| /* |
| * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. |
| * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #ifndef _TLS_OFFLOAD_H |
| #define _TLS_OFFLOAD_H |
| |
| #include <linux/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/crypto.h> |
| #include <linux/socket.h> |
| #include <linux/tcp.h> |
| #include <linux/skmsg.h> |
| #include <linux/mutex.h> |
| #include <linux/netdevice.h> |
| #include <linux/rcupdate.h> |
| #include <linux/android_kabi.h> |
| |
| #include <net/net_namespace.h> |
| #include <net/tcp.h> |
| #include <net/strparser.h> |
| #include <crypto/aead.h> |
| #include <uapi/linux/tls.h> |
| |
| |
| /* Maximum data size carried in a TLS record */ |
| #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) |
| |
| #define TLS_HEADER_SIZE 5 |
| #define TLS_NONCE_OFFSET TLS_HEADER_SIZE |
| |
| #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) |
| |
| #define TLS_RECORD_TYPE_DATA 0x17 |
| |
| #define TLS_AAD_SPACE_SIZE 13 |
| |
| #define MAX_IV_SIZE 16 |
| #define TLS_MAX_REC_SEQ_SIZE 8 |
| |
| /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. |
| * |
| * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] |
| * |
| * The field 'length' is encoded in field 'b0' as '(length width - 1)'. |
| * Hence b0 contains (3 - 1) = 2. |
| */ |
| #define TLS_AES_CCM_IV_B0_BYTE 2 |
| |
| #define __TLS_INC_STATS(net, field) \ |
| __SNMP_INC_STATS((net)->mib.tls_statistics, field) |
| #define TLS_INC_STATS(net, field) \ |
| SNMP_INC_STATS((net)->mib.tls_statistics, field) |
| #define __TLS_DEC_STATS(net, field) \ |
| __SNMP_DEC_STATS((net)->mib.tls_statistics, field) |
| #define TLS_DEC_STATS(net, field) \ |
| SNMP_DEC_STATS((net)->mib.tls_statistics, field) |
| |
| enum { |
| TLS_BASE, |
| TLS_SW, |
| TLS_HW, |
| TLS_HW_RECORD, |
| TLS_NUM_CONFIG, |
| }; |
| |
| /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages |
| * allocated or mapped for each TLS record. After encryption, the records are |
| * stores in a linked list. |
| */ |
| struct tls_rec { |
| struct list_head list; |
| int tx_ready; |
| int tx_flags; |
| |
| struct sk_msg msg_plaintext; |
| struct sk_msg msg_encrypted; |
| |
| /* AAD | msg_plaintext.sg.data | sg_tag */ |
| struct scatterlist sg_aead_in[2]; |
| /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ |
| struct scatterlist sg_aead_out[2]; |
| |
| char content_type; |
| struct scatterlist sg_content_type; |
| |
| char aad_space[TLS_AAD_SPACE_SIZE]; |
| u8 iv_data[MAX_IV_SIZE]; |
| struct aead_request aead_req; |
| |
| ANDROID_KABI_RESERVE(1); |
| |
| u8 aead_req_ctx[]; |
| }; |
| |
| struct tls_msg { |
| struct strp_msg rxm; |
| u8 control; |
| }; |
| |
| struct tx_work { |
| struct delayed_work work; |
| struct sock *sk; |
| }; |
| |
| struct tls_sw_context_tx { |
| struct crypto_aead *aead_send; |
| struct crypto_wait async_wait; |
| struct tx_work tx_work; |
| struct tls_rec *open_rec; |
| struct list_head tx_list; |
| atomic_t encrypt_pending; |
| /* protect crypto_wait with encrypt_pending */ |
| spinlock_t encrypt_compl_lock; |
| int async_notify; |
| u8 async_capable:1; |
| |
| #define BIT_TX_SCHEDULED 0 |
| #define BIT_TX_CLOSING 1 |
| unsigned long tx_bitmask; |
| |
| ANDROID_KABI_RESERVE(1); |
| }; |
| |
| struct tls_sw_context_rx { |
| struct crypto_aead *aead_recv; |
| struct crypto_wait async_wait; |
| struct strparser strp; |
| struct sk_buff_head rx_list; /* list of decrypted 'data' records */ |
| void (*saved_data_ready)(struct sock *sk); |
| |
| struct sk_buff *recv_pkt; |
| u8 control; |
| u8 async_capable:1; |
| u8 decrypted:1; |
| atomic_t decrypt_pending; |
| /* protect crypto_wait with decrypt_pending*/ |
| spinlock_t decrypt_compl_lock; |
| bool async_notify; |
| |
| ANDROID_KABI_RESERVE(1); |
| }; |
| |
| struct tls_record_info { |
| struct list_head list; |
| u32 end_seq; |
| int len; |
| int num_frags; |
| skb_frag_t frags[MAX_SKB_FRAGS]; |
| }; |
| |
| struct tls_offload_context_tx { |
| struct crypto_aead *aead_send; |
| spinlock_t lock; /* protects records list */ |
| struct list_head records_list; |
| struct tls_record_info *open_record; |
| struct tls_record_info *retransmit_hint; |
| u64 hint_record_sn; |
| u64 unacked_record_sn; |
| |
| struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; |
