|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * USB4 specific functionality | 
|  | * | 
|  | * Copyright (C) 2019, Intel Corporation | 
|  | * Authors: Mika Westerberg <mika.westerberg@linux.intel.com> | 
|  | *	    Rajmohan Mani <rajmohan.mani@intel.com> | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/ktime.h> | 
|  |  | 
|  | #include "sb_regs.h" | 
|  | #include "tb.h" | 
|  |  | 
|  | #define USB4_DATA_DWORDS		16 | 
|  | #define USB4_DATA_RETRIES		3 | 
|  |  | 
|  | enum usb4_switch_op { | 
|  | USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10, | 
|  | USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11, | 
|  | USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12, | 
|  | USB4_SWITCH_OP_NVM_WRITE = 0x20, | 
|  | USB4_SWITCH_OP_NVM_AUTH = 0x21, | 
|  | USB4_SWITCH_OP_NVM_READ = 0x22, | 
|  | USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23, | 
|  | USB4_SWITCH_OP_DROM_READ = 0x24, | 
|  | USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25, | 
|  | }; | 
|  |  | 
|  | enum usb4_sb_target { | 
|  | USB4_SB_TARGET_ROUTER, | 
|  | USB4_SB_TARGET_PARTNER, | 
|  | USB4_SB_TARGET_RETIMER, | 
|  | }; | 
|  |  | 
|  | #define USB4_NVM_READ_OFFSET_MASK	GENMASK(23, 2) | 
|  | #define USB4_NVM_READ_OFFSET_SHIFT	2 | 
|  | #define USB4_NVM_READ_LENGTH_MASK	GENMASK(27, 24) | 
|  | #define USB4_NVM_READ_LENGTH_SHIFT	24 | 
|  |  | 
|  | #define USB4_NVM_SET_OFFSET_MASK	USB4_NVM_READ_OFFSET_MASK | 
|  | #define USB4_NVM_SET_OFFSET_SHIFT	USB4_NVM_READ_OFFSET_SHIFT | 
|  |  | 
|  | #define USB4_DROM_ADDRESS_MASK		GENMASK(14, 2) | 
|  | #define USB4_DROM_ADDRESS_SHIFT		2 | 
|  | #define USB4_DROM_SIZE_MASK		GENMASK(19, 15) | 
|  | #define USB4_DROM_SIZE_SHIFT		15 | 
|  |  | 
|  | #define USB4_NVM_SECTOR_SIZE_MASK	GENMASK(23, 0) | 
|  |  | 
|  | typedef int (*read_block_fn)(void *, unsigned int, void *, size_t); | 
|  | typedef int (*write_block_fn)(void *, const void *, size_t); | 
|  |  | 
|  | static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit, | 
|  | u32 value, int timeout_msec) | 
|  | { | 
|  | ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); | 
|  |  | 
|  | do { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if ((val & bit) == value) | 
|  | return 0; | 
|  |  | 
|  | usleep_range(50, 100); | 
|  | } while (ktime_before(ktime_get(), timeout)); | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | static int usb4_switch_op_read_data(struct tb_switch *sw, void *data, | 
|  | size_t dwords) | 
|  | { | 
|  | if (dwords > USB4_DATA_DWORDS) | 
|  | return -EINVAL; | 
|  |  | 
|  | return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords); | 
|  | } | 
|  |  | 
|  | static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data, | 
|  | size_t dwords) | 
|  | { | 
|  | if (dwords > USB4_DATA_DWORDS) | 
|  | return -EINVAL; | 
|  |  | 
|  | return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords); | 
|  | } | 
|  |  | 
|  | static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata) | 
|  | { | 
|  | return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); | 
|  | } | 
|  |  | 
|  | static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata) | 
|  | { | 
|  | return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1); | 
|  | } | 
|  |  | 
|  | static int usb4_do_read_data(u16 address, void *buf, size_t size, | 
|  | read_block_fn read_block, void *read_block_data) | 
|  | { | 
|  | unsigned int retries = USB4_DATA_RETRIES; | 
|  | unsigned int offset; | 
|  |  | 
|  | do { | 
|  | unsigned int dwaddress, dwords; | 
|  | u8 data[USB4_DATA_DWORDS * 4]; | 
|  | size_t nbytes; | 
|  | int ret; | 
|  |  | 
|  | offset = address & 3; | 
|  | nbytes = min_t(size_t, size + offset, USB4_DATA_DWORDS * 4); | 
|  |  | 
|  | dwaddress = address / 4; | 
|  | dwords = ALIGN(nbytes, 4) / 4; | 
|  |  | 
|  | ret = read_block(read_block_data, dwaddress, data, dwords); | 
|  | if (ret) { | 
|  | if (ret != -ENODEV && retries--) | 
|  | continue; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | nbytes -= offset; | 
|  | memcpy(buf, data + offset, nbytes); | 
|  |  | 
|  | size -= nbytes; | 
|  | address += nbytes; | 
|  | buf += nbytes; | 
|  | } while (size > 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int usb4_do_write_data(unsigned int address, const void *buf, size_t size, | 
|  | write_block_fn write_next_block, void *write_block_data) | 
|  | { | 
|  | unsigned int retries = USB4_DATA_RETRIES; | 
|  | unsigned int offset; | 
|  |  | 
|  | offset = address & 3; | 
|  | address = address & ~3; | 
|  |  | 
|  | do { | 
|  | u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4); | 
|  | u8 data[USB4_DATA_DWORDS * 4]; | 
|  | int ret; | 
|  |  | 
|  | memcpy(data + offset, buf, nbytes); | 
|  |  | 
|  | ret = write_next_block(write_block_data, data, nbytes / 4); | 
|  | if (ret) { | 
|  | if (ret == -ETIMEDOUT) { | 
|  | if (retries--) | 
|  | continue; | 
|  | ret = -EIO; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | size -= nbytes; | 
|  | address += nbytes; | 
|  | buf += nbytes; | 
|  | } while (size > 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status) | 
|  | { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | val = opcode | ROUTER_CS_26_OV; | 
|  | ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (val & ROUTER_CS_26_ONS) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | *status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void usb4_switch_check_wakes(struct tb_switch *sw) | 
|  | { | 
|  | struct tb_port *port; | 
|  | bool wakeup = false; | 
|  | u32 val; | 
|  |  | 
|  | if (!device_may_wakeup(&sw->dev)) | 
|  | return; | 
|  |  | 
|  | if (tb_route(sw)) { | 
|  | if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1)) | 
|  | return; | 
|  |  | 
|  | tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n", | 
