blob: 31b6e702b3f7b90bfc70f326675a1fd5cc553aa0 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 Google LLC
* Author: Quentin Perret <qperret@google.com>
*/
#include <linux/kvm_host.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_hypevents.h>
#include <asm/kvm_mmu.h>
#include <asm/kvm_pgtable.h>
#include <asm/kvm_pkvm.h>
#include <asm/stage2_pgtable.h>
#include <hyp/adjust_pc.h>
#include <hyp/fault.h>
#include <nvhe/gfp.h>
#include <nvhe/iommu.h>
#include <nvhe/memory.h>
#include <nvhe/mem_protect.h>
#include <nvhe/mm.h>
#include <nvhe/modules.h>
#include "../debug-pl011.h"
#define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
struct host_mmu host_mmu;
struct pkvm_moveable_reg pkvm_moveable_regs[PKVM_NR_MOVEABLE_REGS];
unsigned int pkvm_moveable_regs_nr;
static struct hyp_pool host_s2_pool;
static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
#define current_vm (*this_cpu_ptr(&__current_vm))
static struct kvm_pgtable_pte_ops host_s2_pte_ops;
static bool host_stage2_force_pte(u64 addr, u64 end, enum kvm_pgtable_prot prot);
static bool host_stage2_pte_is_counted(kvm_pte_t pte, u32 level);
static bool guest_stage2_force_pte_cb(u64 addr, u64 end,
enum kvm_pgtable_prot prot);
static bool guest_stage2_pte_is_counted(kvm_pte_t pte, u32 level);
static struct kvm_pgtable_pte_ops guest_s2_pte_ops = {
.force_pte_cb = guest_stage2_force_pte_cb,
.pte_is_counted_cb = guest_stage2_pte_is_counted
};
static void guest_lock_component(struct pkvm_hyp_vm *vm)
{
hyp_spin_lock(&vm->lock);
current_vm = vm;
}
static void guest_unlock_component(struct pkvm_hyp_vm *vm)
{
current_vm = NULL;
hyp_spin_unlock(&vm->lock);
}
static void host_lock_component(void)
{
hyp_spin_lock(&host_mmu.lock);
}
static void host_unlock_component(void)
{
hyp_spin_unlock(&host_mmu.lock);
}
static void hyp_lock_component(void)
{
hyp_spin_lock(&pkvm_pgd_lock);
}
static void hyp_unlock_component(void)
{
hyp_spin_unlock(&pkvm_pgd_lock);
}
static void *host_s2_zalloc_pages_exact(size_t size)
{
void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
hyp_split_page(hyp_virt_to_page(addr));
/*
* The size of concatenated PGDs is always a power of two of PAGE_SIZE,
* so there should be no need to free any of the tail pages to make the
* allocation exact.
*/
WARN_ON(size != (PAGE_SIZE << get_order(size)));
return addr;
}
static void *host_s2_zalloc_page(void *pool)
{
return hyp_alloc_pages(pool, 0);
}
static void host_s2_get_page(void *addr)
{
hyp_get_page(&host_s2_pool, addr);
}
static void host_s2_put_page(void *addr)
{
hyp_put_page(&host_s2_pool, addr);
}
static int prepare_s2_pool(void *pgt_pool_base)
{
unsigned long nr_pages, pfn;
int ret;
pfn = hyp_virt_to_pfn(pgt_pool_base);
nr_pages = host_s2_pgtable_pages();
ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
if (ret)
return ret;
host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
.zalloc_pages_exact = host_s2_zalloc_pages_exact,
.zalloc_page = host_s2_zalloc_page,
.phys_to_virt = hyp_phys_to_virt,
.virt_to_phys = hyp_virt_to_phys,
.page_count = hyp_page_count,
.get_page = host_s2_get_page,
.put_page = host_s2_put_page,
};
return 0;
}
static void prepare_host_vtcr(void)
{
u32 parange, phys_shift;
/* The host stage 2 is id-mapped, so use parange for T0SZ */
parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
host_mmu.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
id_aa64mmfr1_el1_sys_val, phys_shift);
}
static int prepopulate_host_stage2(void)
{
struct memblock_region *reg;
int i, ret = 0;
for (i = 0; i < hyp_memblock_nr; i++) {
reg = &hyp_memory[i];
ret = host_stage2_idmap_locked(reg->base, reg->size, PKVM_HOST_MEM_PROT, false);
if (ret)
return ret;
}
return ret;
}
int kvm_host_prepare_stage2(void *pgt_pool_base)
{
struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
int ret;
prepare_host_vtcr();
hyp_spin_lock_init(&host_mmu.lock);
mmu->arch = &host_mmu.arch;
ret = prepare_s2_pool(pgt_pool_base);
if (ret)
return ret;
host_s2_pte_ops.force_pte_cb = host_stage2_force_pte;
host_s2_pte_ops.pte_is_counted_cb = host_stage2_pte_is_counted;
ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
&host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
&host_s2_pte_ops);
if (ret)
return ret;
mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
mmu->pgt = &host_mmu.pgt;
atomic64_set(&mmu->vmid.id, 0);
return prepopulate_host_stage2();
}
static bool guest_stage2_force_pte_cb(u64 addr, u64 end,
enum kvm_pgtable_prot prot)
{
return true;
}
static bool guest_stage2_pte_is_counted(kvm_pte_t pte, u32 level)
{
/*
* The refcount tracks valid entries as well as invalid entries if they
* encode ownership of a page to another entity than the page-table
* owner, whose id is 0.
*/
return !!pte;
}
static void *guest_s2_zalloc_pages_exact(size_t size)
{
void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
WARN_ON(size != (PAGE_SIZE << get_order(size)));
hyp_split_page(hyp_virt_to_page(addr));
return addr;
}
static void guest_s2_free_pages_exact(void *addr, unsigned long size)
{
u8 order = get_order(size);
unsigned int i;
for (i = 0; i < (1 << order); i++)
hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
}
static void *guest_s2_zalloc_page(void *mc)
{
struct hyp_page *p;
void *addr;
addr = hyp_alloc_pages(&current_vm->pool, 0);
if (addr)
return addr;
addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
if (!addr)
return addr;
memset(addr, 0, PAGE_SIZE);
p = hyp_virt_to_page(addr);
memset(p, 0, sizeof(*p));
p->refcount = 1;
return addr;
}
static void guest_s2_get_page(void *addr)
{
hyp_get_page(&current_vm->pool, addr);
}
static void guest_s2_put_page(void *addr)
{
hyp_put_page(&current_vm->pool, addr);
}
static void clean_dcache_guest_page(void *va, size_t size)
{
__clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
hyp_fixmap_unmap();
}
static void invalidate_icache_guest_page(void *va, size_t size)
{
__invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
hyp_fixmap_unmap();
}
int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
{
struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
unsigned long nr_pages;
int ret;
nr_pages = kvm_pgtable_stage2_pgd_size(vm->kvm.arch.vtcr) >> PAGE_SHIFT;
ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
if (ret)
return ret;
hyp_spin_lock_init(&vm->lock);
vm->mm_ops = (struct kvm_pgtable_mm_ops) {
.zalloc_pages_exact = guest_s2_zalloc_pages_exact,
.free_pages_exact = guest_s2_free_pages_exact,
.zalloc_page = guest_s2_zalloc_page,
.phys_to_virt = hyp_phys_to_virt,
.virt_to_phys = hyp_virt_to_phys,
.page_count = hyp_page_count,
.get_page = guest_s2_get_page,
.put_page = guest_s2_put_page,
.dcache_clean_inval_poc = clean_dcache_guest_page,
.icache_inval_pou = invalidate_icache_guest_page,
};
guest_lock_component(vm);
ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0,
&guest_s2_pte_ops);
guest_unlock_component(vm);
if (ret)
return ret;
vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
return 0;
}
struct relinquish_data {
enum pkvm_page_state expected_state;
u64 pa;
};
static int relinquish_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag, void * const arg)
{
kvm_pte_t pte = *ptep;
struct relinquish_data *data = arg;
enum pkvm_page_state state;
phys_addr_t phys;
if (!kvm_pte_valid(pte))
return 0;
state = pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
if (state != data->expected_state)
return -EPERM;
phys = kvm_pte_to_phys(pte);
if (state == PKVM_PAGE_OWNED) {
hyp_poison_page(phys);
psci_mem_protect_dec(1);
}
data->pa = phys;
return 0;
}
int __pkvm_guest_relinquish_to_host(struct pkvm_hyp_vcpu *vcpu,
u64 ipa, u64 *ppa)
{
struct relinquish_data data;
struct kvm_pgtable_walker walker = {
.cb = relinquish_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = &data,
};
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
int ret;
host_lock_component();
guest_lock_component(vm);
/* Expected page state depends on VM type. */
data.expected_state = pkvm_hyp_vcpu_is_protected(vcpu) ?
