| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2021-2023 Intel Corporation |
| */ |
| |
| #include <linux/minmax.h> |
| |
| #include "xe_mmio.h" |
| |
| #include <drm/drm_managed.h> |
| #include <drm/xe_drm.h> |
| |
| #include "regs/xe_engine_regs.h" |
| #include "regs/xe_gt_regs.h" |
| #include "regs/xe_regs.h" |
| #include "xe_bo.h" |
| #include "xe_device.h" |
| #include "xe_ggtt.h" |
| #include "xe_gt.h" |
| #include "xe_gt_mcr.h" |
| #include "xe_macros.h" |
| #include "xe_module.h" |
| #include "xe_sriov.h" |
| #include "xe_tile.h" |
| |
| #define XEHP_MTCFG_ADDR XE_REG(0x101800) |
| #define TILE_COUNT REG_GENMASK(15, 8) |
| |
| #define BAR_SIZE_SHIFT 20 |
| |
| static void |
| _resize_bar(struct xe_device *xe, int resno, resource_size_t size) |
| { |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| int bar_size = pci_rebar_bytes_to_size(size); |
| int ret; |
| |
| if (pci_resource_len(pdev, resno)) |
| pci_release_resource(pdev, resno); |
| |
| ret = pci_resize_resource(pdev, resno, bar_size); |
| if (ret) { |
| drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n", |
| resno, 1 << bar_size, ERR_PTR(ret)); |
| return; |
| } |
| |
| drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size); |
| } |
| |
| /* |
| * if force_vram_bar_size is set, attempt to set to the requested size |
| * else set to maximum possible size |
| */ |
| static void xe_resize_vram_bar(struct xe_device *xe) |
| { |
| u64 force_vram_bar_size = xe_modparam.force_vram_bar_size; |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| struct pci_bus *root = pdev->bus; |
| resource_size_t current_size; |
| resource_size_t rebar_size; |
| struct resource *root_res; |
| u32 bar_size_mask; |
| u32 pci_cmd; |
| int i; |
| |
| /* gather some relevant info */ |
| current_size = pci_resource_len(pdev, LMEM_BAR); |
| bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR); |
| |
| if (!bar_size_mask) |
| return; |
| |
| /* set to a specific size? */ |
| if (force_vram_bar_size) { |
| u32 bar_size_bit; |
| |
| rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M; |
| |
| bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size)); |
| |
| if (!bar_size_bit) { |
| drm_info(&xe->drm, |
| "Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n", |
| (u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20); |
| return; |
| } |
| |
| rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT); |
| |
| if (rebar_size == current_size) |
| return; |
| } else { |
| rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT); |
| |
| /* only resize if larger than current */ |
| if (rebar_size <= current_size) |
| return; |
| } |
| |
| drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n", |
| (u64)current_size >> 20, (u64)rebar_size >> 20); |
| |
| while (root->parent) |
| root = root->parent; |
| |
| pci_bus_for_each_resource(root, root_res, i) { |
| if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) && |
| (u64)root_res->start > 0x100000000ul) |
| break; |
| } |
| |
| if (!root_res) { |
| drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n"); |
| return; |
| } |
| |
| pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd); |
| pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY); |
| |
| _resize_bar(xe, LMEM_BAR, rebar_size); |
| |
| pci_assign_unassigned_bus_resources(pdev->bus); |
| pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd); |
| } |
| |
| static bool xe_pci_resource_valid(struct pci_dev *pdev, int bar) |
| { |
| if (!pci_resource_flags(pdev, bar)) |
| return false; |
| |
| if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET) |
| return false; |
| |
| if (!pci_resource_len(pdev, bar)) |
