blob: fb9d05f49a13df7712917a503d89c4cdebb5283a [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 - Google LLC
* Author: Quentin Perret <qperret@google.com>
*/
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/interval_tree_generic.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/kmemleak.h>
#include <linux/kvm_host.h>
#include <asm/kvm_mmu.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/of_address.h>
#include <linux/of_fdt.h>
#include <linux/of_reserved_mem.h>
#include <linux/platform_device.h>
#include <linux/sort.h>
#include <asm/kvm_host.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_pkvm.h>
#include <asm/kvm_pkvm_module.h>
#include <asm/patching.h>
#include <asm/setup.h>
#include <kvm/device.h>
#include <linux/init_syscalls.h>
#include <uapi/linux/mount.h>
#include "hyp_constants.h"
#include "hyp_trace.h"
#define PKVM_DEVICE_ASSIGN_COMPAT "pkvm,device-assignment"
DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
static phys_addr_t pvmfw_base;
static phys_addr_t pvmfw_size;
static struct pkvm_moveable_reg *moveable_regs = kvm_nvhe_sym(pkvm_moveable_regs);
static struct memblock_region *hyp_memory = kvm_nvhe_sym(hyp_memory);
static unsigned int *hyp_memblock_nr_ptr = &kvm_nvhe_sym(hyp_memblock_nr);
phys_addr_t hyp_mem_base;
phys_addr_t hyp_mem_size;
extern struct pkvm_device *kvm_nvhe_sym(registered_devices);
extern u32 kvm_nvhe_sym(registered_devices_nr);
static int cmp_hyp_memblock(const void *p1, const void *p2)
{
const struct memblock_region *r1 = p1;
const struct memblock_region *r2 = p2;
return r1->base < r2->base ? -1 : (r1->base > r2->base);
}
static void __init sort_memblock_regions(void)
{
sort(hyp_memory,
*hyp_memblock_nr_ptr,
sizeof(struct memblock_region),
cmp_hyp_memblock,
NULL);
}
static int __init register_memblock_regions(void)
{
struct memblock_region *reg;
for_each_mem_region(reg) {
if (*hyp_memblock_nr_ptr >= HYP_MEMBLOCK_REGIONS)
return -ENOMEM;
hyp_memory[*hyp_memblock_nr_ptr] = *reg;
(*hyp_memblock_nr_ptr)++;
}
sort_memblock_regions();
return 0;
}
static int cmp_moveable_reg(const void *p1, const void *p2)
{
const struct pkvm_moveable_reg *r1 = p1;
const struct pkvm_moveable_reg *r2 = p2;
/*
* Moveable regions may overlap, so put the largest one first when start
* addresses are equal to allow a simpler walk from e.g.
* host_stage2_unmap_unmoveable_regs().
*/
if (r1->start < r2->start)
return -1;
else if (r1->start > r2->start)
return 1;
else if (r1->size > r2->size)
return -1;
else if (r1->size < r2->size)
return 1;
return 0;
}
static void __init sort_moveable_regs(void)
{
sort(moveable_regs,
kvm_nvhe_sym(pkvm_moveable_regs_nr),
sizeof(struct pkvm_moveable_reg),
cmp_moveable_reg,
NULL);
}
static int __init register_moveable_fdt_resource(struct device_node *np,
enum pkvm_moveable_reg_type type)
{
struct resource res;
u64 start, size;
unsigned int j = 0;
unsigned int i = kvm_nvhe_sym(pkvm_moveable_regs_nr);
while(!of_address_to_resource(np, j, &res)) {
if (i >= PKVM_NR_MOVEABLE_REGS)
return -ENOMEM;
start = res.start;
size = resource_size(&res);
if (!PAGE_ALIGNED(start) || !PAGE_ALIGNED(size))
return -EINVAL;
moveable_regs[i].start = start;
moveable_regs[i].size = size;
moveable_regs[i].type = type;
i++;
j++;
}
kvm_nvhe_sym(pkvm_moveable_regs_nr) = i;
return 0;
}
static int __init register_moveable_regions(void)
{
struct memblock_region *reg;
struct device_node *np;
int i = 0, ret = 0, idx = 0;
for_each_mem_region(reg) {
if (i >= PKVM_NR_MOVEABLE_REGS)
return -ENOMEM;
moveable_regs[i].start = reg->base;
moveable_regs[i].size = reg->size;
moveable_regs[i].type = PKVM_MREG_MEMORY;
i++;
}
kvm_nvhe_sym(pkvm_moveable_regs_nr) = i;
for_each_compatible_node(np, NULL, "pkvm,protected-region") {
ret = register_moveable_fdt_resource(np, PKVM_MREG_PROTECTED_RANGE);
if (ret)
goto out_fail;
}
for_each_compatible_node(np, NULL, PKVM_DEVICE_ASSIGN_COMPAT) {
struct of_phandle_args args;
while (!of_parse_phandle_with_fixed_args(np, "devices", 1, idx, &args)) {
idx++;
ret = register_moveable_fdt_resource(args.np, PKVM_MREG_ASSIGN_MMIO);
of_node_put(args.np);
if (ret)
goto out_fail;
}
}
sort_moveable_regs();
return ret;
out_fail:
of_node_put(np);
kvm_nvhe_sym(pkvm_moveable_regs_nr) = 0;
return ret;
}
static int __init early_hyp_lm_size_mb_cfg(char *arg)
{
return kstrtoull(arg, 10, &kvm_nvhe_sym(hyp_lm_size_mb));
}
early_param("kvm-arm.hyp_lm_size_mb", early_hyp_lm_size_mb_cfg);
void __init kvm_hyp_reserve(void)
{
u64 hyp_mem_pages = 0;
int ret;
if (!is_hyp_mode_available() || is_kernel_in_hyp_mode())
return;
if (kvm_get_mode() != KVM_MODE_PROTECTED)
return;
ret = register_memblock_regions();
if (ret) {
*hyp_memblock_nr_ptr = 0;
kvm_err("Failed to register hyp memblocks: %d\n", ret);
return;
}
ret = register_moveable_regions();
if (ret) {
*hyp_memblock_nr_ptr = 0;
kvm_err("Failed to register pkvm moveable regions: %d\n", ret);
return;
}
hyp_mem_pages += hyp_s1_pgtable_pages();
hyp_mem_pages += host_s2_pgtable_pages();
hyp_mem_pages += hyp_vm_table_pages();
hyp_mem_pages += hyp_vmemmap_pages(STRUCT_HYP_PAGE_SIZE);
hyp_mem_pages += pkvm_selftest_pages();
hyp_mem_pages += hyp_ffa_proxy_pages();
/*
* Try to allocate a PMD-aligned region to reduce TLB pressure once
* this is unmapped from the host stage-2, and fallback to PAGE_SIZE.