PKVM_PAGE_OWNED :
PKVM_PAGE_SHARED_BORROWED;
/* Set default pa value to "not found". */
data.pa = 0;
/* If ipa is mapped: poisons the page, and gets the pa. */
ret = kvm_pgtable_walk(&vm->pgt, ipa, PAGE_SIZE, &walker);
/* Zap the guest stage2 pte and return ownership to the host */
if (!ret && data.pa) {
WARN_ON(host_stage2_set_owner_locked(data.pa, PAGE_SIZE, PKVM_ID_HOST));
WARN_ON(kvm_pgtable_stage2_unmap(&vm->pgt, ipa, PAGE_SIZE));
}
guest_unlock_component(vm);
host_unlock_component();
*ppa = data.pa;
return ret;
}
int __pkvm_prot_finalize(void)
{
struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
if (params->hcr_el2 & HCR_VM)
return -EPERM;
params->vttbr = kvm_get_vttbr(mmu);
params->vtcr = host_mmu.arch.vtcr;
params->hcr_el2 |= HCR_VM;
kvm_flush_dcache_to_poc(params, sizeof(*params));
write_sysreg(params->hcr_el2, hcr_el2);
__load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
/*
* Make sure to have an ISB before the TLB maintenance below but only
* when __load_stage2() doesn't include one already.
*/
asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
/* Invalidate stale HCR bits that may be cached in TLBs */
__tlbi(vmalls12e1);
dsb(nsh);
isb();
__pkvm_close_module_registration();
return 0;
}
int host_stage2_unmap_reg_locked(phys_addr_t start, u64 size)
{
int ret;
hyp_assert_lock_held(&host_mmu.lock);
ret = kvm_pgtable_stage2_reclaim_leaves(&host_mmu.pgt, start, size);
if (ret)
return ret;
pkvm_iommu_host_stage2_idmap(start, start + size, 0);
return 0;
}
static int host_stage2_unmap_unmoveable_regs(void)
{
struct kvm_pgtable *pgt = &host_mmu.pgt;
struct pkvm_moveable_reg *reg;
u64 addr = 0;
int i, ret;
/* Unmap all unmoveable regions to recycle the pages */
for (i = 0; i < pkvm_moveable_regs_nr; i++) {
reg = &pkvm_moveable_regs[i];
if (reg->start > addr) {
ret = host_stage2_unmap_reg_locked(addr, reg->start - addr);
if (ret)
return ret;
}
addr = max(addr, reg->start + reg->size);
}
return host_stage2_unmap_reg_locked(addr, BIT(pgt->ia_bits) - addr);
}
struct kvm_mem_range {
u64 start;
u64 end;
};
static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
{
int cur, left = 0, right = hyp_memblock_nr;
struct memblock_region *reg;
phys_addr_t end;
range->start = 0;
range->end = ULONG_MAX;
/* The list of memblock regions is sorted, binary search it */
while (left < right) {
cur = (left + right) >> 1;
reg = &hyp_memory[cur];
end = reg->base + reg->size;
if (addr < reg->base) {
right = cur;
range->end = reg->base;
} else if (addr >= end) {
left = cur + 1;
range->start = end;
} else {
range->start = reg->base;
range->end = end;
return reg;
}
}
return NULL;
}
static enum kvm_pgtable_prot default_host_prot(bool is_memory)
{
return is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
}
static enum kvm_pgtable_prot default_hyp_prot(phys_addr_t phys)
{
return addr_is_memory(phys) ? PAGE_HYP : PAGE_HYP_DEVICE;
}
bool addr_is_memory(phys_addr_t phys)
{
struct kvm_mem_range range;
return !!find_mem_range(phys, &range);
}
static bool addr_is_allowed_memory(phys_addr_t phys)
{
struct memblock_region *reg;
struct kvm_mem_range range;
reg = find_mem_range(phys, &range);
return reg && !(reg->flags & MEMBLOCK_NOMAP);
}
static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
{
return range->start <= addr && addr < range->end;
}
static bool range_is_memory(u64 start, u64 end)
{
struct kvm_mem_range r;
if (!find_mem_range(start, &r))
return false;
return is_in_mem_range(end - 1, &r);
}
static inline int __host_stage2_idmap(u64 start, u64 end,
enum kvm_pgtable_prot prot,
bool update_iommu)
{
int ret;
ret = kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
prot, &host_s2_pool);
if (ret)
return ret;
if (update_iommu)
pkvm_iommu_host_stage2_idmap(start, end, prot);
return 0;
}
/*
* The pool has been provided with enough pages to cover all of moveable regions
* with page granularity, but it is difficult to know how much of the
* non-moveable regions we will need to cover upfront, so we may need to
* 'recycle' the pages if we run out.
*/
#define host_stage2_try(fn, ...) \
({ \
int __ret; \
hyp_assert_lock_held(&host_mmu.lock); \
__ret = fn(__VA_ARGS__); \
if (__ret == -ENOMEM) { \
__ret = host_stage2_unmap_unmoveable_regs(); \
if (!__ret) \
__ret = fn(__VA_ARGS__); \
} \
__ret; \
})
static inline bool range_included(struct kvm_mem_range *child,
struct kvm_mem_range *parent)
{
return parent->start <= child->start && child->end <= parent->end;
}
static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range,
u32 level)
{
struct kvm_mem_range cur;
do {
u64 granule = kvm_granule_size(level);
cur.start = ALIGN_DOWN(addr, granule);
cur.end = cur.start + granule;
level++;
} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
!(kvm_level_supports_block_mapping(level) &&
range_included(&cur, range)));
*range = cur;
return 0;
}
int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
enum kvm_pgtable_prot prot, bool update_iommu)
{
return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot, update_iommu);
}
#define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
static kvm_pte_t kvm_init_invalid_leaf_owner(enum pkvm_component_id owner_id)
{
return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
}
int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, enum pkvm_component_id owner_id)
{
kvm_pte_t annotation;
enum kvm_pgtable_prot prot;
int ret;
if (owner_id > PKVM_ID_MAX)
return -EINVAL;
annotation = kvm_init_invalid_leaf_owner(owner_id);
ret = host_stage2_try(kvm_pgtable_stage2_annotate, &host_mmu.pgt,
addr, size, &host_s2_pool, annotation);
if (ret)
return ret;
prot = owner_id == PKVM_ID_HOST ? PKVM_HOST_MEM_PROT : 0;
pkvm_iommu_host_stage2_idmap(addr, addr + size, prot);
return 0;
}
static bool host_stage2_force_pte(u64 addr, u64 end, enum kvm_pgtable_prot prot)
{
/*
* Block mappings must be used with care in the host stage-2 as a
* kvm_pgtable_stage2_map() operation targeting a page in the range of
* an existing block will delete the block under the assumption that
* mappings in the rest of the block range can always be rebuilt lazily.