|  | (val & ROUTER_CS_6_WOPS) ? "yes" : "no", | 
|  | (val & ROUTER_CS_6_WOUS) ? "yes" : "no"); | 
|  |  | 
|  | wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS); | 
|  | } | 
|  |  | 
|  | /* Check for any connected downstream ports for USB4 wake */ | 
|  | tb_switch_for_each_port(sw, port) { | 
|  | if (!tb_port_has_remote(port)) | 
|  | continue; | 
|  |  | 
|  | if (tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_18, 1)) | 
|  | break; | 
|  |  | 
|  | tb_port_dbg(port, "USB4 wake: %s\n", | 
|  | (val & PORT_CS_18_WOU4S) ? "yes" : "no"); | 
|  |  | 
|  | if (val & PORT_CS_18_WOU4S) | 
|  | wakeup = true; | 
|  | } | 
|  |  | 
|  | if (wakeup) | 
|  | pm_wakeup_event(&sw->dev, 0); | 
|  | } | 
|  |  | 
|  | static bool link_is_usb4(struct tb_port *port) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (!port->cap_usb4) | 
|  | return false; | 
|  |  | 
|  | if (tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_18, 1)) | 
|  | return false; | 
|  |  | 
|  | return !(val & PORT_CS_18_TCM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_setup() - Additional setup for USB4 device | 
|  | * @sw: USB4 router to setup | 
|  | * | 
|  | * USB4 routers need additional settings in order to enable all the | 
|  | * tunneling. This function enables USB and PCIe tunneling if it can be | 
|  | * enabled (e.g the parent switch also supports them). If USB tunneling | 
|  | * is not available for some reason (like that there is Thunderbolt 3 | 
|  | * switch upstream) then the internal xHCI controller is enabled | 
|  | * instead. | 
|  | */ | 
|  | int usb4_switch_setup(struct tb_switch *sw) | 
|  | { | 
|  | struct tb_port *downstream_port; | 
|  | struct tb_switch *parent; | 
|  | bool tbt3, xhci; | 
|  | u32 val = 0; | 
|  | int ret; | 
|  |  | 
|  | usb4_switch_check_wakes(sw); | 
|  |  | 
|  | if (!tb_route(sw)) | 
|  | return 0; | 
|  |  | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | parent = tb_switch_parent(sw); | 
|  | downstream_port = tb_port_at(tb_route(sw), parent); | 
|  | sw->link_usb4 = link_is_usb4(downstream_port); | 
|  | tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3"); | 
|  |  | 
|  | xhci = val & ROUTER_CS_6_HCI; | 
|  | tbt3 = !(val & ROUTER_CS_6_TNS); | 
|  |  | 
|  | tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n", | 
|  | tbt3 ? "yes" : "no", xhci ? "yes" : "no"); | 
|  |  | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) { | 
|  | val |= ROUTER_CS_5_UTO; | 
|  | xhci = false; | 
|  | } | 
|  |  | 
|  | /* Only enable PCIe tunneling if the parent router supports it */ | 
|  | if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) { | 
|  | val |= ROUTER_CS_5_PTO; | 
|  | /* | 
|  | * xHCI can be enabled if PCIe tunneling is supported | 
|  | * and the parent does not have any USB3 dowstream | 
|  | * adapters (so we cannot do USB 3.x tunneling). | 
|  | */ | 
|  | if (xhci) | 
|  | val |= ROUTER_CS_5_HCO; | 
|  | } | 
|  |  | 
|  | /* TBT3 supported by the CM */ | 
|  | val |= ROUTER_CS_5_C3S; | 
|  | /* Tunneling configuration is ready now */ | 
|  | val |= ROUTER_CS_5_CV; | 
|  |  | 
|  | ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR, | 
|  | ROUTER_CS_6_CR, 50); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_read_uid() - Read UID from USB4 router | 
|  | * @sw: USB4 router | 
|  | * @uid: UID is stored here | 
|  | * | 
|  | * Reads 64-bit UID from USB4 router config space. | 
|  | */ | 
|  | int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid) | 
|  | { | 
|  | return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2); | 
|  | } | 
|  |  | 
|  | static int usb4_switch_drom_read_block(void *data, | 
|  | unsigned int dwaddress, void *buf, | 
|  | size_t dwords) | 
|  | { | 
|  | struct tb_switch *sw = data; | 
|  | u8 status = 0; | 
|  | u32 metadata; | 
|  | int ret; | 
|  |  | 
|  | metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK; | 
|  | metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) & | 
|  | USB4_DROM_ADDRESS_MASK; | 
|  |  | 
|  | ret = usb4_switch_op_write_metadata(sw, metadata); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (status) | 
|  | return -EIO; | 
|  |  | 
|  | return usb4_switch_op_read_data(sw, buf, dwords); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM | 
|  | * @sw: USB4 router | 
|  | * @address: Byte address inside DROM to start reading | 
|  | * @buf: Buffer where the DROM content is stored | 
|  | * @size: Number of bytes to read from DROM | 
|  | * | 
|  | * Uses USB4 router operations to read router DROM. For devices this | 
|  | * should always work but for hosts it may return %-EOPNOTSUPP in which | 
|  | * case the host router does not have DROM. | 
|  | */ | 
|  | int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf, | 
|  | size_t size) | 
|  | { | 
|  | return usb4_do_read_data(address, buf, size, | 
|  | usb4_switch_drom_read_block, sw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * Checks whether conditions are met so that lane bonding can be | 
|  | * established with the upstream router. Call only for device routers. | 
|  | */ | 
|  | bool usb4_switch_lane_bonding_possible(struct tb_switch *sw) | 
|  | { | 
|  | struct tb_port *up; | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | up = tb_upstream_port(sw); | 
|  | ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1); | 
|  | if (ret) | 
|  | return false; | 
|  |  | 
|  | return !!(val & PORT_CS_18_BE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_set_wake() - Enabled/disable wake | 
|  | * @sw: USB4 router | 
|  | * @flags: Wakeup flags (%0 to disable) | 
|  | * | 
|  | * Enables/disables router to wake up from sleep. | 
|  | */ | 
|  | int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags) | 
|  | { | 
|  | struct tb_port *port; | 