*/
hyp_mem_size = hyp_mem_pages << PAGE_SHIFT;
hyp_mem_base = memblock_phys_alloc(ALIGN(hyp_mem_size, PMD_SIZE),
PMD_SIZE);
if (!hyp_mem_base)
hyp_mem_base = memblock_phys_alloc(hyp_mem_size, PAGE_SIZE);
else
hyp_mem_size = ALIGN(hyp_mem_size, PMD_SIZE);
if (!hyp_mem_base) {
kvm_err("Failed to reserve hyp memory\n");
return;
}
kvm_info("Reserved %lld MiB at 0x%llx\n", hyp_mem_size >> 20,
hyp_mem_base);
}
static void __pkvm_vcpu_hyp_created(struct kvm_vcpu *vcpu)
{
if (kvm_vm_is_protected(vcpu->kvm))
vcpu->arch.sve_state = NULL;
vcpu_set_flag(vcpu, VCPU_PKVM_FINALIZED);
}
static int __pkvm_create_hyp_vcpu(struct kvm_vcpu *host_vcpu)
{
pkvm_handle_t handle = host_vcpu->kvm->arch.pkvm.handle;
struct kvm_hyp_req *hyp_reqs;
int ret;
init_hyp_stage2_memcache(&host_vcpu->arch.stage2_mc);
hyp_reqs = (struct kvm_hyp_req *)__get_free_page(GFP_KERNEL_ACCOUNT);
if (!hyp_reqs)
return -ENOMEM;
ret = kvm_share_hyp(hyp_reqs, hyp_reqs + 1);
if (ret)
goto err_free_reqs;
host_vcpu->arch.hyp_reqs = hyp_reqs;
ret = kvm_call_refill_hyp_nvhe(__pkvm_init_vcpu, handle, host_vcpu);
if (!ret) {
__pkvm_vcpu_hyp_created(host_vcpu);
return 0;
}
kvm_unshare_hyp(hyp_reqs, hyp_reqs + 1);
err_free_reqs:
free_page((unsigned long)hyp_reqs);
host_vcpu->arch.hyp_reqs = NULL;
return ret;
}
/*
* Handle broken down huge pages which have not been reported to the
* kvm_pinned_page.
*/
int pkvm_call_hyp_nvhe_ppage(struct kvm_pinned_page *ppage,
int (*call_hyp_nvhe)(u64 pfn, u64 gfn, u8 order, void* args),
void *args, bool unmap)
{
size_t page_size, size = PAGE_SIZE << ppage->order;
u64 pfn = page_to_pfn(ppage->page);
u8 order = ppage->order;
u64 gfn = ppage->ipa >> PAGE_SHIFT;
/* We already know this huge-page has been broken down in the stage-2 */
if (ppage->pins < (1 << order))
order = 0;
while (size) {
int err = call_hyp_nvhe(pfn, gfn, order, args);
switch (err) {
/* The stage-2 huge page has been broken down */
case -E2BIG:
if (order)
order = 0;
else
/* Something is really wrong ... */
return -EINVAL;
break;
/* This has been unmapped already */
case -ENOENT:
/*
* We are not supposed to lose track of PAGE_SIZE pinned
* page.
*/
if (!ppage->order)
return -EINVAL;
fallthrough;
case 0:
page_size = PAGE_SIZE << order;
gfn += 1 << order;
pfn += 1 << order;
if (page_size > size)
return -EINVAL;
/* If -ENOENT, the pin was already dropped. */
if (unmap && !err)
ppage->pins -= 1 << order;
if (!ppage->pins)
return 0;
size -= page_size;
break;
default:
return err;
}
}
return 0;
}
static int __reclaim_dying_guest_page_call(u64 pfn, u64 gfn, u8 order, void *args)
{
struct kvm *host_kvm = args;
return kvm_call_hyp_nvhe(__pkvm_reclaim_dying_guest_page,
host_kvm->arch.pkvm.handle,
pfn, gfn, order);
}
static void __pkvm_destroy_hyp_vm(struct kvm *host_kvm)
{
struct mm_struct *mm = current->mm;
struct kvm_pinned_page *ppage;
struct kvm_vcpu *host_vcpu;
unsigned long pages = 0;
unsigned long idx;
if (!pkvm_is_hyp_created(host_kvm))
goto out_free;
WARN_ON(kvm_call_hyp_nvhe(__pkvm_start_teardown_vm, host_kvm->arch.pkvm.handle));
ppage = kvm_pinned_pages_iter_first(&host_kvm->arch.pkvm.pinned_pages, 0, ~(0UL));
while (ppage) {
struct kvm_pinned_page *next;
u16 pins = ppage->pins;
WARN_ON(pkvm_call_hyp_nvhe_ppage(ppage,
__reclaim_dying_guest_page_call,
host_kvm, true));
cond_resched();
unpin_user_pages_dirty_lock(&ppage->page, 1, true);
next = kvm_pinned_pages_iter_next(ppage, 0, ~(0UL));
kvm_pinned_pages_remove(ppage, &host_kvm->arch.pkvm.pinned_pages);
pages += pins;
kfree(ppage);
ppage = next;
}
account_locked_vm(mm, pages, false);
WARN_ON(kvm_call_hyp_nvhe(__pkvm_finalize_teardown_vm, host_kvm->arch.pkvm.handle));
out_free:
host_kvm->arch.pkvm.handle = 0;
atomic64_sub(host_kvm->arch.pkvm.stage2_teardown_mc.nr_pages << PAGE_SHIFT,
&host_kvm->stat.protected_hyp_mem);
free_hyp_memcache(&host_kvm->arch.pkvm.stage2_teardown_mc);
kvm_for_each_vcpu(idx, host_vcpu, host_kvm) {
struct kvm_hyp_req *hyp_reqs = host_vcpu->arch.hyp_reqs;
if (!hyp_reqs)
continue;
kvm_unshare_hyp(hyp_reqs, hyp_reqs + 1);
host_vcpu->arch.hyp_reqs = NULL;
free_page((unsigned long)hyp_reqs);
}
}
/*
* Allocates and donates memory for hypervisor VM structs at EL2.
*
* Allocates space for the VM state, which includes the hyp vm as well as
* the hyp vcpus.
*
* Stores an opaque handler in the kvm struct for future reference.
*
* Return 0 on success, negative error code on failure.