| void (*sk_destruct)(struct sock *sk); |
| u8 driver_state[] __aligned(8); |
| /* The TLS layer reserves room for driver specific state |
| * Currently the belief is that there is not enough |
| * driver specific state to justify another layer of indirection |
| */ |
| #define TLS_DRIVER_STATE_SIZE_TX 16 |
| }; |
| |
| #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ |
| (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) |
| |
| enum tls_context_flags { |
| /* tls_device_down was called after the netdev went down, device state |
| * was released, and kTLS works in software, even though rx_conf is |
| * still TLS_HW (needed for transition). |
| */ |
| TLS_RX_DEV_DEGRADED = 0, |
| /* Unlike RX where resync is driven entirely by the core in TX only |
| * the driver knows when things went out of sync, so we need the flag |
| * to be atomic. |
| */ |
| TLS_TX_SYNC_SCHED = 1, |
| /* tls_dev_del was called for the RX side, device state was released, |
| * but tls_ctx->netdev might still be kept, because TX-side driver |
| * resources might not be released yet. Used to prevent the second |
| * tls_dev_del call in tls_device_down if it happens simultaneously. |
| */ |
| TLS_RX_DEV_CLOSED = 2, |
| }; |
| |
| struct cipher_context { |
| char *iv; |
| char *rec_seq; |
| }; |
| |
| union tls_crypto_context { |
| struct tls_crypto_info info; |
| union { |
| struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; |
| struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; |
| }; |
| }; |
| |
| struct tls_prot_info { |
| u16 version; |
| u16 cipher_type; |
| u16 prepend_size; |
| u16 tag_size; |
| u16 overhead_size; |
| u16 iv_size; |
| u16 salt_size; |
| u16 rec_seq_size; |
| u16 aad_size; |
| u16 tail_size; |
| }; |
| |
| struct tls_context { |
| /* read-only cache line */ |
| struct tls_prot_info prot_info; |
| |
| u8 tx_conf:3; |
| u8 rx_conf:3; |
| |
| int (*push_pending_record)(struct sock *sk, int flags); |
| void (*sk_write_space)(struct sock *sk); |
| |
| void *priv_ctx_tx; |
| void *priv_ctx_rx; |
| |
| struct net_device *netdev; |
| |
| /* rw cache line */ |
| struct cipher_context tx; |
| struct cipher_context rx; |
| |
| struct scatterlist *partially_sent_record; |
| u16 partially_sent_offset; |
| |
| bool in_tcp_sendpages; |
| bool pending_open_record_frags; |
| |
| struct mutex tx_lock; /* protects partially_sent_* fields and |
| * per-type TX fields |
| */ |
| unsigned long flags; |
| |
| /* cache cold stuff */ |
| struct proto *sk_proto; |
| struct sock *sk; |
| |
| void (*sk_destruct)(struct sock *sk); |
| |
| union tls_crypto_context crypto_send; |
| union tls_crypto_context crypto_recv; |
| |
| struct list_head list; |
| refcount_t refcount; |
| struct rcu_head rcu; |
| }; |
| |
| enum tls_offload_ctx_dir { |
| TLS_OFFLOAD_CTX_DIR_RX, |
| TLS_OFFLOAD_CTX_DIR_TX, |
| }; |
| |
| struct tlsdev_ops { |
| int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, |
| enum tls_offload_ctx_dir direction, |
| struct tls_crypto_info *crypto_info, |
| u32 start_offload_tcp_sn); |
| void (*tls_dev_del)(struct net_device *netdev, |
| struct tls_context *ctx, |
| enum tls_offload_ctx_dir direction); |
| int (*tls_dev_resync)(struct net_device *netdev, |
| struct sock *sk, u32 seq, u8 *rcd_sn, |
| enum tls_offload_ctx_dir direction); |
| |
| ANDROID_KABI_RESERVE(1); |
| ANDROID_KABI_RESERVE(2); |
| ANDROID_KABI_RESERVE(3); |
| ANDROID_KABI_RESERVE(4); |
| |
| }; |
| |
| enum tls_offload_sync_type { |
| TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, |
| TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, |
| TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2, |
| }; |
| |
| #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 |
| #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 |
| |
| #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13 |
| struct tls_offload_resync_async { |
| atomic64_t req; |
| u16 loglen; |
| u16 rcd_delta; |
| u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX]; |
| }; |
| |
| struct tls_offload_context_rx { |
| /* sw must be the first member of tls_offload_context_rx */ |
| struct tls_sw_context_rx sw; |
| enum tls_offload_sync_type resync_type; |
| /* this member is set regardless of resync_type, to avoid branches */ |