|  | u64 route = tb_route(sw); | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Enable wakes coming from all USB4 downstream ports (from | 
|  | * child routers). For device routers do this also for the | 
|  | * upstream USB4 port. | 
|  | */ | 
|  | tb_switch_for_each_port(sw, port) { | 
|  | if (!tb_port_is_null(port)) | 
|  | continue; | 
|  | if (!route && tb_is_upstream_port(port)) | 
|  | continue; | 
|  | if (!port->cap_usb4) | 
|  | continue; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4); | 
|  |  | 
|  | if (flags & TB_WAKE_ON_CONNECT) | 
|  | val |= PORT_CS_19_WOC; | 
|  | if (flags & TB_WAKE_ON_DISCONNECT) | 
|  | val |= PORT_CS_19_WOD; | 
|  | if (flags & TB_WAKE_ON_USB4) | 
|  | val |= PORT_CS_19_WOU4; | 
|  |  | 
|  | ret = tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable wakes from PCIe and USB 3.x on this router. Only | 
|  | * needed for device routers. | 
|  | */ | 
|  | if (route) { | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU); | 
|  | if (flags & TB_WAKE_ON_USB3) | 
|  | val |= ROUTER_CS_5_WOU; | 
|  | if (flags & TB_WAKE_ON_PCIE) | 
|  | val |= ROUTER_CS_5_WOP; | 
|  |  | 
|  | ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_set_sleep() - Prepare the router to enter sleep | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * Sets sleep bit for the router. Returns when the router sleep ready | 
|  | * bit has been asserted. | 
|  | */ | 
|  | int usb4_switch_set_sleep(struct tb_switch *sw) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | /* Set sleep bit and wait for sleep ready to be asserted */ | 
|  | ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val |= ROUTER_CS_5_SLP; | 
|  |  | 
|  | ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR, | 
|  | ROUTER_CS_6_SLPR, 500); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_nvm_sector_size() - Return router NVM sector size | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * If the router supports NVM operations this function returns the NVM | 
|  | * sector size in bytes. If NVM operations are not supported returns | 
|  | * %-EOPNOTSUPP. | 
|  | */ | 
|  | int usb4_switch_nvm_sector_size(struct tb_switch *sw) | 
|  | { | 
|  | u32 metadata; | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (status) | 
|  | return status == 0x2 ? -EOPNOTSUPP : -EIO; | 
|  |  | 
|  | ret = usb4_switch_op_read_metadata(sw, &metadata); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return metadata & USB4_NVM_SECTOR_SIZE_MASK; | 
|  | } | 
|  |  | 
|  | static int usb4_switch_nvm_read_block(void *data, | 
|  | unsigned int dwaddress, void *buf, size_t dwords) | 
|  | { | 
|  | struct tb_switch *sw = data; | 
|  | u8 status = 0; | 
|  | u32 metadata; | 
|  | int ret; | 
|  |  | 
|  | metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) & | 
|  | USB4_NVM_READ_LENGTH_MASK; | 
|  | metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) & | 
|  | USB4_NVM_READ_OFFSET_MASK; | 
|  |  | 
|  | ret = usb4_switch_op_write_metadata(sw, metadata); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (status) | 
|  | return -EIO; | 
|  |  | 
|  | return usb4_switch_op_read_data(sw, buf, dwords); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM | 
|  | * @sw: USB4 router | 
|  | * @address: Starting address in bytes | 
|  | * @buf: Read data is placed here | 
|  | * @size: How many bytes to read | 
|  | * | 
|  | * Reads NVM contents of the router. If NVM is not supported returns | 
|  | * %-EOPNOTSUPP. | 
|  | */ | 
|  | int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf, | 
|  | size_t size) | 
|  | { | 
|  | return usb4_do_read_data(address, buf, size, | 
|  | usb4_switch_nvm_read_block, sw); | 
|  | } | 
|  |  | 
|  | static int usb4_switch_nvm_set_offset(struct tb_switch *sw, | 
|  | unsigned int address) | 
|  | { | 
|  | u32 metadata, dwaddress; | 
|  | u8 status = 0; | 
|  | int ret; | 
|  |  | 
|  | dwaddress = address / 4; | 
|  | metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & | 
|  | USB4_NVM_SET_OFFSET_MASK; | 
|  |  | 
|  | ret = usb4_switch_op_write_metadata(sw, metadata); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return status ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | static int usb4_switch_nvm_write_next_block(void *data, const void *buf, | 
|  | size_t dwords) | 
|  | { | 
|  | struct tb_switch *sw = data; | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op_write_data(sw, buf, dwords); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return status ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_nvm_write() - Write to the router NVM | 
|  | * @sw: USB4 router | 
|  | * @address: Start address where to write in bytes | 
|  | * @buf: Pointer to the data to write | 
|  | * @size: Size of @buf in bytes | 
|  | * | 
|  | * Writes @buf to the router NVM using USB4 router operations. If NVM | 
|  | * write is not supported returns %-EOPNOTSUPP. | 
|  | */ | 
|  | int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address, | 
|  | const void *buf, size_t size) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_nvm_set_offset(sw, address); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_do_write_data(address, buf, size, | 
|  | usb4_switch_nvm_write_next_block, sw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_nvm_authenticate() - Authenticate new NVM | 
|  | * @sw: USB4 router | 
|  | * | 
|  | * After the new NVM has been written via usb4_switch_nvm_write(), this | 
|  | * function triggers NVM authentication process. If the authentication | 
|  | * is successful the router is power cycled and the new NVM starts | 
|  | * running. In case of failure returns negative errno. | 
|  | */ | 
|  | int usb4_switch_nvm_authenticate(struct tb_switch *sw) | 
|  | { | 
|  | u8 status = 0; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | switch (status) { | 
|  | case 0x0: | 