*/
static int __pkvm_create_hyp_vm(struct kvm *host_kvm)
{
size_t pgd_sz;
void *pgd;
int ret;
if (host_kvm->created_vcpus < 1)
return -EINVAL;
pgd_sz = kvm_pgtable_stage2_pgd_size(host_kvm->arch.mmu.vtcr);
/*
* The PGD pages will be reclaimed using a hyp_memcache which implies
* page granularity. So, use alloc_pages_exact() to get individual
* refcounts.
*/
pgd = alloc_pages_exact(pgd_sz, GFP_KERNEL_ACCOUNT);
if (!pgd)
return -ENOMEM;
atomic64_add(pgd_sz, &host_kvm->stat.protected_hyp_mem);
init_hyp_stage2_memcache(&host_kvm->arch.pkvm.stage2_teardown_mc);
/* Donate the VM memory to hyp and let hyp initialize it. */
ret = kvm_call_refill_hyp_nvhe(__pkvm_init_vm, host_kvm, pgd);
if (ret < 0)
goto free_pgd;
WRITE_ONCE(host_kvm->arch.pkvm.handle, ret);
kvm_account_pgtable_pages(pgd, pgd_sz >> PAGE_SHIFT);
return 0;
free_pgd:
free_pages_exact(pgd, pgd_sz);
atomic64_sub(pgd_sz, &host_kvm->stat.protected_hyp_mem);
return ret;
}
bool pkvm_is_hyp_created(struct kvm *host_kvm)
{
return READ_ONCE(host_kvm->arch.pkvm.handle);
}
int pkvm_create_hyp_vm(struct kvm *host_kvm)
{
int ret = 0;
mutex_lock(&host_kvm->arch.config_lock);
if (!pkvm_is_hyp_created(host_kvm))
ret = __pkvm_create_hyp_vm(host_kvm);
mutex_unlock(&host_kvm->arch.config_lock);
return ret;
}
int pkvm_create_hyp_vcpu(struct kvm_vcpu *vcpu)
{
int ret = 0;
mutex_lock(&vcpu->kvm->arch.config_lock);
if (!vcpu_get_flag(vcpu, VCPU_PKVM_FINALIZED))
ret = __pkvm_create_hyp_vcpu(vcpu);
mutex_unlock(&vcpu->kvm->arch.config_lock);
return ret;
}
void pkvm_destroy_hyp_vm(struct kvm *host_kvm)
{
mutex_lock(&host_kvm->arch.config_lock);
__pkvm_destroy_hyp_vm(host_kvm);
mutex_unlock(&host_kvm->arch.config_lock);
}
int pkvm_init_host_vm(struct kvm *host_kvm, unsigned long type)
{
if (!(type & KVM_VM_TYPE_ARM_PROTECTED))
return 0;
if (!is_protected_kvm_enabled())
return -EINVAL;
host_kvm->arch.pkvm.pvmfw_load_addr = PVMFW_INVALID_LOAD_ADDR;
host_kvm->arch.pkvm.enabled = true;
return 0;
}
static int pkvm_register_device(struct of_phandle_args *args,
struct pkvm_device *dev)
{
struct device_node *np = args->np;
struct of_phandle_args iommu_spec;
u32 group_id = args->args[0];
struct resource res;
u64 base, size, iommu_id;
unsigned int j = 0;
/* Parse regs */
while (!of_address_to_resource(np, j, &res)) {
if (j >= PKVM_DEVICE_MAX_RESOURCE)
return -E2BIG;
base = res.start;
size = resource_size(&res);
if (!PAGE_ALIGNED(base) || !PAGE_ALIGNED(size))
return -EINVAL;
dev->resources[j].base = base;
dev->resources[j].size = size;
j++;
}
dev->nr_resources = j;
/* Parse iommus */
j = 0;
while (!of_parse_phandle_with_args(np, "iommus",
"#iommu-cells",
j, &iommu_spec)) {
if (iommu_spec.args_count != 1) {
kvm_err("[Devices] Unsupported binding for %s, expected <&iommu id>",
np->full_name);
return -EINVAL;
}
if (j >= PKVM_DEVICE_MAX_RESOURCE) {
of_node_put(iommu_spec.np);
return -E2BIG;
}
iommu_id = kvm_get_iommu_id_by_of(iommu_spec.np);
dev->iommus[j].id = iommu_id;
dev->iommus[j].endpoint = iommu_spec.args[0];
of_node_put(iommu_spec.np);
j++;
}
dev->nr_iommus = j;
dev->ctxt = NULL;
dev->group_id = group_id;
return 0;
}
static int pkvm_init_devices(void)
{
struct device_node *np;
int idx = 0, ret = 0, dev_cnt = 0;
size_t dev_sz;
struct pkvm_device *dev_base;
for_each_compatible_node (np, NULL, PKVM_DEVICE_ASSIGN_COMPAT) {
struct of_phandle_args args;
while (!of_parse_phandle_with_fixed_args(np, "devices", 1, dev_cnt, &args)) {
dev_cnt++;
of_node_put(args.np);
}
}
kvm_info("Found %d assignable devices", dev_cnt);
if (!dev_cnt)
return 0;
dev_sz = PAGE_ALIGN(size_mul(sizeof(struct pkvm_device), dev_cnt));
dev_base = alloc_pages_exact(dev_sz, GFP_KERNEL_ACCOUNT);
if (!dev_base)
return -ENOMEM;
for_each_compatible_node(np, NULL, PKVM_DEVICE_ASSIGN_COMPAT) {
struct of_phandle_args args;
while (!of_parse_phandle_with_fixed_args(np, "devices", 1, idx, &args)) {
ret = pkvm_register_device(&args, &dev_base[idx]);
of_node_put(args.np);
if (ret) {
of_node_put(np);
goto out_free;
}
idx++;
}
}
kvm_nvhe_sym(registered_devices_nr) = dev_cnt;
kvm_nvhe_sym(registered_devices) = dev_base;
return ret;
out_free:
free_pages_exact(dev_base, dev_sz);
return ret;
}
static void __init _kvm_host_prot_finalize(void *arg)
{
int *err = arg;
if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
WRITE_ONCE(*err, -EINVAL);
}
static int __init pkvm_drop_host_privileges(void)
{
int ret = 0;
/*
* Flip the static key upfront as that may no longer be possible
* once the host stage 2 is installed.
*/
static_branch_enable(&kvm_protected_mode_initialized);
on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
return ret;
}
static int __init pkvm_firmware_rmem_clear(void);
static int __init finalize_pkvm(void)
{
int ret;
if (!is_protected_kvm_enabled() || !is_kvm_arm_initialised()) {
pkvm_firmware_rmem_clear();
return 0;
}
/*
* Modules can play an essential part in the pKVM protection. All of
* them must properly load to enable protected VMs.
