| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Polling/bitbanging SPI host controller controller driver utilities |
| */ |
| |
| #include <linux/spinlock.h> |
| #include <linux/workqueue.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/time64.h> |
| |
| #include <linux/spi/spi.h> |
| #include <linux/spi/spi_bitbang.h> |
| |
| #define SPI_BITBANG_CS_DELAY 100 |
| |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support. |
| * Use this for GPIO or shift-register level hardware APIs. |
| * |
| * spi_bitbang_cs is in spi_device->controller_state, which is unavailable |
| * to glue code. These bitbang setup() and cleanup() routines are always |
| * used, though maybe they're called from controller-aware code. |
| * |
| * chipselect() and friends may use spi_device->controller_data and |
| * controller registers as appropriate. |
| * |
| * |
| * NOTE: SPI controller pins can often be used as GPIO pins instead, |
| * which means you could use a bitbang driver either to get hardware |
| * working quickly, or testing for differences that aren't speed related. |
| */ |
| |
| struct spi_bitbang_cs { |
| unsigned nsecs; /* (clock cycle time)/2 */ |
| u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs, |
| u32 word, u8 bits, unsigned flags); |
| unsigned (*txrx_bufs)(struct spi_device *, |
| u32 (*txrx_word)( |
| struct spi_device *spi, |
| unsigned nsecs, |
| u32 word, u8 bits, |
| unsigned flags), |
| unsigned, struct spi_transfer *, |
| unsigned); |
| }; |
| |
| static unsigned bitbang_txrx_8( |
| struct spi_device *spi, |
| u32 (*txrx_word)(struct spi_device *spi, |
| unsigned nsecs, |
| u32 word, u8 bits, |
| unsigned flags), |
| unsigned ns, |
| struct spi_transfer *t, |
| unsigned flags |
| ) |
| { |
| unsigned bits = t->bits_per_word; |
| unsigned count = t->len; |
| const u8 *tx = t->tx_buf; |
| u8 *rx = t->rx_buf; |
| |
| while (likely(count > 0)) { |
| u8 word = 0; |
| |
| if (tx) |
| word = *tx++; |
| word = txrx_word(spi, ns, word, bits, flags); |
| if (rx) |
| *rx++ = word; |
| count -= 1; |
| } |
| return t->len - count; |
| } |
| |
| static unsigned bitbang_txrx_16( |
| struct spi_device *spi, |
| u32 (*txrx_word)(struct spi_device *spi, |
| unsigned nsecs, |
| u32 word, u8 bits, |
| unsigned flags), |
| unsigned ns, |
| struct spi_transfer *t, |
| unsigned flags |
| ) |
| { |
| unsigned bits = t->bits_per_word; |
| unsigned count = t->len; |
| const u16 *tx = t->tx_buf; |
| u16 *rx = t->rx_buf; |
| |
| while (likely(count > 1)) { |
| u16 word = 0; |
| |
| if (tx) |
| word = *tx++; |
| word = txrx_word(spi, ns, word, bits, flags); |
| if (rx) |
| *rx++ = word; |
| count -= 2; |
| } |
| return t->len - count; |
| } |
| |
| static unsigned bitbang_txrx_32( |
| struct spi_device *spi, |
| u32 (*txrx_word)(struct spi_device *spi, |
| unsigned nsecs, |
| u32 word, u8 bits, |
| unsigned flags), |
| unsigned ns, |
| struct spi_transfer *t, |
| unsigned flags |
| ) |
| { |
| unsigned bits = t->bits_per_word; |
| unsigned count = t->len; |
| const u32 *tx = t->tx_buf; |
| u32 *rx = t->rx_buf; |
| |
| while (likely(count > 3)) { |
| u32 word = 0; |
| |
| if (tx) |
| word = *tx++; |
| word = txrx_word(spi, ns, word, bits, flags); |
| if (rx) |
| *rx++ = word; |
| count -= 4; |
| } |
| return t->len - count; |
| } |
| |
| int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t) |
| { |
| struct spi_bitbang_cs *cs = spi->controller_state; |
| u8 bits_per_word; |
| u32 hz; |
| |
| if (t) { |
| bits_per_word = t->bits_per_word; |
| hz = t->speed_hz; |
| } else { |
| bits_per_word = 0; |
| hz = 0; |
| } |
| |
| /* spi_transfer level calls that work per-word */ |
| if (!bits_per_word) |
| bits_per_word = spi->bits_per_word; |
| if (bits_per_word <= 8) |
| cs->txrx_bufs = bitbang_txrx_8; |
| else if (bits_per_word <= 16) |
| cs->txrx_bufs = bitbang_txrx_16; |
| else if (bits_per_word <= 32) |
| cs->txrx_bufs = bitbang_txrx_32; |
| else |
| return -EINVAL; |
| |
| /* nsecs = (clock period)/2 */ |
| if (!hz) |
| hz = spi->max_speed_hz; |
| if (hz) { |
| cs->nsecs = (NSEC_PER_SEC / 2) / hz; |
| if (cs->nsecs > (MAX_UDELAY_MS * NSEC_PER_MSEC)) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer); |