* That assumption is correct for the host stage-2 with RWX mappings
* targeting memory or RW mappings targeting MMIO ranges (see
* host_stage2_idmap() below which implements some of the host memory
* abort logic). However, this is not safe for any other mappings where
* the host stage-2 page-table is in fact the only place where this
* state is stored. In all those cases, it is safer to use page-level
* mappings, hence avoiding to lose the state because of side-effects in
* kvm_pgtable_stage2_map().
*/
return prot != default_host_prot(range_is_memory(addr, end));
}
static bool host_stage2_pte_is_counted(kvm_pte_t pte, u32 level)
{
u64 phys;
if (!kvm_pte_valid(pte))
return !!pte;
if (kvm_pte_table(pte, level))
return true;
phys = kvm_pte_to_phys(pte);
if (addr_is_memory(phys))
return (pte & KVM_HOST_S2_DEFAULT_MASK) !=
KVM_HOST_S2_DEFAULT_MEM_PTE;
return (pte & KVM_HOST_S2_DEFAULT_MASK) != KVM_HOST_S2_DEFAULT_MMIO_PTE;
}
#define DEFERRED_MEMATTR_NOTE (1ULL << 24)
#ifdef CONFIG_ANDROID_ARM64_WORKAROUND_DMA_BEYOND_POC
static enum pkvm_page_state host_get_page_state(kvm_pte_t pte, u64 addr);
int __pkvm_host_set_stage2_memattr(phys_addr_t phys, bool force_nc)
{
kvm_pte_t pte;
int ret = 0;
if (!static_branch_unlikely(&pkvm_force_nc))
return -ENOENT;
phys = ALIGN_DOWN(phys, PAGE_SIZE);
hyp_spin_lock(&host_mmu.lock);
ret = kvm_pgtable_get_leaf(&host_mmu.pgt, phys, &pte, NULL);
if (ret)
goto unlock;
if (!addr_is_memory(phys)) {
ret = -EIO;
goto unlock;
}
if (!kvm_pte_valid(pte) && pte) {
switch (pte) {
case DEFERRED_MEMATTR_NOTE:
break;
default:
ret = -EPERM;
}
} else if (host_get_page_state(pte, phys) != PKVM_PAGE_OWNED) {
ret = -EPERM;
}
if (ret)
goto unlock;
if (force_nc) {
ret = host_stage2_idmap_locked(phys, PAGE_SIZE,
PKVM_HOST_MEM_PROT |
KVM_PGTABLE_PROT_NC,
false);
if (ret)
goto unlock;
kvm_flush_dcache_to_poc(hyp_fixmap_map_nc(phys), PAGE_SIZE);
hyp_fixmap_unmap();
} else {
ret = kvm_pgtable_stage2_annotate(&host_mmu.pgt, phys,
PAGE_SIZE, &host_s2_pool,
DEFERRED_MEMATTR_NOTE);
}
unlock:
hyp_spin_unlock(&host_mmu.lock);
return ret;
}
static int handle_memattr_annotation(struct kvm_vcpu_fault_info *fault,
u64 addr, enum kvm_pgtable_prot *prot,
struct kvm_mem_range *range)
{
u64 par, oldpar;
/* If the S1 MMU is disabled, treat the access as cacheable */
if (unlikely(!(read_sysreg(sctlr_el1) & SCTLR_ELx_M)))
return 0;
/* If we took a fault on a PTW, then treat it as cacheable */
if (fault->esr_el2 & ESR_ELx_S1PTW)
return 0;
oldpar = read_sysreg_par();
if (!__kvm_at("s1e1r", fault->far_el2))
par = read_sysreg_par();
else
par = SYS_PAR_EL1_F;
write_sysreg(oldpar, par_el1);
if (unlikely(par & SYS_PAR_EL1_F))
return -EAGAIN;
if ((par >> 56) == MAIR_ATTR_NORMAL_NC) {
range->start = ALIGN_DOWN(addr, PAGE_SIZE);
range->end = range->start + PAGE_SIZE;
*prot |= KVM_PGTABLE_PROT_NC;
}
return 0;
}
#else
static int handle_memattr_annotation(struct kvm_vcpu_fault_info *fault,
u64 addr, enum kvm_pgtable_prot *prot,
struct kvm_mem_range *range)
{
return -EPERM;
}
#endif
static int host_stage2_idmap(struct kvm_vcpu_fault_info *fault, u64 addr)
{
struct kvm_mem_range range;
bool is_memory = !!find_mem_range(addr, &range);
enum kvm_pgtable_prot prot = default_host_prot(is_memory);
kvm_pte_t pte;
u32 level;
int ret;
hyp_assert_lock_held(&host_mmu.lock);
ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
if (ret)
return ret;
if (kvm_pte_valid(pte))
return -EAGAIN;
if (pte) {
if (!is_memory)
return -EPERM;
switch (pte) {
case DEFERRED_MEMATTR_NOTE:
ret = handle_memattr_annotation(fault, addr, &prot,
&range);
if (ret)
return ret;
break;
default:
return -EPERM;
}
}
ret = host_stage2_adjust_range(addr, &range, level);
if (ret)
return ret;
/*
* We're guaranteed not to require memory allocation by construction,
* no need to bother even trying to recycle pages.
*/
return __host_stage2_idmap(range.start, range.end, prot, false);
}
static void (*illegal_abt_notifier)(struct kvm_cpu_context *host_ctxt);
int __pkvm_register_illegal_abt_notifier(void (*cb)(struct kvm_cpu_context *))
{
return cmpxchg(&illegal_abt_notifier, NULL, cb) ? -EBUSY : 0;
}
static void host_inject_abort(struct kvm_cpu_context *host_ctxt)
{
u64 spsr = read_sysreg_el2(SYS_SPSR);
u64 esr = read_sysreg_el2(SYS_ESR);
u64 ventry, ec;
if (READ_ONCE(illegal_abt_notifier))
illegal_abt_notifier(host_ctxt);
/* Repaint the ESR to report a same-level fault if taken from EL1 */
if ((spsr & PSR_MODE_MASK) != PSR_MODE_EL0t) {
ec = ESR_ELx_EC(esr);
if (ec == ESR_ELx_EC_DABT_LOW)
ec = ESR_ELx_EC_DABT_CUR;
else if (ec == ESR_ELx_EC_IABT_LOW)
ec = ESR_ELx_EC_IABT_CUR;
else
WARN_ON(1);
esr &= ~ESR_ELx_EC_MASK;
esr |= ec << ESR_ELx_EC_SHIFT;
}
/*
* Since S1PTW should only ever be set for stage-2 faults, we're pretty
* much guaranteed that it won't be set in ESR_EL1 by the hardware. So,
* let's use that bit to allow the host abort handler to differentiate
* this abort from normal userspace faults.
*
* Note: although S1PTW is RES0 at EL1, it is guaranteed by the
* architecture to be backed by flops, so it should be safe to use.