| u8 resync_nh_reset:1; |
| /* CORE_NEXT_HINT-only member, but use the hole here */ |
| u8 resync_nh_do_now:1; |
| union { |
| /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ |
| struct { |
| atomic64_t resync_req; |
| }; |
| /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ |
| struct { |
| u32 decrypted_failed; |
| u32 decrypted_tgt; |
| } resync_nh; |
| /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */ |
| struct { |
| struct tls_offload_resync_async *resync_async; |
| }; |
| }; |
| u8 driver_state[] __aligned(8); |
| /* The TLS layer reserves room for driver specific state |
| * Currently the belief is that there is not enough |
| * driver specific state to justify another layer of indirection |
| */ |
| #define TLS_DRIVER_STATE_SIZE_RX 8 |
| }; |
| |
| #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ |
| (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) |
| |
| struct tls_context *tls_ctx_create(struct sock *sk); |
| void tls_ctx_free(struct sock *sk, struct tls_context *ctx); |
| void update_sk_prot(struct sock *sk, struct tls_context *ctx); |
| |
| int wait_on_pending_writer(struct sock *sk, long *timeo); |
| int tls_sk_query(struct sock *sk, int optname, char __user *optval, |
| int __user *optlen); |
| int tls_sk_attach(struct sock *sk, int optname, char __user *optval, |
| unsigned int optlen); |
| void tls_err_abort(struct sock *sk, int err); |
| |
| int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); |
| void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); |
| void tls_sw_strparser_done(struct tls_context *tls_ctx); |
| int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); |
| int tls_sw_sendpage_locked(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags); |
| int tls_sw_sendpage(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags); |
| void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); |
| void tls_sw_release_resources_tx(struct sock *sk); |
| void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); |
| void tls_sw_free_resources_rx(struct sock *sk); |
| void tls_sw_release_resources_rx(struct sock *sk); |
| void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); |
| int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, |
| int nonblock, int flags, int *addr_len); |
| bool tls_sw_stream_read(const struct sock *sk); |
| ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, |
| struct pipe_inode_info *pipe, |
| size_t len, unsigned int flags); |
| |
| int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); |
| int tls_device_sendpage(struct sock *sk, struct page *page, |
| int offset, size_t size, int flags); |
| int tls_tx_records(struct sock *sk, int flags); |
| |
| struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, |
| u32 seq, u64 *p_record_sn); |
| |
| static inline bool tls_record_is_start_marker(struct tls_record_info *rec) |
| { |
| return rec->len == 0; |
| } |
| |
| static inline u32 tls_record_start_seq(struct tls_record_info *rec) |
| { |
| return rec->end_seq - rec->len; |
| } |
| |
| int tls_push_sg(struct sock *sk, struct tls_context *ctx, |
| struct scatterlist *sg, u16 first_offset, |
| int flags); |
| int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, |
| int flags); |
| void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); |
| |
| static inline struct tls_msg *tls_msg(struct sk_buff *skb) |
| { |
| return (struct tls_msg *)strp_msg(skb); |
| } |
| |
| static inline bool tls_is_partially_sent_record(struct tls_context *ctx) |
| { |
| return !!ctx->partially_sent_record; |
| } |
| |
| static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) |
| { |
| return tls_ctx->pending_open_record_frags; |
| } |
| |
| static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) |
| { |
| struct tls_rec *rec; |
| |
| rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); |
| if (!rec) |
| return false; |
| |
| return READ_ONCE(rec->tx_ready); |
| } |
| |
| static inline u16 tls_user_config(struct tls_context *ctx, bool tx) |
| { |
| u16 config = tx ? ctx->tx_conf : ctx->rx_conf; |
| |
| switch (config) { |
| case TLS_BASE: |
| return TLS_CONF_BASE; |
| case TLS_SW: |
| return TLS_CONF_SW; |
| case TLS_HW: |
| return TLS_CONF_HW; |
| case TLS_HW_RECORD: |