|  | tb_sw_dbg(sw, "NVM authentication successful\n"); | 
|  | return 0; | 
|  | case 0x1: | 
|  | return -EINVAL; | 
|  | case 0x2: | 
|  | return -EAGAIN; | 
|  | case 0x3: | 
|  | return -EOPNOTSUPP; | 
|  | default: | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_query_dp_resource() - Query availability of DP IN resource | 
|  | * @sw: USB4 router | 
|  | * @in: DP IN adapter | 
|  | * | 
|  | * For DP tunneling this function can be used to query availability of | 
|  | * DP IN resource. Returns true if the resource is available for DP | 
|  | * tunneling, false otherwise. | 
|  | */ | 
|  | bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in) | 
|  | { | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op_write_metadata(sw, in->port); | 
|  | if (ret) | 
|  | return false; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status); | 
|  | /* | 
|  | * If DP resource allocation is not supported assume it is | 
|  | * always available. | 
|  | */ | 
|  | if (ret == -EOPNOTSUPP) | 
|  | return true; | 
|  | else if (ret) | 
|  | return false; | 
|  |  | 
|  | return !status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_alloc_dp_resource() - Allocate DP IN resource | 
|  | * @sw: USB4 router | 
|  | * @in: DP IN adapter | 
|  | * | 
|  | * Allocates DP IN resource for DP tunneling using USB4 router | 
|  | * operations. If the resource was allocated returns %0. Otherwise | 
|  | * returns negative errno, in particular %-EBUSY if the resource is | 
|  | * already allocated. | 
|  | */ | 
|  | int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in) | 
|  | { | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op_write_metadata(sw, in->port); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status); | 
|  | if (ret == -EOPNOTSUPP) | 
|  | return 0; | 
|  | else if (ret) | 
|  | return ret; | 
|  |  | 
|  | return status ? -EBUSY : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource | 
|  | * @sw: USB4 router | 
|  | * @in: DP IN adapter | 
|  | * | 
|  | * Releases the previously allocated DP IN resource. | 
|  | */ | 
|  | int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in) | 
|  | { | 
|  | u8 status; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_switch_op_write_metadata(sw, in->port); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status); | 
|  | if (ret == -EOPNOTSUPP) | 
|  | return 0; | 
|  | else if (ret) | 
|  | return ret; | 
|  |  | 
|  | return status ? -EIO : 0; | 
|  | } | 
|  |  | 
|  | static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port) | 
|  | { | 
|  | struct tb_port *p; | 
|  | int usb4_idx = 0; | 
|  |  | 
|  | /* Assume port is primary */ | 
|  | tb_switch_for_each_port(sw, p) { | 
|  | if (!tb_port_is_null(p)) | 
|  | continue; | 
|  | if (tb_is_upstream_port(p)) | 
|  | continue; | 
|  | if (!p->link_nr) { | 
|  | if (p == port) | 
|  | break; | 
|  | usb4_idx++; | 
|  | } | 
|  | } | 
|  |  | 
|  | return usb4_idx; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter | 
|  | * @sw: USB4 router | 
|  | * @port: USB4 port | 
|  | * | 
|  | * USB4 routers have direct mapping between USB4 ports and PCIe | 
|  | * downstream adapters where the PCIe topology is extended. This | 
|  | * function returns the corresponding downstream PCIe adapter or %NULL | 
|  | * if no such mapping was possible. | 
|  | */ | 
|  | struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw, | 
|  | const struct tb_port *port) | 
|  | { | 
|  | int usb4_idx = usb4_port_idx(sw, port); | 
|  | struct tb_port *p; | 
|  | int pcie_idx = 0; | 
|  |  | 
|  | /* Find PCIe down port matching usb4_port */ | 
|  | tb_switch_for_each_port(sw, p) { | 
|  | if (!tb_port_is_pcie_down(p)) | 
|  | continue; | 
|  |  | 
|  | if (pcie_idx == usb4_idx) | 
|  | return p; | 
|  |  | 
|  | pcie_idx++; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter | 
|  | * @sw: USB4 router | 
|  | * @port: USB4 port | 
|  | * | 
|  | * USB4 routers have direct mapping between USB4 ports and USB 3.x | 
|  | * downstream adapters where the USB 3.x topology is extended. This | 
|  | * function returns the corresponding downstream USB 3.x adapter or | 
|  | * %NULL if no such mapping was possible. | 
|  | */ | 
|  | struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw, | 
|  | const struct tb_port *port) | 
|  | { | 
|  | int usb4_idx = usb4_port_idx(sw, port); | 
|  | struct tb_port *p; | 
|  | int usb_idx = 0; | 
|  |  | 
|  | /* Find USB3 down port matching usb4_port */ | 
|  | tb_switch_for_each_port(sw, p) { | 
|  | if (!tb_port_is_usb3_down(p)) | 
|  | continue; | 
|  |  | 
|  | if (usb_idx == usb4_idx) | 
|  | return p; | 
|  |  | 
|  | usb_idx++; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_unlock() - Unlock USB4 downstream port | 
|  | * @port: USB4 port to unlock | 
|  | * | 
|  | * Unlocks USB4 downstream port so that the connection manager can | 
|  | * access the router below this port. | 
|  | */ | 
|  | int usb4_port_unlock(struct tb_port *port) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~ADP_CS_4_LCK; | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1); | 
|  | } | 
|  |  | 
|  | static int usb4_port_set_configured(struct tb_port *port, bool configured) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!port->cap_usb4) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (configured) | 
|  | val |= PORT_CS_19_PC; | 
|  | else | 
|  | val &= ~PORT_CS_19_PC; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_configure() - Set USB4 port configured | 
|  | * @port: USB4 router | 
|  | * | 
|  | * Sets the USB4 link to be configured for power management purposes. | 
|  | */ | 
|  | int usb4_port_configure(struct tb_port *port) | 
|  | { | 
|  | return usb4_port_set_configured(port, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_unconfigure() - Set USB4 port unconfigured | 