*/
if (pkvm_load_early_modules())
pkvm_firmware_rmem_clear();
ret = kvm_iommu_init_driver();
if (ret) {
pr_err("Failed to init KVM IOMMU driver: %d\n", ret);
pkvm_firmware_rmem_clear();
}
ret = pkvm_init_devices();
if (ret) {
pr_err("Failed to init kvm devices %d\n", ret);
pkvm_firmware_rmem_clear();
}
ret = kvm_call_hyp_nvhe(__pkvm_devices_init);
if (ret)
pr_warn("Assignable devices failed to initialize in the hypervisor %d", ret);
/*
* Exclude HYP sections from kmemleak so that they don't get peeked
* at, which would end badly once inaccessible.
*/
kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
kmemleak_free_part(__hyp_data_start, __hyp_data_end - __hyp_data_start);
kmemleak_free_part(__hyp_rodata_start, __hyp_rodata_end - __hyp_rodata_start);
kmemleak_free_part_phys(hyp_mem_base, hyp_mem_size);
kvm_s2_ptdump_host_create_debugfs();
ret = pkvm_drop_host_privileges();
if (ret) {
pr_err("Failed to finalize Hyp protection: %d\n", ret);
kvm_iommu_remove_driver();
}
return 0;
}
device_initcall_sync(finalize_pkvm);
void pkvm_host_reclaim_page(struct kvm *host_kvm, phys_addr_t ipa)
{
struct kvm_pinned_page *ppage;
struct mm_struct *mm = current->mm;
write_lock(&host_kvm->mmu_lock);
ppage = kvm_pinned_pages_iter_first(&host_kvm->arch.pkvm.pinned_pages,
ipa, ipa + PAGE_SIZE - 1);
if (ppage) {
if (ppage->pins)
ppage->pins--;
else
WARN_ON(1);
if (!ppage->pins)
kvm_pinned_pages_remove(ppage,
&host_kvm->arch.pkvm.pinned_pages);
}
write_unlock(&host_kvm->mmu_lock);
WARN_ON(!ppage);
if (!ppage)
return;
account_locked_vm(mm, 1, false);
unpin_user_pages_dirty_lock(&ppage->page, 1, true);
kfree(ppage);
}
static int __init pkvm_firmware_rmem_err(struct reserved_mem *rmem,
const char *reason)
{
phys_addr_t end = rmem->base + rmem->size;
kvm_err("Ignoring pkvm guest firmware memory reservation [%pa - %pa]: %s\n",
&rmem->base, &end, reason);
return -EINVAL;
}
static int __init pkvm_firmware_rmem_init(struct reserved_mem *rmem)
{
unsigned long node = rmem->fdt_node;
if (pvmfw_size)
return pkvm_firmware_rmem_err(rmem, "duplicate reservation");
if (!of_get_flat_dt_prop(node, "no-map", NULL))
return pkvm_firmware_rmem_err(rmem, "missing \"no-map\" property");
if (of_get_flat_dt_prop(node, "reusable", NULL))
return pkvm_firmware_rmem_err(rmem, "\"reusable\" property unsupported");
if (!PAGE_ALIGNED(rmem->base))
return pkvm_firmware_rmem_err(rmem, "base is not page-aligned");
if (!PAGE_ALIGNED(rmem->size))
return pkvm_firmware_rmem_err(rmem, "size is not page-aligned");
pvmfw_size = kvm_nvhe_sym(pvmfw_size) = rmem->size;
pvmfw_base = kvm_nvhe_sym(pvmfw_base) = rmem->base;
return 0;
}
RESERVEDMEM_OF_DECLARE(pkvm_firmware, "linux,pkvm-guest-firmware-memory",
pkvm_firmware_rmem_init);
static int __init pkvm_firmware_rmem_clear(void)
{
void *addr;
phys_addr_t size;
if (likely(!pvmfw_size))
return 0;
kvm_info("Clearing pKVM firmware memory\n");
size = pvmfw_size;
addr = memremap(pvmfw_base, size, MEMREMAP_WB);
if (!addr)
return -EINVAL;
memset(addr, 0, size);
dcache_clean_poc((unsigned long)addr, (unsigned long)addr + size);
memunmap(addr);
return 0;
}
static int pkvm_vm_ioctl_set_fw_ipa(struct kvm *kvm, u64 ipa)
{
int ret = 0;
if (!pvmfw_size)
return -EINVAL;
mutex_lock(&kvm->lock);
if (kvm->arch.pkvm.handle) {
ret = -EBUSY;
goto out_unlock;
}
kvm->arch.pkvm.pvmfw_load_addr = ipa;
out_unlock:
mutex_unlock(&kvm->lock);
return ret;
}
static int pkvm_vm_ioctl_info(struct kvm *kvm,
struct kvm_protected_vm_info __user *info)
{
struct kvm_protected_vm_info kinfo = {
.firmware_size = pvmfw_size,
};
return copy_to_user(info, &kinfo, sizeof(kinfo)) ? -EFAULT : 0;
}
int pkvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
if (!kvm_vm_is_protected(kvm))
return -EINVAL;
if (cap->args[1] || cap->args[2] || cap->args[3])
return -EINVAL;
switch (cap->flags) {
case KVM_CAP_ARM_PROTECTED_VM_FLAGS_SET_FW_IPA:
return pkvm_vm_ioctl_set_fw_ipa(kvm, cap->args[0]);
case KVM_CAP_ARM_PROTECTED_VM_FLAGS_INFO:
return pkvm_vm_ioctl_info(kvm, (void __force __user *)cap->args[0]);
default:
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_MODULES
static char early_pkvm_modules[COMMAND_LINE_SIZE] __initdata;
static int __init early_pkvm_modules_cfg(char *arg)
{
/*
* Loading pKVM modules with kvm-arm.protected_modules is deprecated
* Use kvm-arm.protected_modules=<module1>,<module2>
*/
if (!arg)
return -EINVAL;
strscpy(early_pkvm_modules, arg, COMMAND_LINE_SIZE);
return 0;
}
early_param("kvm-arm.protected_modules", early_pkvm_modules_cfg);
static void free_modprobe_argv(struct subprocess_info *info)
{
kfree(info->argv);
}
/*
* Heavily inspired by request_module(). The latest couldn't be reused though as
* the feature can be disabled depending on umh configuration. Here some
* security is enforced by making sure this can be called only when pKVM is
* enabled, not yet completely initialized.
