|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* | 
|  | * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org> | 
|  | */ | 
|  |  | 
|  | #include <linux/cache.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/libfdt.h> | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/pgtable.h> | 
|  | #include <linux/random.h> | 
|  |  | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/kernel-pgtable.h> | 
|  | #include <asm/memory.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/setup.h> | 
|  |  | 
|  | enum kaslr_status { | 
|  | KASLR_ENABLED, | 
|  | KASLR_DISABLED_CMDLINE, | 
|  | KASLR_DISABLED_NO_SEED, | 
|  | KASLR_DISABLED_FDT_REMAP, | 
|  | }; | 
|  |  | 
|  | static enum kaslr_status __initdata kaslr_status; | 
|  | u64 __ro_after_init module_alloc_base; | 
|  | u16 __initdata memstart_offset_seed; | 
|  |  | 
|  | static __init u64 get_kaslr_seed(void *fdt) | 
|  | { | 
|  | int node, len; | 
|  | fdt64_t *prop; | 
|  | u64 ret; | 
|  |  | 
|  | node = fdt_path_offset(fdt, "/chosen"); | 
|  | if (node < 0) | 
|  | return 0; | 
|  |  | 
|  | prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len); | 
|  | if (!prop || len != sizeof(u64)) | 
|  | return 0; | 
|  |  | 
|  | ret = fdt64_to_cpu(*prop); | 
|  | *prop = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct arm64_ftr_override kaslr_feature_override __initdata; | 
|  |  | 
|  | /* | 
|  | * This routine will be executed with the kernel mapped at its default virtual | 
|  | * address, and if it returns successfully, the kernel will be remapped, and | 
|  | * start_kernel() will be executed from a randomized virtual offset. The | 
|  | * relocation will result in all absolute references (e.g., static variables | 
|  | * containing function pointers) to be reinitialized, and zero-initialized | 
|  | * .bss variables will be reset to 0. | 
|  | */ | 
|  | u64 __init kaslr_early_init(void) | 
|  | { | 
|  | void *fdt; | 
|  | u64 seed, offset, mask, module_range; | 
|  | unsigned long raw; | 
|  |  | 
|  | /* | 
|  | * Set a reasonable default for module_alloc_base in case | 
|  | * we end up running with module randomization disabled. | 
|  | */ | 
|  | module_alloc_base = (u64)_etext - MODULES_VSIZE; | 
|  | dcache_clean_inval_poc((unsigned long)&module_alloc_base, | 
|  | (unsigned long)&module_alloc_base + | 
|  | sizeof(module_alloc_base)); | 
|  |  | 
|  | /* | 
|  | * Try to map the FDT early. If this fails, we simply bail, | 
|  | * and proceed with KASLR disabled. We will make another | 
|  | * attempt at mapping the FDT in setup_machine() | 
|  | */ | 
|  | fdt = get_early_fdt_ptr(); | 
|  | if (!fdt) { | 
|  | kaslr_status = KASLR_DISABLED_FDT_REMAP; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieve (and wipe) the seed from the FDT | 
|  | */ | 
|  | seed = get_kaslr_seed(fdt); | 
|  |  | 
|  | /* | 
|  | * Check if 'nokaslr' appears on the command line, and | 
|  | * return 0 if that is the case. | 
|  | */ | 
|  | if (kaslr_feature_override.val & kaslr_feature_override.mask & 0xf) { | 
|  | kaslr_status = KASLR_DISABLED_CMDLINE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Mix in any entropy obtainable architecturally if enabled | 
|  | * and supported. | 
|  | */ | 
|  |  | 
|  | if (arch_get_random_seed_long_early(&raw)) | 
|  | seed ^= raw; | 
|  |  | 
|  | if (!seed) { | 
|  | kaslr_status = KASLR_DISABLED_NO_SEED; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * OK, so we are proceeding with KASLR enabled. Calculate a suitable | 