| return false; |
| |
| return true; |
| } |
| |
| static int xe_determine_lmem_bar_size(struct xe_device *xe) |
| { |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| |
| if (!xe_pci_resource_valid(pdev, LMEM_BAR)) { |
| drm_err(&xe->drm, "pci resource is not valid\n"); |
| return -ENXIO; |
| } |
| |
| xe_resize_vram_bar(xe); |
| |
| xe->mem.vram.io_start = pci_resource_start(pdev, LMEM_BAR); |
| xe->mem.vram.io_size = pci_resource_len(pdev, LMEM_BAR); |
| if (!xe->mem.vram.io_size) |
| return -EIO; |
| |
| /* XXX: Need to change when xe link code is ready */ |
| xe->mem.vram.dpa_base = 0; |
| |
| /* set up a map to the total memory area. */ |
| xe->mem.vram.mapping = ioremap_wc(xe->mem.vram.io_start, xe->mem.vram.io_size); |
| |
| return 0; |
| } |
| |
| static inline u64 get_flat_ccs_offset(struct xe_gt *gt, u64 tile_size) |
| { |
| struct xe_device *xe = gt_to_xe(gt); |
| u64 offset; |
| u32 reg; |
| |
| if (GRAPHICS_VER(xe) >= 20) { |
| u64 ccs_size = tile_size / 512; |
| u64 offset_hi, offset_lo; |
| u32 nodes, num_enabled; |
| |
| reg = xe_mmio_read32(gt, MIRROR_FUSE3); |
| nodes = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, reg); |
| num_enabled = hweight32(nodes); /* Number of enabled l3 nodes */ |
| |
| reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); |
| offset_lo = REG_FIELD_GET(XE2_FLAT_CCS_BASE_LOWER_ADDR_MASK, reg); |
| |
| reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_UPPER); |
| offset_hi = REG_FIELD_GET(XE2_FLAT_CCS_BASE_UPPER_ADDR_MASK, reg); |
| |
| offset = offset_hi << 32; /* HW view bits 39:32 */ |
| offset |= offset_lo << 6; /* HW view bits 31:6 */ |
| offset *= num_enabled; /* convert to SW view */ |
| |
| /* We don't expect any holes */ |
| xe_assert_msg(xe, offset == (xe_mmio_read64_2x32(gt, GSMBASE) - ccs_size), |
| "Hole between CCS and GSM.\n"); |
| } else { |
| reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR); |
| offset = (u64)REG_FIELD_GET(XEHP_FLAT_CCS_PTR, reg) * SZ_64K; |
| } |
| |
| return offset; |
| } |
| |
| /** |
| * xe_mmio_tile_vram_size() - Collect vram size and offset information |
| * @tile: tile to get info for |
| * @vram_size: available vram (size - device reserved portions) |
| * @tile_size: actual vram size |
| * @tile_offset: physical start point in the vram address space |
| * |
| * There are 4 places for size information: |
| * - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1) |
| * - TILEx size (actual vram size) |
| * - GSMBASE offset (TILEx - "stolen") |
| * - CSSBASE offset (TILEx - CSS space necessary) |
| * |
| * CSSBASE is always a lower/smaller offset then GSMBASE. |
| * |
| * The actual available size of memory is to the CCS or GSM base. |
| * NOTE: multi-tile bases will include the tile offset. |
| * |
| */ |
| static int xe_mmio_tile_vram_size(struct xe_tile *tile, u64 *vram_size, |
| u64 *tile_size, u64 *tile_offset) |
| { |
| struct xe_device *xe = tile_to_xe(tile); |
| struct xe_gt *gt = tile->primary_gt; |
| u64 offset; |
| int err; |
| u32 reg; |
| |
| err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); |
| if (err) |
| return err; |
| |
| /* actual size */ |
| if (unlikely(xe->info.platform == XE_DG1)) { |
| *tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR); |
| *tile_offset = 0; |
| } else { |
| reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id)); |
| *tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G; |
| *tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G; |
| } |
| |
| /* minus device usage */ |
| if (xe->info.has_flat_ccs) { |
| offset = get_flat_ccs_offset(gt, *tile_size); |
| } else { |
| offset = xe_mmio_read64_2x32(gt, GSMBASE); |
| } |
| |