|  | * @port: USB4 router | 
|  | * | 
|  | * Sets the USB4 link to be unconfigured for power management purposes. | 
|  | */ | 
|  | void usb4_port_unconfigure(struct tb_port *port) | 
|  | { | 
|  | usb4_port_set_configured(port, false); | 
|  | } | 
|  |  | 
|  | static int usb4_set_xdomain_configured(struct tb_port *port, bool configured) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!port->cap_usb4) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (configured) | 
|  | val |= PORT_CS_19_PID; | 
|  | else | 
|  | val &= ~PORT_CS_19_PID; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_19, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_configure_xdomain() - Configure port for XDomain | 
|  | * @port: USB4 port connected to another host | 
|  | * | 
|  | * Marks the USB4 port as being connected to another host. Returns %0 in | 
|  | * success and negative errno in failure. | 
|  | */ | 
|  | int usb4_port_configure_xdomain(struct tb_port *port) | 
|  | { | 
|  | return usb4_set_xdomain_configured(port, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain | 
|  | * @port: USB4 port that was connected to another host | 
|  | * | 
|  | * Clears USB4 port from being marked as XDomain. | 
|  | */ | 
|  | void usb4_port_unconfigure_xdomain(struct tb_port *port) | 
|  | { | 
|  | usb4_set_xdomain_configured(port, false); | 
|  | } | 
|  |  | 
|  | static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit, | 
|  | u32 value, int timeout_msec) | 
|  | { | 
|  | ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec); | 
|  |  | 
|  | do { | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if ((val & bit) == value) | 
|  | return 0; | 
|  |  | 
|  | usleep_range(50, 100); | 
|  | } while (ktime_before(ktime_get(), timeout)); | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords) | 
|  | { | 
|  | if (dwords > USB4_DATA_DWORDS) | 
|  | return -EINVAL; | 
|  |  | 
|  | return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2, | 
|  | dwords); | 
|  | } | 
|  |  | 
|  | static int usb4_port_write_data(struct tb_port *port, const void *data, | 
|  | size_t dwords) | 
|  | { | 
|  | if (dwords > USB4_DATA_DWORDS) | 
|  | return -EINVAL; | 
|  |  | 
|  | return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2, | 
|  | dwords); | 
|  | } | 
|  |  | 
|  | static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target, | 
|  | u8 index, u8 reg, void *buf, u8 size) | 
|  | { | 
|  | size_t dwords = DIV_ROUND_UP(size, 4); | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!port->cap_usb4) | 
|  | return -EINVAL; | 
|  |  | 
|  | val = reg; | 
|  | val |= size << PORT_CS_1_LENGTH_SHIFT; | 
|  | val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; | 
|  | if (target == USB4_SB_TARGET_RETIMER) | 
|  | val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); | 
|  | val |= PORT_CS_1_PND; | 
|  |  | 
|  | ret = tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1, | 
|  | PORT_CS_1_PND, 0, 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (val & PORT_CS_1_NR) | 
|  | return -ENODEV; | 
|  | if (val & PORT_CS_1_RC) | 
|  | return -EIO; | 
|  |  | 
|  | return buf ? usb4_port_read_data(port, buf, dwords) : 0; | 
|  | } | 
|  |  | 
|  | static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target, | 
|  | u8 index, u8 reg, const void *buf, u8 size) | 
|  | { | 
|  | size_t dwords = DIV_ROUND_UP(size, 4); | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!port->cap_usb4) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (buf) { | 
|  | ret = usb4_port_write_data(port, buf, dwords); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | val = reg; | 
|  | val |= size << PORT_CS_1_LENGTH_SHIFT; | 
|  | val |= PORT_CS_1_WNR_WRITE; | 
|  | val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK; | 
|  | if (target == USB4_SB_TARGET_RETIMER) | 
|  | val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT); | 
|  | val |= PORT_CS_1_PND; | 
|  |  | 
|  | ret = tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1, | 
|  | PORT_CS_1_PND, 0, 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_usb4 + PORT_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (val & PORT_CS_1_NR) | 
|  | return -ENODEV; | 
|  | if (val & PORT_CS_1_RC) | 
|  | return -EIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target, | 
|  | u8 index, enum usb4_sb_opcode opcode, int timeout_msec) | 
|  | { | 
|  | ktime_t timeout; | 
|  | u32 val; | 
|  | int ret; | 
|  |  | 
|  | val = opcode; | 
|  | ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val, | 
|  | sizeof(val)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | timeout = ktime_add_ms(ktime_get(), timeout_msec); | 
|  |  | 
|  | do { | 
|  | /* Check results */ | 
|  | ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE, | 
|  | &val, sizeof(val)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | switch (val) { | 
|  | case 0: | 
|  | return 0; | 
|  |  | 
|  | case USB4_SB_OPCODE_ERR: | 
|  | return -EAGAIN; | 
|  |  | 
|  | case USB4_SB_OPCODE_ONS: | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | default: | 
|  | if (val != opcode) | 
|  | return -EIO; | 
|  | break; | 
|  | } | 
|  | } while (ktime_before(ktime_get(), timeout)); | 
|  |  | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_enumerate_retimers() - Send RT broadcast transaction | 
|  | * @port: USB4 port | 
|  | * | 
|  | * This forces the USB4 port to send broadcast RT transaction which | 
|  | * makes the retimers on the link to assign index to themselves. Returns | 
|  | * %0 in case of success and negative errno if there was an error. | 
|  | */ | 
|  | int usb4_port_enumerate_retimers(struct tb_port *port) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | val = USB4_SB_OPCODE_ENUMERATE_RETIMERS; | 
|  | return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0, | 