|  | * kernel image offset from the seed. Let's place the kernel in the | 
|  | * middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of | 
|  | * the lower and upper quarters to avoid colliding with other | 
|  | * allocations. | 
|  | * Even if we could randomize at page granularity for 16k and 64k pages, | 
|  | * let's always round to 2 MB so we don't interfere with the ability to | 
|  | * map using contiguous PTEs | 
|  | */ | 
|  | mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1); | 
|  | offset = BIT(VA_BITS_MIN - 3) + (seed & mask); | 
|  |  | 
|  | /* use the top 16 bits to randomize the linear region */ | 
|  | memstart_offset_seed = seed >> 48; | 
|  |  | 
|  | if (!IS_ENABLED(CONFIG_KASAN_VMALLOC) && | 
|  | (IS_ENABLED(CONFIG_KASAN_GENERIC) || | 
|  | IS_ENABLED(CONFIG_KASAN_SW_TAGS))) | 
|  | /* | 
|  | * KASAN without KASAN_VMALLOC does not expect the module region | 
|  | * to intersect the vmalloc region, since shadow memory is | 
|  | * allocated for each module at load time, whereas the vmalloc | 
|  | * region is shadowed by KASAN zero pages. So keep modules | 
|  | * out of the vmalloc region if KASAN is enabled without | 
|  | * KASAN_VMALLOC, and put the kernel well within 4 GB of the | 
|  | * module region. | 
|  | */ | 
|  | return offset % SZ_2G; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) { | 
|  | /* | 
|  | * Randomize the module region over a 2 GB window covering the | 
|  | * kernel. This reduces the risk of modules leaking information | 
|  | * about the address of the kernel itself, but results in | 
|  | * branches between modules and the core kernel that are | 
|  | * resolved via PLTs. (Branches between modules will be | 
|  | * resolved normally.) | 
|  | */ | 
|  | module_range = SZ_2G - (u64)(_end - _stext); | 
|  | module_alloc_base = max((u64)_end + offset - SZ_2G, | 
|  | (u64)MODULES_VADDR); | 
|  | } else { | 
|  | /* | 
|  | * Randomize the module region by setting module_alloc_base to | 
|  | * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE, | 
|  | * _stext) . This guarantees that the resulting region still | 
|  | * covers [_stext, _etext], and that all relative branches can | 
|  | * be resolved without veneers. | 
|  | */ | 
|  | module_range = MODULES_VSIZE - (u64)(_etext - _stext); | 
|  | module_alloc_base = (u64)_etext + offset - MODULES_VSIZE; | 
|  | } | 
|  |  | 
|  | /* use the lower 21 bits to randomize the base of the module region */ | 
|  | module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21; | 
|  | module_alloc_base &= PAGE_MASK; | 
|  |  | 
|  | dcache_clean_inval_poc((unsigned long)&module_alloc_base, | 
|  | (unsigned long)&module_alloc_base + | 
|  | sizeof(module_alloc_base)); | 
|  | dcache_clean_inval_poc((unsigned long)&memstart_offset_seed, | 
|  | (unsigned long)&memstart_offset_seed + | 
|  | sizeof(memstart_offset_seed)); | 
|  |  | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | static int __init kaslr_init(void) | 
|  | { | 
|  | switch (kaslr_status) { | 
|  | case KASLR_ENABLED: | 
|  | pr_info("KASLR enabled\n"); | 
|  | break; | 
|  | case KASLR_DISABLED_CMDLINE: | 
|  | pr_info("KASLR disabled on command line\n"); | 
|  | break; | 
|  | case KASLR_DISABLED_NO_SEED: | 
|  | pr_warn("KASLR disabled due to lack of seed\n"); | 
|  | break; | 
|  | case KASLR_DISABLED_FDT_REMAP: | 
|  | pr_warn("KASLR disabled due to FDT remapping failure\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | core_initcall(kaslr_init) |