_device_dev *drvdata = edac_dci->pvt_info; |
| const struct edac_device_prv_data *priv = drvdata->data; |
| void __iomem *set_addr = (drvdata->base + priv->set_err_ofst); |
| unsigned long flags; |
| u8 trig_type; |
| |
| if (!user_buf || get_user(trig_type, user_buf)) |
| return -EFAULT; |
| |
| local_irq_save(flags); |
| if (trig_type == ALTR_UE_TRIGGER_CHAR) { |
| writel(priv->ue_set_mask, set_addr); |
| } else { |
| /* Setup read/write of 4 bytes */ |
| writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST); |
| /* Setup Address to 0 */ |
| writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST); |
| /* Setup accctrl to read & ecc & data override */ |
| writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); |
| /* Kick it. */ |
| writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); |
| /* Setup write for single bit change */ |
| writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1, |
| drvdata->base + ECC_BLK_WDATA0_OFST); |
| writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST), |
| drvdata->base + ECC_BLK_WDATA1_OFST); |
| writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST), |
| drvdata->base + ECC_BLK_WDATA2_OFST); |
| writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST), |
| drvdata->base + ECC_BLK_WDATA3_OFST); |
| |
| /* Copy Read ECC to Write ECC */ |
| writel(readl(drvdata->base + ECC_BLK_RECC0_OFST), |
| drvdata->base + ECC_BLK_WECC0_OFST); |
| writel(readl(drvdata->base + ECC_BLK_RECC1_OFST), |
| drvdata->base + ECC_BLK_WECC1_OFST); |
| /* Setup accctrl to write & ecc override & data override */ |
| writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); |
| /* Kick it. */ |
| writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); |
| /* Setup accctrl to read & ecc overwrite & data overwrite */ |
| writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST); |
| /* Kick it. */ |
| writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST); |
| } |
| |
| /* Ensure the interrupt test bits are set */ |
| wmb(); |
| local_irq_restore(flags); |
| |
| return count; |
| } |
| |
| static void altr_edac_a10_irq_handler(struct irq_desc *desc) |
| { |
| int dberr, bit, sm_offset, irq_status; |
| struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc); |
| struct irq_chip *chip = irq_desc_get_chip(desc); |
| int irq = irq_desc_get_irq(desc); |
| unsigned long bits; |
| |
| dberr = (irq == edac->db_irq) ? 1 : 0; |
| sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST : |
| A10_SYSMGR_ECC_INTSTAT_SERR_OFST; |
| |
| chained_irq_enter(chip, desc); |
| |
| regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status); |
| |
| bits = irq_status; |
| for_each_set_bit(bit, &bits, 32) |
| generic_handle_domain_irq(edac->domain, dberr * 32 + bit); |
| |
| chained_irq_exit(chip, desc); |
| } |
| |
| static int validate_parent_available(struct device_node *np) |
| { |
| struct device_node *parent; |
| int ret = 0; |
| |
| /* SDRAM must be present for Linux (implied parent) */ |
| if (of_device_is_compatible(np, "altr,sdram-edac-s10")) |
| return 0; |
| |
| /* Ensure parent device is enabled if parent node exists */ |
| parent = of_parse_phandle(np, "altr,ecc-parent", 0); |
| if (parent && !of_device_is_available(parent)) |
| ret = -ENODEV; |
| |
| of_node_put(parent); |
| return ret; |
| } |
| |
| static int get_s10_sdram_edac_resource(struct device_node *np, |
| struct resource *res) |
| { |
| struct device_node *parent; |
| int ret; |
| |
| parent = of_parse_phandle(np, "altr,sdr-syscon", 0); |
| if (!parent) |
| return -ENODEV; |
| |
| ret = of_address_to_resource(parent, 0, res); |
| of_node_put(parent); |
| |
| return ret; |
| } |
| |
| static int altr_edac_a10_device_add(struct altr_arria10_edac *edac, |
| struct device_node *np) |
| { |
| struct edac_device_ctl_info *dci; |
| struct altr_edac_device_dev *altdev; |
| char *ecc_name = (char *)np->name; |
| struct resource res; |
| int edac_idx; |
| int rc = 0; |
| const struct edac_device_prv_data *prv; |
| /* Get matching node and check for valid result */ |
| const struct of_device_id *pdev_id = |
| of_match_node(altr_edac_a10_device_of_match, np); |
| if (IS_ERR_OR_NULL(pdev_id)) |
| return -ENODEV; |
| |
| /* Get driver specific data for this EDAC device */ |
| prv = pdev_id->data; |
| if (IS_ERR_OR_NULL(prv)) |
| return -ENODEV; |
| |
| if (validate_parent_available(np)) |
| return -ENODEV; |
| |
| if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| if (of_device_is_compatible(np, "altr,sdram-edac-s10")) |