| return TLS_CONF_HW_RECORD; |
| } |
| return 0; |
| } |
| |
| struct sk_buff * |
| tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, |
| struct sk_buff *skb); |
| struct sk_buff * |
| tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev, |
| struct sk_buff *skb); |
| |
| static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) |
| { |
| #ifdef CONFIG_SOCK_VALIDATE_XMIT |
| return sk_fullsock(sk) && |
| (smp_load_acquire(&sk->sk_validate_xmit_skb) == |
| &tls_validate_xmit_skb); |
| #else |
| return false; |
| #endif |
| } |
| |
| static inline bool tls_bigint_increment(unsigned char *seq, int len) |
| { |
| int i; |
| |
| for (i = len - 1; i >= 0; i--) { |
| ++seq[i]; |
| if (seq[i] != 0) |
| break; |
| } |
| |
| return (i == -1); |
| } |
| |
| static inline void tls_bigint_subtract(unsigned char *seq, int n) |
| { |
| u64 rcd_sn; |
| __be64 *p; |
| |
| BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); |
| |
| p = (__be64 *)seq; |
| rcd_sn = be64_to_cpu(*p); |
| *p = cpu_to_be64(rcd_sn - n); |
| } |
| |
| static inline struct tls_context *tls_get_ctx(const struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| /* Use RCU on icsk_ulp_data only for sock diag code, |
| * TLS data path doesn't need rcu_dereference(). |
| */ |
| return (__force void *)icsk->icsk_ulp_data; |
| } |
| |
| static inline void tls_advance_record_sn(struct sock *sk, |
| struct tls_prot_info *prot, |
| struct cipher_context *ctx) |
| { |
| if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) |
| tls_err_abort(sk, -EBADMSG); |
| |
| if (prot->version != TLS_1_3_VERSION) |
| tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, |
| prot->iv_size); |
| } |
| |
| static inline void tls_fill_prepend(struct tls_context *ctx, |
| char *buf, |
| size_t plaintext_len, |
| unsigned char record_type, |
| int version) |
| { |
| struct tls_prot_info *prot = &ctx->prot_info; |
| size_t pkt_len, iv_size = prot->iv_size; |
| |
| pkt_len = plaintext_len + prot->tag_size; |
| if (version != TLS_1_3_VERSION) { |
| pkt_len += iv_size; |
| |
| memcpy(buf + TLS_NONCE_OFFSET, |
| ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); |
| } |
| |
| /* we cover nonce explicit here as well, so buf should be of |
| * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE |
| */ |
| buf[0] = version == TLS_1_3_VERSION ? |
| TLS_RECORD_TYPE_DATA : record_type; |
| /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ |
| buf[1] = TLS_1_2_VERSION_MINOR; |
| buf[2] = TLS_1_2_VERSION_MAJOR; |
| /* we can use IV for nonce explicit according to spec */ |
| buf[3] = pkt_len >> 8; |
| buf[4] = pkt_len & 0xFF; |
| } |
| |
| static inline void tls_make_aad(char *buf, |
| size_t size, |
| char *record_sequence, |
| int record_sequence_size, |
| unsigned char record_type, |
| int version) |
| { |
| if (version != TLS_1_3_VERSION) { |
| memcpy(buf, record_sequence, record_sequence_size); |
| buf += 8; |
| } else { |
| size += TLS_CIPHER_AES_GCM_128_TAG_SIZE; |
| } |
| |
| buf[0] = version == TLS_1_3_VERSION ? |
| TLS_RECORD_TYPE_DATA : record_type; |
| buf[1] = TLS_1_2_VERSION_MAJOR; |
| buf[2] = TLS_1_2_VERSION_MINOR; |
| buf[3] = size >> 8; |
| buf[4] = size & 0xFF; |
| } |
| |
| static inline void xor_iv_with_seq(int version, char *iv, char *seq) |
| { |
| int i; |
| |
| if (version == TLS_1_3_VERSION) { |
| for (i = 0; i < 8; i++) |
| iv[i + 4] ^= seq[i]; |
| } |
| } |
| |
| |
| static inline struct tls_sw_context_rx *tls_sw_ctx_rx( |
| const struct tls_context *tls_ctx) |
| { |
| return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; |
| } |
| |
| static inline struct tls_sw_context_tx *tls_sw_ctx_tx( |
| const struct tls_context *tls_ctx) |
| { |
| return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; |
| } |
| |
| static inline struct tls_offload_context_tx * |
| tls_offload_ctx_tx(const struct tls_context *tls_ctx) |
| { |
| return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; |
| } |
| |
| static inline bool tls_sw_has_ctx_tx(const struct sock *sk) |
| { |
| struct tls_context *ctx = tls_get_ctx(sk); |
| |
| if (!ctx) |
| return false; |
| return !!tls_sw_ctx_tx(ctx); |
| } |
| |
| static inline bool tls_sw_has_ctx_rx(const struct sock *sk) |
| { |
| struct tls_context *ctx = tls_get_ctx(sk); |