|  | USB4_SB_OPCODE, &val, sizeof(val)); | 
|  | } | 
|  |  | 
|  | static inline int usb4_port_retimer_op(struct tb_port *port, u8 index, | 
|  | enum usb4_sb_opcode opcode, | 
|  | int timeout_msec) | 
|  | { | 
|  | return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode, | 
|  | timeout_msec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_read() - Read from retimer sideband registers | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @reg: Sideband register to read | 
|  | * @buf: Data from @reg is stored here | 
|  | * @size: Number of bytes to read | 
|  | * | 
|  | * Function reads retimer sideband registers starting from @reg. The | 
|  | * retimer is connected to @port at @index. Returns %0 in case of | 
|  | * success, and read data is copied to @buf. If there is no retimer | 
|  | * present at given @index returns %-ENODEV. In any other failure | 
|  | * returns negative errno. | 
|  | */ | 
|  | int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf, | 
|  | u8 size) | 
|  | { | 
|  | return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf, | 
|  | size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_write() - Write to retimer sideband registers | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @reg: Sideband register to write | 
|  | * @buf: Data that is written starting from @reg | 
|  | * @size: Number of bytes to write | 
|  | * | 
|  | * Writes retimer sideband registers starting from @reg. The retimer is | 
|  | * connected to @port at @index. Returns %0 in case of success. If there | 
|  | * is no retimer present at given @index returns %-ENODEV. In any other | 
|  | * failure returns negative errno. | 
|  | */ | 
|  | int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg, | 
|  | const void *buf, u8 size) | 
|  | { | 
|  | return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf, | 
|  | size); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_is_last() - Is the retimer last on-board retimer | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * | 
|  | * If the retimer at @index is last one (connected directly to the | 
|  | * Type-C port) this function returns %1. If it is not returns %0. If | 
|  | * the retimer is not present returns %-ENODEV. Otherwise returns | 
|  | * negative errno. | 
|  | */ | 
|  | int usb4_port_retimer_is_last(struct tb_port *port, u8 index) | 
|  | { | 
|  | u32 metadata; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER, | 
|  | 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata, | 
|  | sizeof(metadata)); | 
|  | return ret ? ret : metadata & 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * | 
|  | * Reads NVM sector size (in bytes) of a retimer at @index. This | 
|  | * operation can be used to determine whether the retimer supports NVM | 
|  | * upgrade for example. Returns sector size in bytes or negative errno | 
|  | * in case of error. Specifically returns %-ENODEV if there is no | 
|  | * retimer at @index. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index) | 
|  | { | 
|  | u32 metadata; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE, | 
|  | 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata, | 
|  | sizeof(metadata)); | 
|  | return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK; | 
|  | } | 
|  |  | 
|  | static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index, | 
|  | unsigned int address) | 
|  | { | 
|  | u32 metadata, dwaddress; | 
|  | int ret; | 
|  |  | 
|  | dwaddress = address / 4; | 
|  | metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) & | 
|  | USB4_NVM_SET_OFFSET_MASK; | 
|  |  | 
|  | ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata, | 
|  | sizeof(metadata)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET, | 
|  | 500); | 
|  | } | 
|  |  | 
|  | struct retimer_info { | 
|  | struct tb_port *port; | 
|  | u8 index; | 
|  | }; | 
|  |  | 
|  | static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf, | 
|  | size_t dwords) | 
|  |  | 
|  | { | 
|  | const struct retimer_info *info = data; | 
|  | struct tb_port *port = info->port; | 
|  | u8 index = info->index; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_write(port, index, USB4_SB_DATA, | 
|  | buf, dwords * 4); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_port_retimer_op(port, index, | 
|  | USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_write() - Write to retimer NVM | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @address: Byte address where to start the write | 
|  | * @buf: Data to write | 
|  | * @size: Size in bytes how much to write | 
|  | * | 
|  | * Writes @size bytes from @buf to the retimer NVM. Used for NVM | 
|  | * upgrade. Returns %0 if the data was written successfully and negative | 
|  | * errno in case of failure. Specifically returns %-ENODEV if there is | 
|  | * no retimer at @index. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address, | 
|  | const void *buf, size_t size) | 
|  | { | 
|  | struct retimer_info info = { .port = port, .index = index }; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_nvm_set_offset(port, index, address); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_do_write_data(address, buf, size, | 
|  | usb4_port_retimer_nvm_write_next_block, &info); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * | 
|  | * After the new NVM image has been written via usb4_port_retimer_nvm_write() | 
|  | * this function can be used to trigger the NVM upgrade process. If | 
|  | * successful the retimer restarts with the new NVM and may not have the | 
|  | * index set so one needs to call usb4_port_enumerate_retimers() to | 
|  | * force index to be assigned. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | /* | 
|  | * We need to use the raw operation here because once the | 
|  | * authentication completes the retimer index is not set anymore | 