*/
esr |= ESR_ELx_S1PTW;
write_sysreg_el1(esr, SYS_ESR);
write_sysreg_el1(spsr, SYS_SPSR);
write_sysreg_el1(read_sysreg_el2(SYS_ELR), SYS_ELR);
write_sysreg_el1(read_sysreg_el2(SYS_FAR), SYS_FAR);
ventry = read_sysreg_el1(SYS_VBAR);
ventry += get_except64_offset(spsr, PSR_MODE_EL1h, except_type_sync);
write_sysreg_el2(ventry, SYS_ELR);
spsr = get_except64_cpsr(spsr, system_supports_mte(),
read_sysreg_el1(SYS_SCTLR), PSR_MODE_EL1h);
write_sysreg_el2(spsr, SYS_SPSR);
}
static bool is_dabt(u64 esr)
{
return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_LOW;
}
static int (*perm_fault_handler)(struct kvm_cpu_context *host_ctxt, u64 esr, u64 addr);
int hyp_register_host_perm_fault_handler(int (*cb)(struct kvm_cpu_context *ctxt, u64 esr, u64 addr))
{
return cmpxchg(&perm_fault_handler, NULL, cb) ? -EBUSY : 0;
}
static int handle_host_perm_fault(struct kvm_cpu_context *host_ctxt, u64 esr, u64 addr)
{
int (*cb)(struct kvm_cpu_context *host_ctxt, u64 esr, u64 addr);
cb = READ_ONCE(perm_fault_handler);
return cb ? cb(host_ctxt, esr, addr) : -EPERM;
}
void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
{
struct kvm_vcpu_fault_info fault;
u64 esr, addr;
int ret = -EPERM;
esr = read_sysreg_el2(SYS_ESR);
BUG_ON(!__get_fault_info(esr, &fault));
fault.esr_el2 = esr;
addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
addr |= fault.far_el2 & FAR_MASK;
host_lock_component();
/* Check if an IOMMU device can handle the DABT. */
if (is_dabt(esr) && !addr_is_memory(addr) &&
pkvm_iommu_host_dabt_handler(host_ctxt, esr, addr))
ret = 0;
/* If not handled, attempt to map the page. */
if (ret == -EPERM)
ret = host_stage2_idmap(&fault, addr);
host_unlock_component();
if ((esr & ESR_ELx_FSC_TYPE) == FSC_PERM)
ret = handle_host_perm_fault(host_ctxt, esr, addr);
if (ret == -EPERM)
host_inject_abort(host_ctxt);
else
BUG_ON(ret && ret != -EAGAIN);
trace_host_mem_abort(esr, addr);
}
struct pkvm_mem_transition {
u64 nr_pages;
struct {
enum pkvm_component_id id;
/* Address in the initiator's address space */
u64 addr;
union {
struct {
/* Address in the completer's address space */
u64 completer_addr;
} host;
struct {
u64 completer_addr;
} hyp;
struct {
struct pkvm_hyp_vcpu *hyp_vcpu;
} guest;
};
} initiator;
struct {
enum pkvm_component_id id;
union {
struct {
struct pkvm_hyp_vcpu *hyp_vcpu;
phys_addr_t phys;
} guest;
};
} completer;
};
struct pkvm_mem_share {
const struct pkvm_mem_transition tx;
const enum kvm_pgtable_prot completer_prot;
};
struct pkvm_mem_donation {
const struct pkvm_mem_transition tx;
};
struct check_walk_data {
enum pkvm_page_state desired;
enum pkvm_page_state (*get_page_state)(kvm_pte_t pte, u64 addr);
};
static int __check_page_state_visitor(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg)
{
struct check_walk_data *d = arg;
kvm_pte_t pte = *ptep;
return d->get_page_state(pte, addr) == d->desired ? 0 : -EPERM;
}
static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
struct check_walk_data *data)
{
struct kvm_pgtable_walker walker = {
.cb = __check_page_state_visitor,
.arg = data,
.flags = KVM_PGTABLE_WALK_LEAF,
};
return kvm_pgtable_walk(pgt, addr, size, &walker);
}
static enum pkvm_page_state host_get_page_state(kvm_pte_t pte, u64 addr)
{
bool is_memory = addr_is_memory(addr);
enum pkvm_page_state state = 0;
enum kvm_pgtable_prot prot;
if (is_memory && hyp_phys_to_page(addr)->flags & MODULE_OWNED_PAGE)
return PKVM_MODULE_DONT_TOUCH;
if (is_memory && !addr_is_allowed_memory(addr))
return PKVM_NOPAGE;
if (!kvm_pte_valid(pte) && pte)
return PKVM_NOPAGE;
prot = kvm_pgtable_stage2_pte_prot(pte);
if (kvm_pte_valid(pte)) {
if ((prot & KVM_PGTABLE_PROT_RWX) != default_host_prot(is_memory))
state = PKVM_PAGE_RESTRICTED_PROT;
}
return state | pkvm_getstate(prot);
}
static int __host_check_page_state_range(u64 addr, u64 size,
enum pkvm_page_state state)
{
struct check_walk_data d = {
.desired = state,
.get_page_state = host_get_page_state,
};
hyp_assert_lock_held(&host_mmu.lock);
return check_page_state_range(&host_mmu.pgt, addr, size, &d);
}
static int __host_set_page_state_range(u64 addr, u64 size,
enum pkvm_page_state state)
{
bool update_iommu = true;
enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
/*
* Sharing and unsharing host pages shouldn't change the IOMMU page tables,
* so avoid extra page tables walks for the IOMMU.
* HOWEVER THIS WILL NOT WORK WHEN DEVICE ASSIGNMENT IS SUPPORTED AS THE GUEST
* MIGHT HAVE ACCESS TO DMA.
* but as Android-14 doesn't support device assignment this should be fine.
*/
if ((state == PKVM_PAGE_OWNED) || (state == PKVM_PAGE_SHARED_OWNED))
update_iommu = false;
return host_stage2_idmap_locked(addr, size, prot, update_iommu);
}
static int host_request_owned_transition(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
u64 addr = tx->initiator.addr;
*completer_addr = tx->initiator.host.completer_addr;
return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
}
static int host_request_unshare(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
u64 addr = tx->initiator.addr;
*completer_addr = tx->initiator.host.completer_addr;
return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
}
static int host_initiate_share(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
u64 addr = tx->initiator.addr;
*completer_addr = tx->initiator.host.completer_addr;
return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
}
static int host_initiate_unshare(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
u64 addr = tx->initiator.addr;
*completer_addr = tx->initiator.host.completer_addr;
return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
}
static int host_initiate_donation(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
enum pkvm_component_id owner_id = tx->completer.id;
u64 size = tx->nr_pages * PAGE_SIZE;
*completer_addr = tx->initiator.host.completer_addr;
return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id);
}
static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
{
return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
tx->initiator.id != PKVM_ID_HYP);
}
static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx,
enum pkvm_page_state state)
{
u64 size = tx->nr_pages * PAGE_SIZE;
if (__host_ack_skip_pgtable_check(tx))
return 0;
return __host_check_page_state_range(addr, size, state);
}
static int host_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
enum kvm_pgtable_prot perms)
{
if (perms != PKVM_HOST_MEM_PROT)
return -EPERM;
return __host_ack_transition(addr, tx, PKVM_NOPAGE);
}
static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
{
return __host_ack_transition(addr, tx, PKVM_NOPAGE);
}
static int host_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
{
return __host_ack_transition(addr, tx, PKVM_PAGE_SHARED_BORROWED);
}
static int host_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
enum kvm_pgtable_prot perms)
{
u64 size = tx->nr_pages * PAGE_SIZE;
int err;
err = __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_BORROWED);
if (err)
return err;
if (tx->initiator.id == PKVM_ID_GUEST)
psci_mem_protect_dec(tx->nr_pages);
return 0;
}
static int host_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