| |
| /* |
| * spi_bitbang_setup - default setup for per-word I/O loops |
| */ |
| int spi_bitbang_setup(struct spi_device *spi) |
| { |
| struct spi_bitbang_cs *cs = spi->controller_state; |
| struct spi_bitbang *bitbang; |
| bool initial_setup = false; |
| int retval; |
| |
| bitbang = spi_controller_get_devdata(spi->controller); |
| |
| if (!cs) { |
| cs = kzalloc(sizeof(*cs), GFP_KERNEL); |
| if (!cs) |
| return -ENOMEM; |
| spi->controller_state = cs; |
| initial_setup = true; |
| } |
| |
| /* per-word shift register access, in hardware or bitbanging */ |
| cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)]; |
| if (!cs->txrx_word) { |
| retval = -EINVAL; |
| goto err_free; |
| } |
| |
| if (bitbang->setup_transfer) { |
| retval = bitbang->setup_transfer(spi, NULL); |
| if (retval < 0) |
| goto err_free; |
| } |
| |
| dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs); |
| |
| return 0; |
| |
| err_free: |
| if (initial_setup) |
| kfree(cs); |
| return retval; |
| } |
| EXPORT_SYMBOL_GPL(spi_bitbang_setup); |
| |
| /* |
| * spi_bitbang_cleanup - default cleanup for per-word I/O loops |
| */ |
| void spi_bitbang_cleanup(struct spi_device *spi) |
| { |
| kfree(spi->controller_state); |
| } |
| EXPORT_SYMBOL_GPL(spi_bitbang_cleanup); |
| |
| static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t) |
| { |
| struct spi_bitbang_cs *cs = spi->controller_state; |
| unsigned nsecs = cs->nsecs; |
| struct spi_bitbang *bitbang; |
| |
| bitbang = spi_controller_get_devdata(spi->controller); |
| if (bitbang->set_line_direction) { |
| int err; |
| |
| err = bitbang->set_line_direction(spi, !!(t->tx_buf)); |
| if (err < 0) |
| return err; |
| } |
| |
| if (spi->mode & SPI_3WIRE) { |
| unsigned flags; |
| |
| flags = t->tx_buf ? SPI_CONTROLLER_NO_RX : SPI_CONTROLLER_NO_TX; |
| return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags); |
| } |
| return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0); |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| /* |
| * SECOND PART ... simple transfer queue runner. |
| * |
| * This costs a task context per controller, running the queue by |
| * performing each transfer in sequence. Smarter hardware can queue |
| * several DMA transfers at once, and process several controller queues |
| * in parallel; this driver doesn't match such hardware very well. |
| * |
| * Drivers can provide word-at-a-time i/o primitives, or provide |
| * transfer-at-a-time ones to leverage dma or fifo hardware. |
| */ |
| |
| static int spi_bitbang_prepare_hardware(struct spi_controller *spi) |
| { |
| struct spi_bitbang *bitbang; |
| |
| bitbang = spi_controller_get_devdata(spi); |
| |
| mutex_lock(&bitbang->lock); |
| bitbang->busy = 1; |
| mutex_unlock(&bitbang->lock); |
| |
| return 0; |
| } |
| |
| static int spi_bitbang_transfer_one(struct spi_controller *ctlr, |
| struct spi_device *spi, |
| struct spi_transfer *transfer) |
| { |
| struct spi_bitbang *bitbang = spi_controller_get_devdata(ctlr); |
| int status = 0; |
| |
| if (bitbang->setup_transfer) { |
| status = bitbang->setup_transfer(spi, transfer); |
| if (status < 0) |
| goto out; |
| } |
| |
| if (transfer->len) |
| status = bitbang->txrx_bufs(spi, transfer); |
| |
| if (status == transfer->len) |
| status = 0; |
| else if (status >= 0) |
| status = -EREMOTEIO; |
| |
| out: |
| spi_finalize_current_transfer(ctlr); |
| |
| return status; |
| } |
| |
| static int spi_bitbang_unprepare_hardware(struct spi_controller *spi) |
| { |
| struct spi_bitbang *bitbang; |
| |
| bitbang = spi_controller_get_devdata(spi); |
| |
| mutex_lock(&bitbang->lock); |
| bitbang->busy = 0; |
| mutex_unlock(&bitbang->lock); |
| |
| return 0; |
| } |
| |
| static void spi_bitbang_set_cs(struct spi_device *spi, bool enable) |
| { |
| struct spi_bitbang *bitbang = spi_controller_get_devdata(spi->controller); |
| |
| /* SPI core provides CS high / low, but bitbang driver |
| * expects CS active |
| * spi device driver takes care of handling SPI_CS_HIGH |
| */ |
| enable = (!!(spi->mode & SPI_CS_HIGH) == enable); |
| |
| ndelay(SPI_BITBANG_CS_DELAY); |
| bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE : |
| BITBANG_CS_INACTIVE); |
| ndelay(SPI_BITBANG_CS_DELAY); |
| } |
| |
| /*----------------------------------------------------------------------*/ |
| |
| int spi_bitbang_init(struct spi_bitbang *bitbang) |
| { |
| struct spi_controller *ctlr = bitbang->ctlr; |
| bool custom_cs; |
| |
| if (!ctlr) |
| return -EINVAL; |
| /* |
| * We only need the chipselect callback if we are actually using it. |
| * If we just use GPIO descriptors, it is surplus. If the |
| * SPI_CONTROLLER_GPIO_SS flag is set, we always need to call the |
| * driver-specific chipselect routine. |
| */ |
| custom_cs = (!ctlr->use_gpio_descriptors || |
| (ctlr->flags & SPI_CONTROLLER_GPIO_SS)); |
| |
| if (custom_cs && !bitbang->chipselect) |
| return -EINVAL; |
| |
| mutex_init(&bitbang->lock); |
| |
| if (!ctlr->mode_bits) |
| ctlr->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags; |
| |
| if (ctlr->transfer || ctlr->transfer_one_message) |
| return -EINVAL; |
| |
| ctlr->prepare_transfer_hardware = spi_bitbang_prepare_hardware; |
| ctlr->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware; |
| ctlr->transfer_one = spi_bitbang_transfer_one; |
| /* |
| * When using GPIO descriptors, the ->set_cs() callback doesn't even |
| * get called unless SPI_CONTROLLER_GPIO_SS is set. |
| */ |
| if (custom_cs) |
| ctlr->set_cs = spi_bitbang_set_cs; |
| |
| if (!bitbang->txrx_bufs) { |
| bitbang->use_dma = 0; |
| bitbang->txrx_bufs = spi_bitbang_bufs; |
| if (!ctlr->setup) { |
| if (!bitbang->setup_transfer) |
| bitbang->setup_transfer = |
| spi_bitbang_setup_transfer; |
| ctlr->setup = spi_bitbang_setup; |
| ctlr->cleanup = spi_bitbang_cleanup; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spi_bitbang_init); |
| |
| /** |
| * spi_bitbang_start - start up a polled/bitbanging SPI host controller driver |
| * @bitbang: driver handle |
| * |
| * Caller should have zero-initialized all parts of the structure, and then |
| * provided callbacks for chip selection and I/O loops. If the host controller has |
| * a transfer method, its final step should call spi_bitbang_transfer(); or, |
| * that's the default if the transfer routine is not initialized. It should |
| * also set up the bus number and number of chipselects. |
| * |
| * For i/o loops, provide callbacks either per-word (for bitbanging, or for |
| * hardware that basically exposes a shift register) or per-spi_transfer |
| * (which takes better advantage of hardware like fifos or DMA engines). |
| * |
| * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup(), |
| * spi_bitbang_cleanup() and spi_bitbang_setup_transfer() to handle those SPI |
| * host controller methods. Those methods are the defaults if the bitbang->txrx_bufs |
| * routine isn't initialized. |
| * |
| * This routine registers the spi_controller, which will process requests in a |
| * dedicated task, keeping IRQs unblocked most of the time. To stop |
| * processing those requests, call spi_bitbang_stop(). |
| * |
| * On success, this routine will take a reference to the controller. The caller |
| * is responsible for calling spi_bitbang_stop() to decrement the reference and |
| * spi_controller_put() as counterpart of spi_alloc_host() to prevent a memory |
| * leak. |
| */ |
| int spi_bitbang_start(struct spi_bitbang *bitbang) |
| { |
| struct spi_controller *ctlr = bitbang->ctlr; |
| int ret; |
| |
| ret = spi_bitbang_init(bitbang); |
| if (ret) |
| return ret; |
| |
| /* driver may get busy before register() returns, especially |
| * if someone registered boardinfo for devices |
| */ |
| ret = spi_register_controller(spi_controller_get(ctlr)); |
| if (ret) |
| spi_controller_put(ctlr); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(spi_bitbang_start); |
| |
| /* |
| * spi_bitbang_stop - stops the task providing spi communication |
| */ |
| void spi_bitbang_stop(struct spi_bitbang *bitbang) |
| { |
| spi_unregister_controller(bitbang->ctlr); |
| } |
| EXPORT_SYMBOL_GPL(spi_bitbang_stop); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("Utilities for Bitbanging SPI host controllers"); |