| /* remove the tile offset so we have just the available size */ |
| *vram_size = offset - *tile_offset; |
| |
| return xe_force_wake_put(gt_to_fw(gt), XE_FW_GT); |
| } |
| |
| int xe_mmio_probe_vram(struct xe_device *xe) |
| { |
| struct xe_tile *tile; |
| resource_size_t io_size; |
| u64 available_size = 0; |
| u64 total_size = 0; |
| u64 tile_offset; |
| u64 tile_size; |
| u64 vram_size; |
| int err; |
| u8 id; |
| |
| if (!IS_DGFX(xe)) |
| return 0; |
| |
| /* Get the size of the root tile's vram for later accessibility comparison */ |
| tile = xe_device_get_root_tile(xe); |
| err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset); |
| if (err) |
| return err; |
| |
| err = xe_determine_lmem_bar_size(xe); |
| if (err) |
| return err; |
| |
| drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &xe->mem.vram.io_start, |
| &xe->mem.vram.io_size); |
| |
| io_size = xe->mem.vram.io_size; |
| |
| /* tile specific ranges */ |
| for_each_tile(tile, xe, id) { |
| err = xe_mmio_tile_vram_size(tile, &vram_size, &tile_size, &tile_offset); |
| if (err) |
| return err; |
| |
| tile->mem.vram.actual_physical_size = tile_size; |
| tile->mem.vram.io_start = xe->mem.vram.io_start + tile_offset; |
| tile->mem.vram.io_size = min_t(u64, vram_size, io_size); |
| |
| if (!tile->mem.vram.io_size) { |
| drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n"); |
| return -ENODEV; |
| } |
| |
| tile->mem.vram.dpa_base = xe->mem.vram.dpa_base + tile_offset; |
| tile->mem.vram.usable_size = vram_size; |
| tile->mem.vram.mapping = xe->mem.vram.mapping + tile_offset; |
| |
| if (tile->mem.vram.io_size < tile->mem.vram.usable_size) |
| drm_info(&xe->drm, "Small BAR device\n"); |
| drm_info(&xe->drm, "VRAM[%u, %u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", id, |
| tile->id, &tile->mem.vram.actual_physical_size, &tile->mem.vram.usable_size, &tile->mem.vram.io_size); |
| drm_info(&xe->drm, "VRAM[%u, %u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", id, tile->id, |
| &tile->mem.vram.dpa_base, tile->mem.vram.dpa_base + (u64)tile->mem.vram.actual_physical_size, |
| &tile->mem.vram.io_start, tile->mem.vram.io_start + (u64)tile->mem.vram.io_size); |
| |
| /* calculate total size using tile size to get the correct HW sizing */ |
| total_size += tile_size; |
| available_size += vram_size; |
| |
| if (total_size > xe->mem.vram.io_size) { |
| drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n", |
| &total_size, &xe->mem.vram.io_size); |
| } |
| |
| io_size -= min_t(u64, tile_size, io_size); |
| } |
| |
| xe->mem.vram.actual_physical_size = total_size; |
| |
| drm_info(&xe->drm, "Total VRAM: %pa, %pa\n", &xe->mem.vram.io_start, |
| &xe->mem.vram.actual_physical_size); |
| drm_info(&xe->drm, "Available VRAM: %pa, %pa\n", &xe->mem.vram.io_start, |
| &available_size); |
| |
| return 0; |
| } |
| |
| void xe_mmio_probe_tiles(struct xe_device *xe) |
| { |
| size_t tile_mmio_size = SZ_16M, tile_mmio_ext_size = xe->info.tile_mmio_ext_size; |
| u8 id, tile_count = xe->info.tile_count; |
| struct xe_gt *gt = xe_root_mmio_gt(xe); |
| struct xe_tile *tile; |
| void __iomem *regs; |
| u32 mtcfg; |
| |
| if (tile_count == 1) |
| goto add_mmio_ext; |
| |
| if (!xe->info.skip_mtcfg) { |
| mtcfg = xe_mmio_read64_2x32(gt, XEHP_MTCFG_ADDR); |
| tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1; |
| if (tile_count < xe->info.tile_count) { |
| drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n", |
| xe->info.tile_count, tile_count); |
| xe->info.tile_count = tile_count; |
| |
| /* |
| * FIXME: Needs some work for standalone media, but should be impossible |
| * with multi-tile for now. |
| */ |
| xe->info.gt_count = xe->info.tile_count; |