{
enum pkvm_component_id owner_id = tx->initiator.id;
u64 size = tx->nr_pages * PAGE_SIZE;
if (tx->initiator.id == PKVM_ID_GUEST)
psci_mem_protect_inc(tx->nr_pages);
return host_stage2_set_owner_locked(addr, size, owner_id);
}
static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
enum pkvm_component_id host_id = tx->completer.id;
return host_stage2_set_owner_locked(addr, size, host_id);
}
static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr)
{
enum pkvm_page_state state = 0;
enum kvm_pgtable_prot prot;
if (!kvm_pte_valid(pte))
return PKVM_NOPAGE;
prot = kvm_pgtable_hyp_pte_prot(pte);
if (kvm_pte_valid(pte) && ((prot & KVM_PGTABLE_PROT_RWX) != PAGE_HYP))
state = PKVM_PAGE_RESTRICTED_PROT;
return state | pkvm_getstate(prot);
}
static int __hyp_check_page_state_range(u64 addr, u64 size,
enum pkvm_page_state state)
{
struct check_walk_data d = {
.desired = state,
.get_page_state = hyp_get_page_state,
};
hyp_assert_lock_held(&pkvm_pgd_lock);
return check_page_state_range(&pkvm_pgtable, addr, size, &d);
}
static int hyp_request_donation(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
u64 addr = tx->initiator.addr;
*completer_addr = tx->initiator.hyp.completer_addr;
return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
}
static int hyp_initiate_donation(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
int ret;
*completer_addr = tx->initiator.hyp.completer_addr;
ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size);
return (ret != size) ? -EFAULT : 0;
}
static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
{
return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
tx->initiator.id != PKVM_ID_HOST);
}
static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
enum kvm_pgtable_prot perms)
{
u64 size = tx->nr_pages * PAGE_SIZE;
phys_addr_t phys = hyp_virt_to_phys((void *)addr);
enum kvm_pgtable_prot prot = default_hyp_prot(phys);
if (!addr_is_memory(phys) || perms != prot)
return -EPERM;
if (__hyp_ack_skip_pgtable_check(tx))
return 0;
return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
}
static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr))
return -EBUSY;
if (__hyp_ack_skip_pgtable_check(tx))
return 0;
return __hyp_check_page_state_range(addr, size,
PKVM_PAGE_SHARED_BORROWED);
}
static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
if (__hyp_ack_skip_pgtable_check(tx))
return 0;
return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
}
static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
enum kvm_pgtable_prot perms)
{
void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
enum kvm_pgtable_prot prot;
prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
return pkvm_create_mappings_locked(start, end, prot);
}
static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
return (ret != size) ? -EFAULT : 0;
}
static int hyp_complete_donation(u64 addr,
const struct pkvm_mem_transition *tx)
{
void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
phys_addr_t phys = hyp_virt_to_phys(start);
enum kvm_pgtable_prot prot = default_hyp_prot(phys);
prot = pkvm_mkstate(prot, PKVM_PAGE_OWNED);
return pkvm_create_mappings_locked(start, end, prot);
}
static enum pkvm_page_state guest_get_page_state(kvm_pte_t pte, u64 addr)
{
enum pkvm_page_state state = 0;
enum kvm_pgtable_prot prot;
if (!kvm_pte_valid(pte))
return PKVM_NOPAGE;
prot = kvm_pgtable_stage2_pte_prot(pte);
if (kvm_pte_valid(pte) && ((prot & KVM_PGTABLE_PROT_RWX) != KVM_PGTABLE_PROT_RWX))
state = PKVM_PAGE_RESTRICTED_PROT;
return state | pkvm_getstate(prot);
}
static int __guest_check_page_state_range(struct pkvm_hyp_vcpu *vcpu, u64 addr,
u64 size, enum pkvm_page_state state)
{
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
struct check_walk_data d = {
.desired = state,
.get_page_state = guest_get_page_state,
};
hyp_assert_lock_held(&vm->lock);
return check_page_state_range(&vm->pgt, addr, size, &d);
}
static int guest_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
enum kvm_pgtable_prot perms)
{
u64 size = tx->nr_pages * PAGE_SIZE;
if (!addr_is_memory(tx->completer.guest.phys) || perms != KVM_PGTABLE_PROT_RWX)
return -EPERM;
return __guest_check_page_state_range(tx->completer.guest.hyp_vcpu,
addr, size, PKVM_NOPAGE);
}
static int guest_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
{
u64 size = tx->nr_pages * PAGE_SIZE;
if (!addr_is_memory(tx->completer.guest.phys))
return -EPERM;
return __guest_check_page_state_range(tx->completer.guest.hyp_vcpu,
addr, size, PKVM_NOPAGE);
}
static int guest_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
enum kvm_pgtable_prot perms)
{
struct pkvm_hyp_vcpu *vcpu = tx->completer.guest.hyp_vcpu;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
u64 size = tx->nr_pages * PAGE_SIZE;
enum kvm_pgtable_prot prot;
prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
return kvm_pgtable_stage2_map(&vm->pgt, addr, size, tx->completer.guest.phys,
prot, &vcpu->vcpu.arch.pkvm_memcache);
}
static int guest_complete_donation(u64 addr, const struct pkvm_mem_transition *tx)
{
enum kvm_pgtable_prot prot = pkvm_mkstate(KVM_PGTABLE_PROT_RWX, PKVM_PAGE_OWNED);
struct pkvm_hyp_vcpu *vcpu = tx->completer.guest.hyp_vcpu;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
phys_addr_t phys = tx->completer.guest.phys;
u64 size = tx->nr_pages * PAGE_SIZE;
int err;
if (tx->initiator.id == PKVM_ID_HOST)
psci_mem_protect_inc(tx->nr_pages);
if (pkvm_ipa_range_has_pvmfw(vm, addr, addr + size)) {
if (WARN_ON(!pkvm_hyp_vcpu_is_protected(vcpu))) {
err = -EPERM;
goto err_undo_psci;
}
WARN_ON(tx->initiator.id != PKVM_ID_HOST);
err = pkvm_load_pvmfw_pages(vm, addr, phys, size);
if (err)
goto err_undo_psci;
}
/*
* If this fails, we effectively leak the pages since they're now
* owned by the guest but not mapped into its stage-2 page-table.
*/
return kvm_pgtable_stage2_map(&vm->pgt, addr, size, phys, prot,
&vcpu->vcpu.arch.pkvm_memcache);
err_undo_psci:
if (tx->initiator.id == PKVM_ID_HOST)
psci_mem_protect_dec(tx->nr_pages);
return err;
}
static int __guest_get_completer_addr(u64 *completer_addr, phys_addr_t phys,
const struct pkvm_mem_transition *tx)
{
switch (tx->completer.id) {
case PKVM_ID_HOST:
*completer_addr = phys;
break;
case PKVM_ID_HYP:
*completer_addr = (u64)__hyp_va(phys);
break;
default:
return -EINVAL;
}
return 0;
}
static int __guest_request_page_transition(u64 *completer_addr,
const struct pkvm_mem_transition *tx,
enum pkvm_page_state desired)
{
struct pkvm_hyp_vcpu *vcpu = tx->initiator.guest.hyp_vcpu;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
enum pkvm_page_state state;
phys_addr_t phys;
kvm_pte_t pte;
u32 level;
int ret;
if (tx->nr_pages != 1)
return -E2BIG;
ret = kvm_pgtable_get_leaf(&vm->pgt, tx->initiator.addr, &pte, &level);
if (ret)
return ret;
state = guest_get_page_state(pte, tx->initiator.addr);
if (state == PKVM_NOPAGE)
return -EFAULT;
if (state != desired)
return -EPERM;
/*
* We only deal with page granular mappings in the guest for now as
* the pgtable code relies on being able to recreate page mappings
* lazily after zapping a block mapping, which doesn't work once the
* pages have been donated.