| rc = get_s10_sdram_edac_resource(np, &res); |
| else |
| rc = of_address_to_resource(np, 0, &res); |
| |
| if (rc < 0) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "%s: no resource address\n", ecc_name); |
| goto err_release_group; |
| } |
| |
| edac_idx = edac_device_alloc_index(); |
| dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, |
| 1, ecc_name, 1, 0, edac_idx); |
| |
| if (!dci) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "%s: Unable to allocate EDAC device\n", ecc_name); |
| rc = -ENOMEM; |
| goto err_release_group; |
| } |
| |
| altdev = dci->pvt_info; |
| dci->dev = edac->dev; |
| altdev->edac_dev_name = ecc_name; |
| altdev->edac_idx = edac_idx; |
| altdev->edac = edac; |
| altdev->edac_dev = dci; |
| altdev->data = prv; |
| altdev->ddev = *edac->dev; |
| dci->dev = &altdev->ddev; |
| dci->ctl_name = "Altera ECC Manager"; |
| dci->mod_name = ecc_name; |
| dci->dev_name = ecc_name; |
| |
| altdev->base = devm_ioremap_resource(edac->dev, &res); |
| if (IS_ERR(altdev->base)) { |
| rc = PTR_ERR(altdev->base); |
| goto err_release_group1; |
| } |
| |
| /* Check specific dependencies for the module */ |
| if (altdev->data->setup) { |
| rc = altdev->data->setup(altdev); |
| if (rc) |
| goto err_release_group1; |
| } |
| |
| altdev->sb_irq = irq_of_parse_and_map(np, 0); |
| if (!altdev->sb_irq) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n"); |
| rc = -ENODEV; |
| goto err_release_group1; |
| } |
| rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler, |
| IRQF_ONESHOT | IRQF_TRIGGER_HIGH, |
| ecc_name, altdev); |
| if (rc) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n"); |
| goto err_release_group1; |
| } |
| |
| #ifdef CONFIG_64BIT |
| /* Use IRQ to determine SError origin instead of assigning IRQ */ |
| rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq); |
| if (rc) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "Unable to parse DB IRQ index\n"); |
| goto err_release_group1; |
| } |
| #else |
| altdev->db_irq = irq_of_parse_and_map(np, 1); |
| if (!altdev->db_irq) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n"); |
| rc = -ENODEV; |
| goto err_release_group1; |
| } |
| rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler, |
| IRQF_ONESHOT | IRQF_TRIGGER_HIGH, |
| ecc_name, altdev); |
| if (rc) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n"); |
| goto err_release_group1; |
| } |
| #endif |
| |
| rc = edac_device_add_device(dci); |
| if (rc) { |
| dev_err(edac->dev, "edac_device_add_device failed\n"); |
| rc = -ENOMEM; |
| goto err_release_group1; |
| } |
| |
| altr_create_edacdev_dbgfs(dci, prv); |
| |
| list_add(&altdev->next, &edac->a10_ecc_devices); |
| |
| devres_remove_group(edac->dev, altr_edac_a10_device_add); |
| |
| return 0; |
| |
| err_release_group1: |
| edac_device_free_ctl_info(dci); |
| err_release_group: |
| devres_release_group(edac->dev, NULL); |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "%s:Error setting up EDAC device: %d\n", ecc_name, rc); |
| |
| return rc; |
| } |
| |
| static void a10_eccmgr_irq_mask(struct irq_data *d) |
| { |
| struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); |
| |
| regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, |
| BIT(d->hwirq)); |
| } |
| |
| static void a10_eccmgr_irq_unmask(struct irq_data *d) |
| { |
| struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d); |
| |
| regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, |
| BIT(d->hwirq)); |
| } |
| |
| static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq, |
| irq_hw_number_t hwirq) |
| { |
| struct altr_arria10_edac *edac = d->host_data; |
| |
| irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq); |
| irq_set_chip_data(irq, edac); |
| irq_set_noprobe(irq); |
| |
| return 0; |
| } |
| |
| static const struct irq_domain_ops a10_eccmgr_ic_ops = { |
| .map = a10_eccmgr_irqdomain_map, |
| .xlate = irq_domain_xlate_twocell, |
| }; |
| |
| /************** Stratix 10 EDAC Double Bit Error Handler ************/ |
| #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m) |
| |
| #ifdef CONFIG_64BIT |
| /* panic routine issues reboot on non-zero panic_timeout */ |
| extern int panic_timeout; |
| |
| /* |
| * The double bit error is handled through SError which is fatal. This is |
| * called as a panic notifier to printout ECC error info as part of the panic. |
| */ |
| static int s10_edac_dberr_handler(struct notifier_block *this, |
| unsigned long event, void *ptr) |
| { |
| struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier); |
| int err_addr, dberror; |
| |
| regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST, |
| &dberror); |
| regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror); |
| if (dberror & S10_DBE_IRQ_MASK) { |
| struct list_head *position; |
| struct altr_edac_device_dev *ed; |
| struct arm_smccc_res result; |
| |
| /* Find the matching DBE in the list of devices */ |
| list_for_each(position, &edac->a10_ecc_devices) { |
| ed = list_entry(position, struct altr_edac_device_dev, |
| next); |
| if (!(BIT(ed->db_irq) & dberror)) |
| continue; |
| |
| writel(ALTR_A10_ECC_DERRPENA, |
| ed->base + ALTR_A10_ECC_INTSTAT_OFST); |
| err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST); |
| regmap_write(edac->ecc_mgr_map, |
| S10_SYSMGR_UE_ADDR_OFST, err_addr); |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "EDAC: [Fatal DBE on %s @ 0x%08X]\n", |
| ed->edac_dev_name, err_addr); |
| break; |
| } |
| /* Notify the System through SMC. Reboot delay = 1 second */ |
| panic_timeout = 1; |
| arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0, |
| 0, 0, &result); |
| } |
| |
| return NOTIFY_DONE; |
| } |
| #endif |
| |
| /****************** Arria 10 EDAC Probe Function *********************/ |
| static int altr_edac_a10_probe(struct platform_device *pdev) |
| { |
| struct altr_arria10_edac *edac; |
| struct device_node *child; |
| |
| edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL); |
| if (!edac) |
| return -ENOMEM; |
| |
| edac->dev = &pdev->dev; |
| platform_set_drvdata(pdev, edac); |
| INIT_LIST_HEAD(&edac->a10_ecc_devices); |
| |
| edac->ecc_mgr_map = |
| altr_sysmgr_regmap_lookup_by_phandle(pdev->dev.of_node, |
| "altr,sysmgr-syscon"); |
| |
| if (IS_ERR(edac->ecc_mgr_map)) { |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "Unable to get syscon altr,sysmgr-syscon\n"); |
| return PTR_ERR(edac->ecc_mgr_map); |
| } |
| |
| edac->irq_chip.name = pdev->dev.of_node->name; |
| edac->irq_chip.irq_mask = a10_eccmgr_irq_mask; |
| edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask; |
| edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64, |
| &a10_eccmgr_ic_ops, edac); |
| if (!edac->domain) { |
| dev_err(&pdev->dev, "Error adding IRQ domain\n"); |
| return -ENOMEM; |
| } |
| |
| edac->sb_irq = platform_get_irq(pdev, 0); |
| if (edac->sb_irq < 0) |
| return edac->sb_irq; |
| |
| irq_set_chained_handler_and_data(edac->sb_irq, |
| altr_edac_a10_irq_handler, |
| edac); |
| |
| #ifdef CONFIG_64BIT |
| { |
| int dberror, err_addr; |
| |
| edac->panic_notifier.notifier_call = s10_edac_dberr_handler; |
| atomic_notifier_chain_register(&panic_notifier_list, |
| &edac->panic_notifier); |
| |
| /* Printout a message if uncorrectable error previously. */ |
| regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, |
| &dberror); |
| if (dberror) { |
| regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST, |
| &err_addr); |
| edac_printk(KERN_ERR, EDAC_DEVICE, |
| "Previous Boot UE detected[0x%X] @ 0x%X\n", |
| dberror, err_addr); |
| /* Reset the sticky registers */ |
| regmap_write(edac->ecc_mgr_map, |
| S10_SYSMGR_UE_VAL_OFST, 0); |
| regmap_write(edac->ecc_mgr_map, |
| S10_SYSMGR_UE_ADDR_OFST, 0); |
| } |
| } |
| #else |
| edac->db_irq = platform_get_irq(pdev, 1); |
| if (edac->db_irq < 0) |
| return edac->db_irq; |
| |
| irq_set_chained_handler_and_data(edac->db_irq, |
| altr_edac_a10_irq_handler, edac); |
| #endif |
| |
| for_each_child_of_node(pdev->dev.of_node, child) { |
| if (!of_device_is_available(child)) |
| continue; |
| |
| if (of_match_node(altr_edac_a10_device_of_match, child)) |
| altr_edac_a10_device_add(edac, child); |
| |
| #ifdef CONFIG_EDAC_ALTERA_SDRAM |
| else if (of_device_is_compatible(child, "altr,sdram-edac-a10")) |
| of_platform_populate(pdev->dev.of_node, |
| altr_sdram_ctrl_of_match, |
| NULL, &pdev->dev); |
| #endif |
| } |
| |
| return 0; |
| } |
| |
| static const struct of_device_id altr_edac_a10_of_match[] = { |
| { .compatible = "altr,socfpga-a10-ecc-manager" }, |
| { .compatible = "altr,socfpga-s10-ecc-manager" }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match); |
| |
| static struct platform_driver altr_edac_a10_driver = { |
| .probe = altr_edac_a10_probe, |
| .driver = { |
| .name = "socfpga_a10_ecc_manager", |
| .of_match_table = altr_edac_a10_of_match, |
| }, |
| }; |
| module_platform_driver(altr_edac_a10_driver); |
| |
| MODULE_AUTHOR("Thor Thayer"); |
| MODULE_DESCRIPTION("EDAC Driver for Altera Memories"); |