| |
| if (!ctx) |
| return false; |
| return !!tls_sw_ctx_rx(ctx); |
| } |
| |
| void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); |
| void tls_device_write_space(struct sock *sk, struct tls_context *ctx); |
| |
| static inline struct tls_offload_context_rx * |
| tls_offload_ctx_rx(const struct tls_context *tls_ctx) |
| { |
| return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; |
| } |
| |
| #if IS_ENABLED(CONFIG_TLS_DEVICE) |
| static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, |
| enum tls_offload_ctx_dir direction) |
| { |
| if (direction == TLS_OFFLOAD_CTX_DIR_TX) |
| return tls_offload_ctx_tx(tls_ctx)->driver_state; |
| else |
| return tls_offload_ctx_rx(tls_ctx)->driver_state; |
| } |
| |
| static inline void * |
| tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) |
| { |
| return __tls_driver_ctx(tls_get_ctx(sk), direction); |
| } |
| #endif |
| |
| #define RESYNC_REQ BIT(0) |
| #define RESYNC_REQ_ASYNC BIT(1) |
| /* The TLS context is valid until sk_destruct is called */ |
| static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); |
| |
| atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); |
| } |
| |
| /* Log all TLS record header TCP sequences in [seq, seq+len] */ |
| static inline void |
| tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); |
| |
| atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) | |
| ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC); |
| rx_ctx->resync_async->loglen = 0; |
| rx_ctx->resync_async->rcd_delta = 0; |
| } |
| |
| static inline void |
| tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); |
| |
| atomic64_set(&rx_ctx->resync_async->req, |
| ((u64)ntohl(seq) << 32) | RESYNC_REQ); |
| } |
| |
| static inline void |
| tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| |
| tls_offload_ctx_rx(tls_ctx)->resync_type = type; |
| } |
| |
| /* Driver's seq tracking has to be disabled until resync succeeded */ |
| static inline bool tls_offload_tx_resync_pending(struct sock *sk) |
| { |
| struct tls_context *tls_ctx = tls_get_ctx(sk); |
| bool ret; |
| |
| ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); |
| smp_mb__after_atomic(); |
| return ret; |
| } |
| |
| int __net_init tls_proc_init(struct net *net); |
| void __net_exit tls_proc_fini(struct net *net); |
| |
| int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, |
| unsigned char *record_type); |
| int decrypt_skb(struct sock *sk, struct sk_buff *skb, |
| struct scatterlist *sgout); |
| struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); |
| |
| int tls_sw_fallback_init(struct sock *sk, |
| struct tls_offload_context_tx *offload_ctx, |
| struct tls_crypto_info *crypto_info); |
| |
| #ifdef CONFIG_TLS_DEVICE |
| void tls_device_init(void); |
| void tls_device_cleanup(void); |
| void tls_device_sk_destruct(struct sock *sk); |
| int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); |
| void tls_device_free_resources_tx(struct sock *sk); |
| int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); |
| void tls_device_offload_cleanup_rx(struct sock *sk); |
| void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); |
| void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); |
| int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, |
| struct sk_buff *skb, struct strp_msg *rxm); |
| |
| static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) |
| { |
| if (!sk_fullsock(sk) || |
| smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) |
| return false; |
| return tls_get_ctx(sk)->rx_conf == TLS_HW; |
| } |
| #else |
| static inline void tls_device_init(void) {} |
| static inline void tls_device_cleanup(void) {} |
| |
| static inline int |
| tls_set_device_offload(struct sock *sk, struct tls_context *ctx) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static inline void tls_device_free_resources_tx(struct sock *sk) {} |
| |
| static inline int |
| tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} |
| static inline void |
| tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} |
| |
| static inline int |
| tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, |
| struct sk_buff *skb, struct strp_msg *rxm) |
| { |
| return 0; |
| } |
| #endif |
| #endif /* _TLS_OFFLOAD_H */ |