*/
if (level != KVM_PGTABLE_MAX_LEVELS - 1)
return -EINVAL;
phys = kvm_pte_to_phys(pte);
if (!addr_is_allowed_memory(phys))
return -EINVAL;
return __guest_get_completer_addr(completer_addr, phys, tx);
}
static int guest_request_share(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
return __guest_request_page_transition(completer_addr, tx,
PKVM_PAGE_OWNED);
}
static int guest_request_unshare(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
return __guest_request_page_transition(completer_addr, tx,
PKVM_PAGE_SHARED_OWNED);
}
static int __guest_initiate_page_transition(u64 *completer_addr,
const struct pkvm_mem_transition *tx,
enum pkvm_page_state state)
{
struct pkvm_hyp_vcpu *vcpu = tx->initiator.guest.hyp_vcpu;
struct kvm_hyp_memcache *mc = &vcpu->vcpu.arch.pkvm_memcache;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
u64 size = tx->nr_pages * PAGE_SIZE;
u64 addr = tx->initiator.addr;
enum kvm_pgtable_prot prot;
phys_addr_t phys;
kvm_pte_t pte;
int ret;
ret = kvm_pgtable_get_leaf(&vm->pgt, addr, &pte, NULL);
if (ret)
return ret;
phys = kvm_pte_to_phys(pte);
prot = pkvm_mkstate(kvm_pgtable_stage2_pte_prot(pte), state);
ret = kvm_pgtable_stage2_map(&vm->pgt, addr, size, phys, prot, mc);
if (ret)
return ret;
return __guest_get_completer_addr(completer_addr, phys, tx);
}
static int guest_initiate_share(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
return __guest_initiate_page_transition(completer_addr, tx,
PKVM_PAGE_SHARED_OWNED);
}
static int guest_initiate_unshare(u64 *completer_addr,
const struct pkvm_mem_transition *tx)
{
return __guest_initiate_page_transition(completer_addr, tx,
PKVM_PAGE_OWNED);
}
static int check_share(struct pkvm_mem_share *share)
{
const struct pkvm_mem_transition *tx = &share->tx;
u64 completer_addr;
int ret;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_request_owned_transition(&completer_addr, tx);
break;
case PKVM_ID_GUEST:
ret = guest_request_share(&completer_addr, tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_ack_share(completer_addr, tx, share->completer_prot);
break;
case PKVM_ID_HYP:
ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
break;
case PKVM_ID_GUEST:
ret = guest_ack_share(completer_addr, tx, share->completer_prot);
break;
case PKVM_ID_FFA:
/*
* We only check the host; the secure side will check the other
* end when we forward the FFA call.
*/
ret = 0;
break;
default:
ret = -EINVAL;
}
return ret;
}
static int __do_share(struct pkvm_mem_share *share)
{
const struct pkvm_mem_transition *tx = &share->tx;
u64 completer_addr;
int ret;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_initiate_share(&completer_addr, tx);
break;
case PKVM_ID_GUEST:
ret = guest_initiate_share(&completer_addr, tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_complete_share(completer_addr, tx, share->completer_prot);
break;
case PKVM_ID_HYP:
ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
break;
case PKVM_ID_GUEST:
ret = guest_complete_share(completer_addr, tx, share->completer_prot);
break;
case PKVM_ID_FFA:
/*
* We're not responsible for any secure page-tables, so there's
* nothing to do here.
*/
ret = 0;
break;
default:
ret = -EINVAL;
}
return ret;
}
/*
* do_share():
*
* The page owner grants access to another component with a given set
* of permissions.
*
* Initiator: OWNED => SHARED_OWNED
* Completer: NOPAGE => SHARED_BORROWED
*/
static int do_share(struct pkvm_mem_share *share)
{
int ret;
ret = check_share(share);
if (ret)
return ret;
return WARN_ON(__do_share(share));
}
static int check_unshare(struct pkvm_mem_share *share)
{
const struct pkvm_mem_transition *tx = &share->tx;
u64 completer_addr;
int ret;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_request_unshare(&completer_addr, tx);
break;
case PKVM_ID_GUEST:
ret = guest_request_unshare(&completer_addr, tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_ack_unshare(completer_addr, tx);
break;
case PKVM_ID_HYP:
ret = hyp_ack_unshare(completer_addr, tx);
break;
case PKVM_ID_FFA:
/* See check_share() */
ret = 0;
break;
default:
ret = -EINVAL;
}
return ret;
}
static int __do_unshare(struct pkvm_mem_share *share)
{
const struct pkvm_mem_transition *tx = &share->tx;
u64 completer_addr;
int ret;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_initiate_unshare(&completer_addr, tx);
break;
case PKVM_ID_GUEST:
ret = guest_initiate_unshare(&completer_addr, tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_complete_unshare(completer_addr, tx);
break;
case PKVM_ID_HYP:
ret = hyp_complete_unshare(completer_addr, tx);
break;
case PKVM_ID_FFA:
/* See __do_share() */
ret = 0;
break;
default:
ret = -EINVAL;
}
return ret;
}
/*
* do_unshare():
*
* The page owner revokes access from another component for a range of
* pages which were previously shared using do_share().
*
* Initiator: SHARED_OWNED => OWNED
* Completer: SHARED_BORROWED => NOPAGE
*/
static int do_unshare(struct pkvm_mem_share *share)
{
int ret;
ret = check_unshare(share);
if (ret)
return ret;
return WARN_ON(__do_unshare(share));
}
static int check_donation(struct pkvm_mem_donation *donation)
{
const struct pkvm_mem_transition *tx = &donation->tx;
u64 completer_addr;
int ret;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_request_owned_transition(&completer_addr, tx);
break;
case PKVM_ID_HYP:
ret = hyp_request_donation(&completer_addr, tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_ack_donation(completer_addr, tx);
break;
case PKVM_ID_HYP:
ret = hyp_ack_donation(completer_addr, tx);
break;
case PKVM_ID_GUEST:
ret = guest_ack_donation(completer_addr, tx);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int __do_donate(struct pkvm_mem_donation *donation)
{
const struct pkvm_mem_transition *tx = &donation->tx;
u64 completer_addr;
int ret;
switch (tx->initiator.id) {
case PKVM_ID_HOST:
ret = host_initiate_donation(&completer_addr, tx);
break;
case PKVM_ID_HYP:
ret = hyp_initiate_donation(&completer_addr, tx);
break;
default:
ret = -EINVAL;
}
if (ret)
return ret;
switch (tx->completer.id) {
case PKVM_ID_HOST:
ret = host_complete_donation(completer_addr, tx);
break;
case PKVM_ID_HYP:
ret = hyp_complete_donation(completer_addr, tx);
break;
case PKVM_ID_GUEST:
ret = guest_complete_donation(completer_addr, tx);
break;
default:
ret = -EINVAL;
}
return ret;
}
/*
* do_donate():
*
* The page owner transfers ownership to another component, losing access
* as a consequence.