*/
static int __init __pkvm_request_early_module(char *module_name,
char *module_path)
{
char *modprobe_path = CONFIG_MODPROBE_PATH;
struct subprocess_info *info;
static char *envp[] = {
"HOME=/",
"TERM=linux",
"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
NULL
};
static bool proc;
char **argv;
int idx = 0;
if (!is_protected_kvm_enabled())
return -EACCES;
if (static_branch_likely(&kvm_protected_mode_initialized))
return -EACCES;
argv = kmalloc(sizeof(char *) * 7, GFP_KERNEL);
if (!argv)
return -ENOMEM;
argv[idx++] = modprobe_path;
argv[idx++] = "-q";
if (*module_path != '\0') {
argv[idx++] = "-d";
argv[idx++] = module_path;
}
argv[idx++] = "--";
argv[idx++] = module_name;
argv[idx++] = NULL;
info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
NULL, free_modprobe_argv, NULL);
if (!info)
goto err;
/* Even with CONFIG_STATIC_USERMODEHELPER we really want this path */
info->path = modprobe_path;
if (!proc) {
wait_for_initramfs();
if (init_mount("proc", "/proc", "proc",
MS_SILENT | MS_NOEXEC | MS_NOSUID, NULL))
pr_warn("Couldn't mount /proc, pKVM module parameters will be ignored\n");
proc = true;
}
return call_usermodehelper_exec(info, UMH_WAIT_PROC | UMH_KILLABLE);
err:
kfree(argv);
return -ENOMEM;
}
static int __init pkvm_request_early_module(char *module_name, char *module_path)
{
int err = __pkvm_request_early_module(module_name, module_path);
if (!err)
return 0;
/* Already tried the default path */
if (*module_path == '\0')
return err;
pr_info("loading %s from %s failed, fallback to the default path\n",
module_name, module_path);
return __pkvm_request_early_module(module_name, "");
}
static void pkvm_el2_mod_free(void);
int __init pkvm_load_early_modules(void)
{
char *token, *buf = early_pkvm_modules;
char *module_path = CONFIG_PKVM_MODULE_PATH;
int err = 0;
while (true) {
token = strsep(&buf, ",");
if (!token)
break;
if (*token) {
err = pkvm_request_early_module(token, module_path);
if (err) {
pr_err("Failed to load pkvm module %s: %d\n",
token, err);
goto out;
}
}
if (buf)
*(buf - 1) = ',';
}
out:
pkvm_el2_mod_free();
return err;
}
static LIST_HEAD(pkvm_modules);
static void pkvm_el2_mod_add(struct pkvm_el2_module *mod)
{
INIT_LIST_HEAD(&mod->node);
list_add(&mod->node, &pkvm_modules);
}
static void pkvm_el2_mod_free(void)
{
struct pkvm_el2_sym *sym, *tmp;
struct pkvm_el2_module *mod;
list_for_each_entry(mod, &pkvm_modules, node) {
list_for_each_entry_safe(sym, tmp, &mod->ext_symbols, node) {
list_del(&sym->node);
kfree(sym->name);
kfree(sym);
}
}
}
static struct module *pkvm_el2_mod_to_module(struct pkvm_el2_module *hyp_mod)
{
struct mod_arch_specific *arch;
arch = container_of(hyp_mod, struct mod_arch_specific, hyp);
return container_of(arch, struct module, arch);
}
#ifdef CONFIG_PROTECTED_NVHE_STACKTRACE
unsigned long pkvm_el2_mod_kern_va(unsigned long addr)
{
struct pkvm_el2_module *mod;
list_for_each_entry(mod, &pkvm_modules, node) {
unsigned long hyp_va = (unsigned long)mod->hyp_va;
size_t len = (unsigned long)mod->sections.end -
(unsigned long)mod->sections.start;
if (addr >= hyp_va && addr < (hyp_va + len))
return (unsigned long)mod->sections.start +
(addr - hyp_va);
}
return 0;
}
#else
unsigned long pkvm_el2_mod_kern_va(unsigned long addr) { return 0; }
#endif
static struct pkvm_el2_module *pkvm_el2_mod_lookup_symbol(const char *name,
unsigned long *addr)
{
struct pkvm_el2_module *hyp_mod;
unsigned long __addr;
list_for_each_entry(hyp_mod, &pkvm_modules, node) {
struct module *mod = pkvm_el2_mod_to_module(hyp_mod);
__addr = find_kallsyms_symbol_value(mod, name);
if (!__addr)
continue;
*addr = __addr;
return hyp_mod;
}
return NULL;
}
static bool within_pkvm_module_section(struct pkvm_module_section *section,
unsigned long addr)
{
return (addr > (unsigned long)section->start) &&
(addr < (unsigned long)section->end);
}
static int pkvm_reloc_imported_symbol(struct pkvm_el2_module *importer,
struct pkvm_el2_sym *sym,
unsigned long hyp_dst)
{
s64 val, val_max = (s64)(~(BIT(25) - 1)) << 2;
u32 insn = le32_to_cpu(*sym->rela_pos);
unsigned long hyp_src;
u64 imm;
if (!within_pkvm_module_section(&importer->text,
(unsigned long)sym->rela_pos))
return -EINVAL;
hyp_src = (unsigned long)importer->hyp_va +
((void *)sym->rela_pos - importer->text.start);
/*
* Module hyp VAs are allocated going upward. Source MUST have a
* lower address than the destination
*/
if (WARN_ON(hyp_src < hyp_dst))
return -EINVAL;
val = hyp_dst - hyp_src;
if (val < val_max) {
pr_warn("Exported symbol %s is too far for the relocation in module %s\n",
sym->name, pkvm_el2_mod_to_module(importer)->name);
return -ERANGE;
}
/* offset encoded as imm26 * 4 */
imm = (val >> 2) & (BIT(26) - 1);
insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_26, insn, imm);
return aarch64_insn_patch_text_nosync((void *)sym->rela_pos, insn);
}
static int pkvm_reloc_imported_symbols(struct pkvm_el2_module *importer)
{
unsigned long addr, offset, hyp_addr;
struct pkvm_el2_module *exporter;
struct pkvm_el2_sym *sym;
list_for_each_entry(sym, &importer->ext_symbols, node) {
exporter = pkvm_el2_mod_lookup_symbol(sym->name, &addr);
if (!exporter) {
pr_warn("pKVM symbol %s not exported by any module\n",
sym->name);
return -EINVAL;
}
if (!within_pkvm_module_section(&exporter->text, addr)) {