|  | * so we do not get back the status now. | 
|  | */ | 
|  | val = USB4_SB_OPCODE_NVM_AUTH_WRITE; | 
|  | return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, | 
|  | USB4_SB_OPCODE, &val, sizeof(val)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @status: Raw status code read from metadata | 
|  | * | 
|  | * This can be called after usb4_port_retimer_nvm_authenticate() and | 
|  | * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade. | 
|  | * | 
|  | * Returns %0 if the authentication status was successfully read. The | 
|  | * completion metadata (the result) is then stored into @status. If | 
|  | * reading the status fails, returns negative errno. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index, | 
|  | u32 *status) | 
|  | { | 
|  | u32 metadata, val; | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val, | 
|  | sizeof(val)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | switch (val) { | 
|  | case 0: | 
|  | *status = 0; | 
|  | return 0; | 
|  |  | 
|  | case USB4_SB_OPCODE_ERR: | 
|  | ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, | 
|  | &metadata, sizeof(metadata)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK; | 
|  | return 0; | 
|  |  | 
|  | case USB4_SB_OPCODE_ONS: | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | default: | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress, | 
|  | void *buf, size_t dwords) | 
|  | { | 
|  | const struct retimer_info *info = data; | 
|  | struct tb_port *port = info->port; | 
|  | u8 index = info->index; | 
|  | u32 metadata; | 
|  | int ret; | 
|  |  | 
|  | metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT; | 
|  | if (dwords < USB4_DATA_DWORDS) | 
|  | metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT; | 
|  |  | 
|  | ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata, | 
|  | sizeof(metadata)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf, | 
|  | dwords * 4); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_port_retimer_nvm_read() - Read contents of retimer NVM | 
|  | * @port: USB4 port | 
|  | * @index: Retimer index | 
|  | * @address: NVM address (in bytes) to start reading | 
|  | * @buf: Data read from NVM is stored here | 
|  | * @size: Number of bytes to read | 
|  | * | 
|  | * Reads retimer NVM and copies the contents to @buf. Returns %0 if the | 
|  | * read was successful and negative errno in case of failure. | 
|  | * Specifically returns %-ENODEV if there is no retimer at @index. | 
|  | */ | 
|  | int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index, | 
|  | unsigned int address, void *buf, size_t size) | 
|  | { | 
|  | struct retimer_info info = { .port = port, .index = index }; | 
|  |  | 
|  | return usb4_do_read_data(address, buf, size, | 
|  | usb4_port_retimer_nvm_read_block, &info); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate | 
|  | * @port: USB3 adapter port | 
|  | * | 
|  | * Return maximum supported link rate of a USB3 adapter in Mb/s. | 
|  | * Negative errno in case of error. | 
|  | */ | 
|  | int usb4_usb3_port_max_link_rate(struct tb_port *port) | 
|  | { | 
|  | int ret, lr; | 
|  | u32 val; | 
|  |  | 
|  | if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_4, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT; | 
|  | return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_usb3_port_actual_link_rate() - Established USB3 link rate | 
|  | * @port: USB3 adapter port | 
|  | * | 
|  | * Return actual established link rate of a USB3 adapter in Mb/s. If the | 
|  | * link is not up returns %0 and negative errno in case of failure. | 
|  | */ | 
|  | int usb4_usb3_port_actual_link_rate(struct tb_port *port) | 
|  | { | 
|  | int ret, lr; | 
|  | u32 val; | 
|  |  | 
|  | if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_4, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!(val & ADP_USB3_CS_4_ULV)) | 
|  | return 0; | 
|  |  | 
|  | lr = val & ADP_USB3_CS_4_ALR_MASK; | 
|  | return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000; | 
|  | } | 
|  |  | 
|  | static int usb4_usb3_port_cm_request(struct tb_port *port, bool request) | 
|  | { | 
|  | int ret; | 
|  | u32 val; | 
|  |  | 
|  | if (!tb_port_is_usb3_down(port)) | 
|  | return -EINVAL; | 
|  | if (tb_route(port->sw)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (request) | 
|  | val |= ADP_USB3_CS_2_CMR; | 
|  | else | 
|  | val &= ~ADP_USB3_CS_2_CMR; | 
|  |  | 
|  | ret = tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * We can use val here directly as the CMR bit is in the same place | 
|  | * as HCA. Just mask out others. | 
|  | */ | 
|  | val &= ADP_USB3_CS_2_CMR; | 
|  | return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1, | 
|  | ADP_USB3_CS_1_HCA, val, 1500); | 
|  | } | 
|  |  | 
|  | static inline int usb4_usb3_port_set_cm_request(struct tb_port *port) | 
|  | { | 
|  | return usb4_usb3_port_cm_request(port, true); | 
|  | } | 
|  |  | 
|  | static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port) | 
|  | { | 
|  | return usb4_usb3_port_cm_request(port, false); | 
|  | } | 
|  |  | 
|  | static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale) | 
|  | { | 
|  | unsigned long uframes; | 
|  |  | 
|  | uframes = bw * 512UL << scale; | 
|  | return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000); | 
|  | } | 
|  |  | 
|  | static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale) | 
|  | { | 
|  | unsigned long uframes; | 
|  |  | 
|  | /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */ | 
|  | uframes = ((unsigned long)mbps * 1000 *  1000) / 8000; | 
|  | return DIV_ROUND_UP(uframes, 512UL << scale); | 
|  | } | 
|  |  | 
|  | static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port, | 
|  | int *upstream_bw, | 
|  | int *downstream_bw) | 
|  | { | 