*
* Initiator: OWNED => NOPAGE
* Completer: NOPAGE => OWNED
*/
static int do_donate(struct pkvm_mem_donation *donation)
{
int ret;
ret = check_donation(donation);
if (ret)
return ret;
return WARN_ON(__do_donate(donation));
}
int __pkvm_host_share_hyp(u64 pfn)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 hyp_addr = (u64)__hyp_va(host_addr);
struct pkvm_mem_share share = {
.tx = {
.nr_pages = 1,
.initiator = {
.id = PKVM_ID_HOST,
.addr = host_addr,
.host = {
.completer_addr = hyp_addr,
},
},
.completer = {
.id = PKVM_ID_HYP,
},
},
.completer_prot = default_hyp_prot(host_addr),
};
host_lock_component();
hyp_lock_component();
ret = do_share(&share);
hyp_unlock_component();
host_unlock_component();
return ret;
}
int __pkvm_guest_share_host(struct pkvm_hyp_vcpu *vcpu, u64 ipa)
{
int ret;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
struct pkvm_mem_share share = {
.tx = {
.nr_pages = 1,
.initiator = {
.id = PKVM_ID_GUEST,
.addr = ipa,
.guest = {
.hyp_vcpu = vcpu,
},
},
.completer = {
.id = PKVM_ID_HOST,
},
},
.completer_prot = PKVM_HOST_MEM_PROT,
};
host_lock_component();
guest_lock_component(vm);
ret = do_share(&share);
guest_unlock_component(vm);
host_unlock_component();
return ret;
}
int __pkvm_guest_unshare_host(struct pkvm_hyp_vcpu *vcpu, u64 ipa)
{
int ret;
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
struct pkvm_mem_share share = {
.tx = {
.nr_pages = 1,
.initiator = {
.id = PKVM_ID_GUEST,
.addr = ipa,
.guest = {
.hyp_vcpu = vcpu,
},
},
.completer = {
.id = PKVM_ID_HOST,
},
},
.completer_prot = PKVM_HOST_MEM_PROT,
};
host_lock_component();
guest_lock_component(vm);
ret = do_unshare(&share);
guest_unlock_component(vm);
host_unlock_component();
return ret;
}
int __pkvm_host_unshare_hyp(u64 pfn)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 hyp_addr = (u64)__hyp_va(host_addr);
struct pkvm_mem_share share = {
.tx = {
.nr_pages = 1,
.initiator = {
.id = PKVM_ID_HOST,
.addr = host_addr,
.host = {
.completer_addr = hyp_addr,
},
},
.completer = {
.id = PKVM_ID_HYP,
},
},
.completer_prot = default_hyp_prot(host_addr),
};
host_lock_component();
hyp_lock_component();
ret = do_unshare(&share);
hyp_unlock_component();
host_unlock_component();
return ret;
}
int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
{
return ___pkvm_host_donate_hyp(pfn, nr_pages, false);
}
int ___pkvm_host_donate_hyp(u64 pfn, u64 nr_pages, bool accept_mmio)
{
phys_addr_t start = hyp_pfn_to_phys(pfn);
phys_addr_t end = start + (nr_pages << PAGE_SHIFT);
int ret;
if (!accept_mmio && !range_is_memory(start, end))
return -EPERM;
host_lock_component();
ret = __pkvm_host_donate_hyp_locked(pfn, nr_pages);
host_unlock_component();
return ret;
}
int __pkvm_host_donate_hyp_locked(u64 pfn, u64 nr_pages)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 hyp_addr = (u64)__hyp_va(host_addr);
struct pkvm_mem_donation donation = {
.tx = {
.nr_pages = nr_pages,
.initiator = {
.id = PKVM_ID_HOST,
.addr = host_addr,
.host = {
.completer_addr = hyp_addr,
},
},
.completer = {
.id = PKVM_ID_HYP,
},
},
};
hyp_assert_lock_held(&host_mmu.lock);
hyp_lock_component();
ret = do_donate(&donation);
hyp_unlock_component();
return ret;
}
int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 hyp_addr = (u64)__hyp_va(host_addr);
struct pkvm_mem_donation donation = {
.tx = {
.nr_pages = nr_pages,
.initiator = {
.id = PKVM_ID_HYP,
.addr = hyp_addr,
.hyp = {
.completer_addr = host_addr,
},
},
.completer = {
.id = PKVM_ID_HOST,
},
},
};
host_lock_component();
hyp_lock_component();
ret = do_donate(&donation);
hyp_unlock_component();
host_unlock_component();
return ret;
}
#define MODULE_PROT_ALLOWLIST (KVM_PGTABLE_PROT_RWX | \
KVM_PGTABLE_PROT_DEVICE |\
KVM_PGTABLE_PROT_NC | \
KVM_PGTABLE_PROT_PXN | \
KVM_PGTABLE_PROT_UXN)
int module_change_host_page_prot_range(u64 pfn, enum kvm_pgtable_prot prot, u64 nr_pages)
{
u64 i, addr = hyp_pfn_to_phys(pfn);
u64 end = addr + nr_pages * PAGE_SIZE;
struct hyp_page *page = NULL;
struct kvm_mem_range range;
bool is_mmio;
int ret;
if ((prot & MODULE_PROT_ALLOWLIST) != prot)
return -EINVAL;
is_mmio = !find_mem_range(addr, &range);
if (end > range.end) {
/* Specified range not in a single mmio or memory block. */
return -EPERM;
}
host_lock_component();
/*
* There is no hyp_vmemmap covering MMIO regions, which makes tracking
* of module-owned MMIO regions hard, so we trust the modules not to
* mess things up.
*/
if (is_mmio)
goto update;
/* Range is memory: we can track module ownership. */
page = hyp_phys_to_page(addr);
/*
* Modules can only modify pages they already own, and pristine host
* pages. The entire range must be consistently one or the other.
*/
if (page->flags & MODULE_OWNED_PAGE) {
/* The entire range must be module-owned. */
ret = -EPERM;
for (i = 1; i < nr_pages; i++) {
if (!(page[i].flags & MODULE_OWNED_PAGE))
goto unlock;
}
} else {
/* The entire range must be pristine. */
ret = __host_check_page_state_range(
addr, nr_pages << PAGE_SHIFT, PKVM_PAGE_OWNED);
if (ret)
goto unlock;
}
update:
if (!prot) {
ret = host_stage2_set_owner_locked(
addr, nr_pages << PAGE_SHIFT, PKVM_ID_PROTECTED);
} else {
ret = host_stage2_idmap_locked(
addr, nr_pages << PAGE_SHIFT, prot, false);
}
if (WARN_ON(ret) || !page)
goto unlock;
for (i = 0; i < nr_pages; i++) {
if (prot != KVM_PGTABLE_PROT_RWX)
page[i].flags |= MODULE_OWNED_PAGE;
else
page[i].flags &= ~MODULE_OWNED_PAGE;
}
unlock:
host_unlock_component();
return ret;
}
int module_change_host_page_prot(u64 pfn, enum kvm_pgtable_prot prot)
{
return module_change_host_page_prot_range(pfn, prot, 1);
}
int hyp_pin_shared_mem(void *from, void *to)
{
u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
u64 end = PAGE_ALIGN((u64)to);
u64 size = end - start;
int ret;
host_lock_component();
hyp_lock_component();
ret = __host_check_page_state_range(__hyp_pa(start), size,
PKVM_PAGE_SHARED_OWNED);
if (ret)
goto unlock;
ret = __hyp_check_page_state_range(start, size,
PKVM_PAGE_SHARED_BORROWED);
if (ret)
goto unlock;
for (cur = start; cur < end; cur += PAGE_SIZE)
hyp_page_ref_inc(hyp_virt_to_page(cur));
unlock:
hyp_unlock_component();
host_unlock_component();
return ret;
}
void hyp_unpin_shared_mem(void *from, void *to)
{
u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
u64 end = PAGE_ALIGN((u64)to);
host_lock_component();
hyp_lock_component();
for (cur = start; cur < end; cur += PAGE_SIZE)
hyp_page_ref_dec(hyp_virt_to_page(cur));
hyp_unlock_component();
host_unlock_component();
}