pr_warn("pKVM symbol %s not part of %s .text section\n",
sym->name,
pkvm_el2_mod_to_module(exporter)->name);
return -EINVAL;
}
/* hyp addr in the exporter */
offset = addr - (unsigned long)exporter->text.start;
hyp_addr = (unsigned long)exporter->hyp_va + offset;
pkvm_reloc_imported_symbol(importer, sym, hyp_addr);
}
return 0;
}
struct pkvm_mod_sec_mapping {
struct pkvm_module_section *sec;
enum kvm_pgtable_prot prot;
};
static void pkvm_unmap_module_pages(void *kern_va, void *hyp_va, size_t size)
{
size_t offset;
u64 pfn;
for (offset = 0; offset < size; offset += PAGE_SIZE) {
pfn = vmalloc_to_pfn(kern_va + offset);
kvm_call_hyp_nvhe(__pkvm_unmap_module_page, pfn,
hyp_va + offset);
}
}
static void pkvm_unmap_module_sections(struct pkvm_mod_sec_mapping *secs_map, void *hyp_va_base, int nr_secs)
{
size_t offset, size;
void *start;
int i;
for (i = 0; i < nr_secs; i++) {
start = secs_map[i].sec->start;
size = secs_map[i].sec->end - start;
offset = start - secs_map[0].sec->start;
pkvm_unmap_module_pages(start, hyp_va_base + offset, size);
}
}
static int pkvm_map_module_section(struct pkvm_mod_sec_mapping *sec_map, void *hyp_va)
{
size_t offset, size = sec_map->sec->end - sec_map->sec->start;
int ret;
u64 pfn;
for (offset = 0; offset < size; offset += PAGE_SIZE) {
pfn = vmalloc_to_pfn(sec_map->sec->start + offset);
ret = kvm_call_hyp_nvhe(__pkvm_map_module_page, pfn,
hyp_va + offset, sec_map->prot);
if (ret) {
pkvm_unmap_module_pages(sec_map->sec->start, hyp_va, offset);
return ret;
}
}
return 0;
}
static int pkvm_map_module_sections(struct pkvm_mod_sec_mapping *secs_map,
void *hyp_va_base, int nr_secs)
{
size_t offset;
int i, ret;
for (i = 0; i < nr_secs; i++) {
offset = secs_map[i].sec->start - secs_map[0].sec->start;
ret = pkvm_map_module_section(&secs_map[i], hyp_va_base + offset);
if (ret) {
pkvm_unmap_module_sections(secs_map, hyp_va_base, i);
return ret;
}
}
return 0;
}
static int __pkvm_cmp_mod_sec(const void *p1, const void *p2)
{
struct pkvm_mod_sec_mapping const *s1 = p1;
struct pkvm_mod_sec_mapping const *s2 = p2;
return s1->sec->start < s2->sec->start ? -1 : s1->sec->start > s2->sec->start;
}
static void *pkvm_map_module_struct(struct pkvm_el2_module *mod)
{
void *addr = (void *)__get_free_page(GFP_KERNEL);
if (!addr)
return NULL;
if (kvm_share_hyp(addr, addr + PAGE_SIZE)) {
free_page((unsigned long)addr);
return NULL;
}
/*
* pkvm_el2_module being stored in vmalloc we can't guarantee a
* linear map for the hypervisor to rely on. Copy the struct instead.
*/
memcpy(addr, mod, sizeof(*mod));
return addr;
}
static void pkvm_unmap_module_struct(void *addr)
{
kvm_unshare_hyp(addr, addr + PAGE_SIZE);
free_page((unsigned long)addr);
}
static void pkvm_module_kmemleak(struct module *this,
struct pkvm_mod_sec_mapping *sec_map,
int nr_sections)
{
void *start, *end;
int i;
if (!this)
return;
/*
* The module loader already removes read-only sections from kmemleak
* scanned objects. However, few hyp sections are installed into
* MOD_DATA. Skip those sections before they are made inaccessible from
* the host.
*/
start = this->mem[MOD_DATA].base;
end = start + this->mem[MOD_DATA].size;
for (i = 0; i < nr_sections; i++, sec_map++) {
if (sec_map->sec->start < start || sec_map->sec->start >= end)
continue;
kmemleak_scan_area(start, sec_map->sec->start - start, GFP_KERNEL);
start = sec_map->sec->end;
}
kmemleak_scan_area(start, end - start, GFP_KERNEL);
}
int __pkvm_load_el2_module(struct module *this, unsigned long *token)
{
struct pkvm_el2_module *mod = &this->arch.hyp;
struct pkvm_mod_sec_mapping secs_map[] = {
{ &mod->text, KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_X },
{ &mod->bss, KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_W },
{ &mod->rodata, KVM_PGTABLE_PROT_R },
{ &mod->event_ids, KVM_PGTABLE_PROT_R },
{ &mod->patchable_function_entries, KVM_PGTABLE_PROT_R },
{ &mod->data, KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_W },
};
void *start, *end, *hyp_va, *mod_remap;
struct arm_smccc_res res;
kvm_nvhe_reloc_t *endrel;
int ret, i, secs_first;
size_t size;
/* The pKVM hyp only allows loading before it is fully initialized */
if (!is_protected_kvm_enabled() || is_pkvm_initialized())
return -EOPNOTSUPP;
for (i = 0; i < ARRAY_SIZE(secs_map); i++) {
if (!PAGE_ALIGNED(secs_map[i].sec->start)) {
kvm_err("EL2 sections are not page-aligned\n");
return -EINVAL;
}
}
if (!try_module_get(this)) {
kvm_err("Kernel module has been unloaded\n");
return -ENODEV;
}
/* Missing or empty module sections are placed first */
sort(secs_map, ARRAY_SIZE(secs_map), sizeof(secs_map[0]), __pkvm_cmp_mod_sec, NULL);
for (secs_first = 0; secs_first < ARRAY_SIZE(secs_map); secs_first++) {
start = secs_map[secs_first].sec->start;
if (start)
break;
}
end = secs_map[ARRAY_SIZE(secs_map) - 1].sec->end;
size = end - start;
mod->sections.start = start;
mod->sections.end = end;
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__pkvm_alloc_module_va),
size >> PAGE_SHIFT, &res);
if (res.a0 != SMCCC_RET_SUCCESS || !res.a1) {
kvm_err("Failed to allocate hypervisor VA space for EL2 module\n");
module_put(this);
return res.a0 == SMCCC_RET_SUCCESS ? -ENOMEM : -EPERM;
}
hyp_va = (void *)res.a1;
mod->hyp_va = hyp_va;
/*
* The token can be used for other calls related to this module.