| } |
| } |
| |
| regs = xe->mmio.regs; |
| for_each_tile(tile, xe, id) { |
| tile->mmio.size = tile_mmio_size; |
| tile->mmio.regs = regs; |
| regs += tile_mmio_size; |
| } |
| |
| add_mmio_ext: |
| /* |
| * By design, there's a contiguous multi-tile MMIO space (16MB hard coded per tile). |
| * When supported, there could be an additional contiguous multi-tile MMIO extension |
| * space ON TOP of it, and hence the necessity for distinguished MMIO spaces. |
| */ |
| if (xe->info.has_mmio_ext) { |
| regs = xe->mmio.regs + tile_mmio_size * tile_count; |
| |
| for_each_tile(tile, xe, id) { |
| tile->mmio_ext.size = tile_mmio_ext_size; |
| tile->mmio_ext.regs = regs; |
| |
| regs += tile_mmio_ext_size; |
| } |
| } |
| } |
| |
| static void mmio_fini(struct drm_device *drm, void *arg) |
| { |
| struct xe_device *xe = arg; |
| |
| pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs); |
| if (xe->mem.vram.mapping) |
| iounmap(xe->mem.vram.mapping); |
| } |
| |
| int xe_mmio_init(struct xe_device *xe) |
| { |
| struct xe_tile *root_tile = xe_device_get_root_tile(xe); |
| struct pci_dev *pdev = to_pci_dev(xe->drm.dev); |
| const int mmio_bar = 0; |
| |
| /* |
| * Map the entire BAR. |
| * The first 16MB of the BAR, belong to the root tile, and include: |
| * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB). |
| */ |
| xe->mmio.size = pci_resource_len(pdev, mmio_bar); |
| xe->mmio.regs = pci_iomap(pdev, mmio_bar, 0); |
| if (xe->mmio.regs == NULL) { |
| drm_err(&xe->drm, "failed to map registers\n"); |
| return -EIO; |
| } |
| |
| /* Setup first tile; other tiles (if present) will be setup later. */ |
| root_tile->mmio.size = SZ_16M; |
| root_tile->mmio.regs = xe->mmio.regs; |
| |
| return drmm_add_action_or_reset(&xe->drm, mmio_fini, xe); |
| } |
| |
| u8 xe_mmio_read8(struct xe_gt *gt, struct xe_reg reg) |
| { |
| struct xe_tile *tile = gt_to_tile(gt); |
| |
| if (reg.addr < gt->mmio.adj_limit) |
| reg.addr += gt->mmio.adj_offset; |
| |
| return readb((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + reg.addr); |
| } |
| |
| u16 xe_mmio_read16(struct xe_gt *gt, struct xe_reg reg) |
| { |
| struct xe_tile *tile = gt_to_tile(gt); |
| |
| if (reg.addr < gt->mmio.adj_limit) |
| reg.addr += gt->mmio.adj_offset; |
| |
| return readw((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + reg.addr); |
| } |
| |
| void xe_mmio_write32(struct xe_gt *gt, struct xe_reg reg, u32 val) |
| { |
| struct xe_tile *tile = gt_to_tile(gt); |
| |
| if (reg.addr < gt->mmio.adj_limit) |
| reg.addr += gt->mmio.adj_offset; |
| |
| writel(val, (reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + reg.addr); |
| } |
| |
| u32 xe_mmio_read32(struct xe_gt *gt, struct xe_reg reg) |
| { |
| struct xe_tile *tile = gt_to_tile(gt); |
| |
| if (reg.addr < gt->mmio.adj_limit) |
| reg.addr += gt->mmio.adj_offset; |
| |
| return readl((reg.ext ? tile->mmio_ext.regs : tile->mmio.regs) + reg.addr); |
| } |
| |
| u32 xe_mmio_rmw32(struct xe_gt *gt, struct xe_reg reg, u32 clr, u32 set) |
| { |
| u32 old, reg_val; |
| |
| old = xe_mmio_read32(gt, reg); |
| reg_val = (old & ~clr) | set; |
| xe_mmio_write32(gt, reg, reg_val); |
| |
| return old; |
| } |
| |
| int xe_mmio_write32_and_verify(struct xe_gt *gt, |
| struct xe_reg reg, u32 val, u32 mask, u32 eval) |
| { |
| u32 reg_val; |
| |
| xe_mmio_write32(gt, reg, val); |
| reg_val = xe_mmio_read32(gt, reg); |
| |
| return (reg_val & mask) != eval ? -EINVAL : 0; |
| } |
| |
| bool xe_mmio_in_range(const struct xe_gt *gt, |
| const struct xe_mmio_range *range, |
| struct xe_reg reg) |
| { |
| if (reg.addr < gt->mmio.adj_limit) |
| reg.addr += gt->mmio.adj_offset; |
| |