int __pkvm_host_share_guest(u64 pfn, u64 gfn, struct pkvm_hyp_vcpu *vcpu)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 guest_addr = hyp_pfn_to_phys(gfn);
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
struct pkvm_mem_share share = {
.tx = {
.nr_pages = 1,
.initiator = {
.id = PKVM_ID_HOST,
.addr = host_addr,
.host = {
.completer_addr = guest_addr,
},
},
.completer = {
.id = PKVM_ID_GUEST,
.guest = {
.hyp_vcpu = vcpu,
.phys = host_addr,
},
},
},
.completer_prot = KVM_PGTABLE_PROT_RWX,
};
host_lock_component();
guest_lock_component(vm);
ret = do_share(&share);
guest_unlock_component(vm);
host_unlock_component();
return ret;
}
int __pkvm_host_donate_guest(u64 pfn, u64 gfn, struct pkvm_hyp_vcpu *vcpu)
{
int ret;
u64 host_addr = hyp_pfn_to_phys(pfn);
u64 guest_addr = hyp_pfn_to_phys(gfn);
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(vcpu);
struct pkvm_mem_donation donation = {
.tx = {
.nr_pages = 1,
.initiator = {
.id = PKVM_ID_HOST,
.addr = host_addr,
.host = {
.completer_addr = guest_addr,
},
},
.completer = {
.id = PKVM_ID_GUEST,
.guest = {
.hyp_vcpu = vcpu,
.phys = host_addr,
},
},
},
};
host_lock_component();
guest_lock_component(vm);
ret = do_donate(&donation);
guest_unlock_component(vm);
host_unlock_component();
return ret;
}
int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages)
{
int ret;
struct pkvm_mem_share share = {
.tx = {
.nr_pages = nr_pages,
.initiator = {
.id = PKVM_ID_HOST,
.addr = hyp_pfn_to_phys(pfn),
},
.completer = {
.id = PKVM_ID_FFA,
},
},
};
host_lock_component();
ret = do_share(&share);
host_unlock_component();
return ret;
}
int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages)
{
int ret;
struct pkvm_mem_share share = {
.tx = {
.nr_pages = nr_pages,
.initiator = {
.id = PKVM_ID_HOST,
.addr = hyp_pfn_to_phys(pfn),
},
.completer = {
.id = PKVM_ID_FFA,
},
},
};
host_lock_component();
ret = do_unshare(&share);
host_unlock_component();
return ret;
}
void hyp_poison_page(phys_addr_t phys)
{
void *addr = hyp_fixmap_map(phys);
memset(addr, 0, PAGE_SIZE);
/*
* Prefer kvm_flush_dcache_to_poc() over __clean_dcache_guest_page()
* here as the latter may elide the CMO under the assumption that FWB
* will be enabled on CPUs that support it. This is incorrect for the
* host stage-2 and would otherwise lead to a malicious host potentially
* being able to read the contents of newly reclaimed guest pages.
*/
kvm_flush_dcache_to_poc(addr, PAGE_SIZE);
hyp_fixmap_unmap();
}
void destroy_hyp_vm_pgt(struct pkvm_hyp_vm *vm)
{
guest_lock_component(vm);
kvm_pgtable_stage2_destroy(&vm->pgt);
guest_unlock_component(vm);
}
void drain_hyp_pool(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
{
void *addr = hyp_alloc_pages(&vm->pool, 0);
while (addr) {
memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page));
push_hyp_memcache(mc, addr, hyp_virt_to_phys);
WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
addr = hyp_alloc_pages(&vm->pool, 0);
}
}
int __pkvm_host_reclaim_page(struct pkvm_hyp_vm *vm, u64 pfn, u64 ipa)
{
phys_addr_t phys = hyp_pfn_to_phys(pfn);
kvm_pte_t pte;
int ret;
host_lock_component();
guest_lock_component(vm);
ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, NULL);
if (ret)
goto unlock;
if (!kvm_pte_valid(pte)) {
ret = -EINVAL;
goto unlock;
} else if (phys != kvm_pte_to_phys(pte)) {
ret = -EPERM;
goto unlock;
}
/* We could avoid TLB inval, it is done per VMID on the finalize path */
WARN_ON(kvm_pgtable_stage2_unmap(&vm->pgt, ipa, PAGE_SIZE));
switch(guest_get_page_state(pte, ipa)) {
case PKVM_PAGE_OWNED:
WARN_ON(__host_check_page_state_range(phys, PAGE_SIZE, PKVM_NOPAGE));
hyp_poison_page(phys);
psci_mem_protect_dec(1);
break;
case PKVM_PAGE_SHARED_BORROWED:
WARN_ON(__host_check_page_state_range(phys, PAGE_SIZE, PKVM_PAGE_SHARED_OWNED));
break;
case PKVM_PAGE_SHARED_OWNED:
WARN_ON(__host_check_page_state_range(phys, PAGE_SIZE, PKVM_PAGE_SHARED_BORROWED));
break;
default:
BUG_ON(1);
}
WARN_ON(host_stage2_set_owner_locked(phys, PAGE_SIZE, PKVM_ID_HOST));
unlock:
guest_unlock_component(vm);
host_unlock_component();
return ret;
}
/* Replace this with something more structured once day */
#define MMIO_NOTE (('M' << 24 | 'M' << 16 | 'I' << 8 | 'O') << 1)
static bool __check_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa)
{
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
kvm_pte_t pte;
u32 level;
int ret;
ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level);
if (ret)
return false;
/* Must be a PAGE_SIZE mapping with our annotation */
return (BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)) == PAGE_SIZE &&
pte == MMIO_NOTE);
}
int __pkvm_install_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa)
{
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
kvm_pte_t pte;
u32 level;
int ret;
if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->kvm.arch.flags))
return -EINVAL;
if (ipa & ~PAGE_MASK)
return -EINVAL;
guest_lock_component(vm);
ret = kvm_pgtable_get_leaf(&vm->pgt, ipa, &pte, &level);
if (ret)
goto unlock;
if (pte && BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level)) == PAGE_SIZE) {
/*
* Already flagged as MMIO, let's accept it, and fail
* otherwise
*/
if (pte != MMIO_NOTE)
ret = -EBUSY;
goto unlock;
}
ret = kvm_pgtable_stage2_annotate(&vm->pgt, ipa, PAGE_SIZE,
&hyp_vcpu->vcpu.arch.pkvm_memcache,
MMIO_NOTE);
unlock:
guest_unlock_component(vm);
return ret;
}
int __pkvm_remove_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu, u64 ipa)
{
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->kvm.arch.flags))
return -EINVAL;
guest_lock_component(vm);
if (__check_ioguard_page(hyp_vcpu, ipa))
WARN_ON(kvm_pgtable_stage2_unmap(&vm->pgt,
ALIGN_DOWN(ipa, PAGE_SIZE), PAGE_SIZE));
guest_unlock_component(vm);
return 0;
}
bool __pkvm_check_ioguard_page(struct pkvm_hyp_vcpu *hyp_vcpu)
{
struct pkvm_hyp_vm *vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu);
u64 ipa, end;
bool ret;
if (!kvm_vcpu_dabt_isvalid(&hyp_vcpu->vcpu))
return false;
if (!test_bit(KVM_ARCH_FLAG_MMIO_GUARD, &vm->kvm.arch.flags))
return true;
ipa = kvm_vcpu_get_fault_ipa(&hyp_vcpu->vcpu);
ipa |= kvm_vcpu_get_hfar(&hyp_vcpu->vcpu) & FAR_MASK;
end = ipa + kvm_vcpu_dabt_get_as(&hyp_vcpu->vcpu) - 1;
guest_lock_component(vm);
ret = __check_ioguard_page(hyp_vcpu, ipa);
if ((end & PAGE_MASK) != (ipa & PAGE_MASK))
ret &= __check_ioguard_page(hyp_vcpu, end);
guest_unlock_component(vm);
return ret;
}
int host_stage2_get_leaf(phys_addr_t phys, kvm_pte_t *ptep, u32 *level)
{
int ret;
host_lock_component();
ret = kvm_pgtable_get_leaf(&host_mmu.pgt, phys, ptep, level);
host_unlock_component();
return ret;
}