* Conveniently the only information needed is this addr so let's use it
* as an identifier.
*/
if (token)
*token = (unsigned long)hyp_va;
mod->sections.start = start;
mod->sections.end = end;
endrel = (void *)mod->relocs + mod->nr_relocs * sizeof(*endrel);
kvm_apply_hyp_module_relocations(mod, mod->relocs, endrel);
ret = pkvm_reloc_imported_symbols(mod);
if (ret)
return ret;
pkvm_module_kmemleak(this, secs_map, ARRAY_SIZE(secs_map));
ret = hyp_trace_init_mod_events(mod);
if (ret)
kvm_err("Failed to init module events: %d\n", ret);
mod_remap = pkvm_map_module_struct(mod);
if (!mod_remap) {
module_put(this);
return -ENOMEM;
}
ret = pkvm_map_module_sections(secs_map + secs_first, hyp_va,
ARRAY_SIZE(secs_map) - secs_first);
if (ret) {
kvm_err("Failed to map EL2 module page: %d\n", ret);
pkvm_unmap_module_struct(mod_remap);
module_put(this);
return ret;
}
pkvm_el2_mod_add(mod);
ret = kvm_call_hyp_nvhe(__pkvm_init_module, mod_remap);
pkvm_unmap_module_struct(mod_remap);
if (ret) {
kvm_err("Failed to init EL2 module: %d\n", ret);
list_del(&mod->node);
pkvm_unmap_module_sections(secs_map, hyp_va, ARRAY_SIZE(secs_map));
module_put(this);
return ret;
}
hyp_trace_enable_event_early();
return 0;
}
EXPORT_SYMBOL(__pkvm_load_el2_module);
int __pkvm_register_el2_call(unsigned long hfn_hyp_va)
{
return kvm_call_hyp_nvhe(__pkvm_register_hcall, hfn_hyp_va);
}
EXPORT_SYMBOL(__pkvm_register_el2_call);
void pkvm_el2_mod_frob_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, char *secstrings)
{
#ifdef CONFIG_PROTECTED_NVHE_FTRACE
int i;
for (i = 0; i < ehdr->e_shnum; i++) {
if (!strcmp(secstrings + sechdrs[i].sh_name, ".hyp.text")) {
Elf_Shdr *hyp_text = sechdrs + i;
/* .hyp.text.ftrace_tramp pollutes .hyp.text flags */
hyp_text->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
break;
}
}
#endif
}
#endif /* CONFIG_MODULES */
int __pkvm_topup_hyp_alloc(unsigned long nr_pages)
{
struct kvm_hyp_memcache mc;
int ret;
init_hyp_memcache(&mc);
ret = topup_hyp_memcache(&mc, nr_pages, 0);
if (ret)
return ret;
ret = kvm_call_hyp_nvhe(__pkvm_hyp_alloc_mgt_refill, HYP_ALLOC_MGT_HEAP_ID,
mc.head, mc.nr_pages);
if (ret)
free_hyp_memcache(&mc);
return ret;
}
EXPORT_SYMBOL(__pkvm_topup_hyp_alloc);
unsigned long __pkvm_reclaim_hyp_alloc_mgt(unsigned long nr_pages)
{
unsigned long ratelimit, last_reclaim, reclaimed = 0;
struct kvm_hyp_memcache mc;
struct arm_smccc_res res;
init_hyp_memcache(&mc);
do {
/* Arbitrary upper bound to limit the time spent at EL2 */
ratelimit = min(nr_pages, 16UL);
arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__pkvm_hyp_alloc_mgt_reclaim),
ratelimit, &res);
if (WARN_ON(res.a0 != SMCCC_RET_SUCCESS))
break;
mc.head = res.a1;
last_reclaim = mc.nr_pages = res.a2;
free_hyp_memcache(&mc);
reclaimed += last_reclaim;
} while (last_reclaim && (reclaimed < nr_pages));
return reclaimed;
}
int __pkvm_topup_hyp_alloc_mgt_gfp(unsigned long id, unsigned long nr_pages,
unsigned long sz_alloc, gfp_t gfp)
{
struct kvm_hyp_memcache mc;
int ret;
init_hyp_memcache(&mc);
ret = topup_hyp_memcache_gfp(&mc, nr_pages, get_order(sz_alloc), gfp);
if (ret)
return ret;
ret = kvm_call_hyp_nvhe(__pkvm_hyp_alloc_mgt_refill, id,
mc.head, mc.nr_pages);
if (ret)
free_hyp_memcache(&mc);
return ret;
}
EXPORT_SYMBOL(__pkvm_topup_hyp_alloc_mgt_gfp);
static int __pkvm_donate_resource(struct resource *r)
{
if (!PAGE_ALIGNED(resource_size(r)) || !PAGE_ALIGNED(r->start))
return -EINVAL;
return kvm_call_hyp_nvhe(__pkvm_host_donate_hyp_mmio,
__phys_to_pfn(r->start),
resource_size(r) >> PAGE_SHIFT);
}
static int __pkvm_reclaim_resource(struct resource *r)
{
if (!PAGE_ALIGNED(resource_size(r)) || !PAGE_ALIGNED(r->start))
return -EINVAL;
return kvm_call_hyp_nvhe(__pkvm_host_reclaim_hyp_mmio,
__phys_to_pfn(r->start),
resource_size(r) >> PAGE_SHIFT);
}
static int __pkvm_arch_assign_device(struct device *dev, void *data)
{
struct platform_device *pdev;
struct resource *r;
int index = 0;
int ret = 0;
if (!dev_is_platform(dev))
return -EOPNOTSUPP;
pdev = to_platform_device(dev);
while ((r = platform_get_resource(pdev, IORESOURCE_MEM, index++))) {
ret = __pkvm_donate_resource(r);
if (ret)
break;
}
if (ret) {
while (index--) {
r = platform_get_resource(pdev, IORESOURCE_MEM, index);
__pkvm_reclaim_resource(r);
}
}
return ret;
}
static int __pkvm_arch_reclaim_device(struct device *dev, void *data)
{
struct platform_device *pdev;
struct resource *r;
int index = 0;
pdev = to_platform_device(dev);
while ((r = platform_get_resource(pdev, IORESOURCE_MEM, index++)))
__pkvm_reclaim_resource(r);
return 0;
}
int kvm_arch_assign_device(struct device *dev)
{
if (!is_protected_kvm_enabled())
return 0;
return __pkvm_arch_assign_device(dev, NULL);
}
int kvm_arch_assign_group(struct iommu_group *group)
{
int ret;
if (!is_protected_kvm_enabled())
return 0;
ret = iommu_group_for_each_dev(group, NULL, __pkvm_arch_assign_device);
if (ret)
iommu_group_for_each_dev(group, NULL, __pkvm_arch_reclaim_device);
return ret;
}