| return range && reg.addr >= range->start && reg.addr <= range->end; |
| } |
| |
| /** |
| * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads |
| * @gt: MMIO target GT |
| * @reg: register to read value from |
| * |
| * Although Intel GPUs have some 64-bit registers, the hardware officially |
| * only supports GTTMMADR register reads of 32 bits or smaller. Even if |
| * a readq operation may return a reasonable value, that violation of the |
| * spec shouldn't be relied upon and all 64-bit register reads should be |
| * performed as two 32-bit reads of the upper and lower dwords. |
| * |
| * When reading registers that may be changing (such as |
| * counters), a rollover of the lower dword between the two 32-bit reads |
| * can be problematic. This function attempts to ensure the upper dword has |
| * stabilized before returning the 64-bit value. |
| * |
| * Note that because this function may re-read the register multiple times |
| * while waiting for the value to stabilize it should not be used to read |
| * any registers where read operations have side effects. |
| * |
| * Returns the value of the 64-bit register. |
| */ |
| u64 xe_mmio_read64_2x32(struct xe_gt *gt, struct xe_reg reg) |
| { |
| struct xe_reg reg_udw = { .addr = reg.addr + 0x4 }; |
| u32 ldw, udw, oldudw, retries; |
| |
| if (reg.addr < gt->mmio.adj_limit) { |
| reg.addr += gt->mmio.adj_offset; |
| reg_udw.addr += gt->mmio.adj_offset; |
| } |
| |
| oldudw = xe_mmio_read32(gt, reg_udw); |
| for (retries = 5; retries; --retries) { |
| ldw = xe_mmio_read32(gt, reg); |
| udw = xe_mmio_read32(gt, reg_udw); |
| |
| if (udw == oldudw) |
| break; |
| |
| oldudw = udw; |
| } |
| |
| xe_gt_WARN(gt, retries == 0, |
| "64-bit read of %#x did not stabilize\n", reg.addr); |
| |
| return (u64)udw << 32 | ldw; |
| } |
| |
| /** |
| * xe_mmio_wait32() - Wait for a register to match the desired masked value |
| * @gt: MMIO target GT |
| * @reg: register to read value from |
| * @mask: mask to be applied to the value read from the register |
| * @val: desired value after applying the mask |
| * @timeout_us: time out after this period of time. Wait logic tries to be |
| * smart, applying an exponential backoff until @timeout_us is reached. |
| * @out_val: if not NULL, points where to store the last unmasked value |
| * @atomic: needs to be true if calling from an atomic context |
| * |
| * This function polls for the desired masked value and returns zero on success |
| * or -ETIMEDOUT if timed out. |
| * |
| * Note that @timeout_us represents the minimum amount of time to wait before |
| * giving up. The actual time taken by this function can be a little more than |
| * @timeout_us for different reasons, specially in non-atomic contexts. Thus, |
| * it is possible that this function succeeds even after @timeout_us has passed. |
| */ |
| int xe_mmio_wait32(struct xe_gt *gt, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us, |
| u32 *out_val, bool atomic) |
| { |
| ktime_t cur = ktime_get_raw(); |
| const ktime_t end = ktime_add_us(cur, timeout_us); |
| int ret = -ETIMEDOUT; |
| s64 wait = 10; |
| u32 read; |
| |
| for (;;) { |
| read = xe_mmio_read32(gt, reg); |
| if ((read & mask) == val) { |
| ret = 0; |
| break; |
| } |
| |
| cur = ktime_get_raw(); |
| if (!ktime_before(cur, end)) |
| break; |
| |
| if (ktime_after(ktime_add_us(cur, wait), end)) |
| wait = ktime_us_delta(end, cur); |
| |
| if (atomic) |
| udelay(wait); |
| else |
| usleep_range(wait, wait << 1); |
| wait <<= 1; |
| } |
| |
| if (ret != 0) { |
| read = xe_mmio_read32(gt, reg); |
| if ((read & mask) == val) |
| ret = 0; |
| } |
| |
| if (out_val) |
| *out_val = read; |
| |
| return ret; |
| } |