|  | u32 val, bw, scale; | 
|  | int ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_port_read(port, &scale, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_3, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | scale &= ADP_USB3_CS_3_SCALE_MASK; | 
|  |  | 
|  | bw = val & ADP_USB3_CS_2_AUBW_MASK; | 
|  | *upstream_bw = usb3_bw_to_mbps(bw, scale); | 
|  |  | 
|  | bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT; | 
|  | *downstream_bw = usb3_bw_to_mbps(bw, scale); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3 | 
|  | * @port: USB3 adapter port | 
|  | * @upstream_bw: Allocated upstream bandwidth is stored here | 
|  | * @downstream_bw: Allocated downstream bandwidth is stored here | 
|  | * | 
|  | * Stores currently allocated USB3 bandwidth into @upstream_bw and | 
|  | * @downstream_bw in Mb/s. Returns %0 in case of success and negative | 
|  | * errno in failure. | 
|  | */ | 
|  | int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw, | 
|  | int *downstream_bw) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = usb4_usb3_port_set_cm_request(port); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw, | 
|  | downstream_bw); | 
|  | usb4_usb3_port_clear_cm_request(port); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port, | 
|  | int *upstream_bw, | 
|  | int *downstream_bw) | 
|  | { | 
|  | u32 val, bw, scale; | 
|  | int ret; | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_1, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = tb_port_read(port, &scale, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_3, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | scale &= ADP_USB3_CS_3_SCALE_MASK; | 
|  |  | 
|  | bw = val & ADP_USB3_CS_1_CUBW_MASK; | 
|  | *upstream_bw = usb3_bw_to_mbps(bw, scale); | 
|  |  | 
|  | bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT; | 
|  | *downstream_bw = usb3_bw_to_mbps(bw, scale); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port, | 
|  | int upstream_bw, | 
|  | int downstream_bw) | 
|  | { | 
|  | u32 val, ubw, dbw, scale; | 
|  | int ret; | 
|  |  | 
|  | /* Read the used scale, hardware default is 0 */ | 
|  | ret = tb_port_read(port, &scale, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_3, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | scale &= ADP_USB3_CS_3_SCALE_MASK; | 
|  | ubw = mbps_to_usb3_bw(upstream_bw, scale); | 
|  | dbw = mbps_to_usb3_bw(downstream_bw, scale); | 
|  |  | 
|  | ret = tb_port_read(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_2, 1); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK); | 
|  | val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT; | 
|  | val |= ubw; | 
|  |  | 
|  | return tb_port_write(port, &val, TB_CFG_PORT, | 
|  | port->cap_adap + ADP_USB3_CS_2, 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3 | 
|  | * @port: USB3 adapter port | 
|  | * @upstream_bw: New upstream bandwidth | 
|  | * @downstream_bw: New downstream bandwidth | 
|  | * | 
|  | * This can be used to set how much bandwidth is allocated for the USB3 | 
|  | * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the | 
|  | * new values programmed to the USB3 adapter allocation registers. If | 
|  | * the values are lower than what is currently consumed the allocation | 
|  | * is set to what is currently consumed instead (consumed bandwidth | 
|  | * cannot be taken away by CM). The actual new values are returned in | 
|  | * @upstream_bw and @downstream_bw. | 
|  | * | 
|  | * Returns %0 in case of success and negative errno if there was a | 
|  | * failure. | 
|  | */ | 
|  | int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw, | 
|  | int *downstream_bw) | 
|  | { | 
|  | int ret, consumed_up, consumed_down, allocate_up, allocate_down; | 
|  |  | 
|  | ret = usb4_usb3_port_set_cm_request(port); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up, | 
|  | &consumed_down); | 
|  | if (ret) | 
|  | goto err_request; | 
|  |  | 
|  | /* Don't allow it go lower than what is consumed */ | 
|  | allocate_up = max(*upstream_bw, consumed_up); | 
|  | allocate_down = max(*downstream_bw, consumed_down); | 
|  |  | 
|  | ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up, | 
|  | allocate_down); | 
|  | if (ret) | 
|  | goto err_request; | 
|  |  | 
|  | *upstream_bw = allocate_up; | 
|  | *downstream_bw = allocate_down; | 
|  |  | 
|  | err_request: | 
|  | usb4_usb3_port_clear_cm_request(port); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth | 
|  | * @port: USB3 adapter port | 
|  | * @upstream_bw: New allocated upstream bandwidth | 
|  | * @downstream_bw: New allocated downstream bandwidth | 
|  | * | 
|  | * Releases USB3 allocated bandwidth down to what is actually consumed. | 
|  | * The new bandwidth is returned in @upstream_bw and @downstream_bw. | 
|  | * | 
|  | * Returns 0% in success and negative errno in case of failure. | 
|  | */ | 
|  | int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw, | 
|  | int *downstream_bw) | 
|  | { | 
|  | int ret, consumed_up, consumed_down; | 
|  |  | 
|  | ret = usb4_usb3_port_set_cm_request(port); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up, | 
|  | &consumed_down); | 
|  | if (ret) | 
|  | goto err_request; | 
|  |  | 
|  | /* | 
|  | * Always keep 1000 Mb/s to make sure xHCI has at least some | 
|  | * bandwidth available for isochronous traffic. | 
|  | */ | 
|  | if (consumed_up < 1000) | 
|  | consumed_up = 1000; | 
|  | if (consumed_down < 1000) | 
|  | consumed_down = 1000; | 
|  |  | 
|  | ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up, | 
|  | consumed_down); | 
|  | if (ret) | 
|  | goto err_request; | 
|  |  | 
|  | *upstream_bw = consumed_up; | 
|  | *downstream_bw = consumed_down; | 
|  |  | 
|  | err_request: | 
|  | usb4_usb3_port_clear_cm_request(port); | 
|  | return ret; | 
|  | } |