void kvm_arch_reclaim_device(struct device *dev)
{
if (!is_protected_kvm_enabled())
return;
__pkvm_arch_reclaim_device(dev, NULL);
}
void kvm_arch_reclaim_group(struct iommu_group *group)
{
if (!is_protected_kvm_enabled())
return;
iommu_group_for_each_dev(group, NULL, __pkvm_arch_reclaim_device);
}
static u64 __pkvm_mapping_start(struct pkvm_mapping *m)
{
return m->gfn * PAGE_SIZE;
}
static u64 __pkvm_mapping_end(struct pkvm_mapping *m)
{
return (m->gfn + m->nr_pages) * PAGE_SIZE - 1;
}
INTERVAL_TREE_DEFINE(struct pkvm_mapping, node, u64, __subtree_last,
__pkvm_mapping_start, __pkvm_mapping_end, static,
pkvm_mapping);
#define for_each_mapping_in_range_safe(__pgt, __start, __end, __map) \
for (struct pkvm_mapping *__tmp = pkvm_mapping_iter_first(&(__pgt)->pkvm_mappings, \
__start, __end - 1); \
__tmp && ({ \
__map = __tmp; \
__tmp = pkvm_mapping_iter_next(__map, __start, __end - 1); \
true; \
}); \
)
int pkvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
struct kvm_pgtable_mm_ops *mm_ops, struct kvm_pgtable_pte_ops *pte_ops)
{
pgt->pkvm_mappings = RB_ROOT_CACHED;
pgt->mmu = mmu;
return 0;
}
static int __pkvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 start, u64 end)
{
struct kvm *kvm = kvm_s2_mmu_to_kvm(pgt->mmu);
pkvm_handle_t handle = kvm->arch.pkvm.handle;
struct pkvm_mapping *mapping;
int ret;
if (!handle)
return 0;
for_each_mapping_in_range_safe(pgt, start, end, mapping) {
ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_guest, handle, mapping->gfn,
mapping->nr_pages);
if (WARN_ON(ret))
return ret;
pkvm_mapping_remove(mapping, &pgt->pkvm_mappings);
kfree(mapping);
}
return 0;
}
void pkvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
{
__pkvm_pgtable_stage2_unmap(pgt, 0, ~(0ULL));
}
int pkvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
u64 phys, enum kvm_pgtable_prot prot,
void *mc, enum kvm_pgtable_walk_flags flags)
{
struct kvm *kvm = kvm_s2_mmu_to_kvm(pgt->mmu);
struct pkvm_mapping *mapping = NULL;
struct kvm_hyp_memcache *cache = mc;
u64 gfn = addr >> PAGE_SHIFT;
u64 pfn = phys >> PAGE_SHIFT;
int ret;
if (size != PAGE_SIZE && size != PMD_SIZE)
return -EINVAL;
lockdep_assert_held_write(&kvm->mmu_lock);
/*
* Calling stage2_map() on top of existing mappings is either happening because of a race
* with another vCPU, or because we're changing between page and block mappings. As per
* user_mem_abort(), same-size permission faults are handled in the relax_perms() path.
*/
mapping = pkvm_mapping_iter_first(&pgt->pkvm_mappings, addr, addr + size - 1);
if (mapping) {
if (size == (mapping->nr_pages * PAGE_SIZE))
return -EAGAIN;
/* Remove _any_ pkvm_mapping overlapping with the range, bigger or smaller. */
ret = __pkvm_pgtable_stage2_unmap(pgt, addr, addr + size);
if (ret)
return ret;
mapping = NULL;
}
ret = kvm_call_hyp_nvhe(__pkvm_host_share_guest, pfn, gfn, prot, size / PAGE_SIZE);
if (ret) {
WARN_ON(ret != -ENOMEM);
return ret;
}
swap(mapping, cache->mapping);
mapping->gfn = gfn;
mapping->pfn = pfn;
mapping->nr_pages = size / PAGE_SIZE;
pkvm_mapping_insert(mapping, &pgt->pkvm_mappings);
return ret;
}
int pkvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(pgt->mmu)->mmu_lock);
return __pkvm_pgtable_stage2_unmap(pgt, addr, addr + size);
}
int pkvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
struct kvm *kvm = kvm_s2_mmu_to_kvm(pgt->mmu);
pkvm_handle_t handle = kvm->arch.pkvm.handle;
return kvm_call_hyp_nvhe(__pkvm_host_wrprotect_guest, handle, addr >> PAGE_SHIFT, size);
}
int pkvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
struct kvm *kvm = kvm_s2_mmu_to_kvm(pgt->mmu);
struct pkvm_mapping *mapping;
lockdep_assert_held(&kvm->mmu_lock);
for_each_mapping_in_range_safe(pgt, addr, addr + size, mapping)
__clean_dcache_guest_page(pfn_to_kaddr(mapping->pfn), PAGE_SIZE * mapping->nr_pages);
return 0;
}
bool pkvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr, u64 size, bool mkold)
{
struct kvm *kvm = kvm_s2_mmu_to_kvm(pgt->mmu);
pkvm_handle_t handle = kvm->arch.pkvm.handle;
return kvm_call_hyp_nvhe(__pkvm_host_test_clear_young_guest, handle, addr >> PAGE_SHIFT,
size, mkold);
}
int pkvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, enum kvm_pgtable_prot prot,
enum kvm_pgtable_walk_flags flags)
{
return kvm_call_hyp_nvhe(__pkvm_host_relax_perms_guest, addr >> PAGE_SHIFT, prot);
}
kvm_pte_t pkvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr,
enum kvm_pgtable_walk_flags flags)
{
return kvm_call_hyp_nvhe(__pkvm_host_mkyoung_guest, addr >> PAGE_SHIFT);
}
void pkvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops,
struct kvm_pgtable_pte_ops *pte_ops,
void *pgtable, s8 level)
{
WARN_ON_ONCE(1);
}
kvm_pte_t *pkvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt, u64 phys, s8 level,
enum kvm_pgtable_prot prot, void *mc, bool force_pte)
{
WARN_ON_ONCE(1);
return NULL;
}
int pkvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
struct kvm_mmu_memory_cache *mc)
{
WARN_ON_ONCE(1);
return -EINVAL;
}