| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Freescale MXS I2C bus driver |
| * |
| * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de> |
| * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K. |
| * |
| * based on a (non-working) driver which was: |
| * |
| * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/device.h> |
| #include <linux/module.h> |
| #include <linux/i2c.h> |
| #include <linux/err.h> |
| #include <linux/interrupt.h> |
| #include <linux/completion.h> |
| #include <linux/platform_device.h> |
| #include <linux/jiffies.h> |
| #include <linux/io.h> |
| #include <linux/stmp_device.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma/mxs-dma.h> |
| |
| #define DRIVER_NAME "mxs-i2c" |
| |
| #define MXS_I2C_CTRL0 (0x00) |
| #define MXS_I2C_CTRL0_SET (0x04) |
| #define MXS_I2C_CTRL0_CLR (0x08) |
| |
| #define MXS_I2C_CTRL0_SFTRST 0x80000000 |
| #define MXS_I2C_CTRL0_RUN 0x20000000 |
| #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000 |
| #define MXS_I2C_CTRL0_PIO_MODE 0x01000000 |
| #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000 |
| #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000 |
| #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000 |
| #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000 |
| #define MXS_I2C_CTRL0_DIRECTION 0x00010000 |
| #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF) |
| |
| #define MXS_I2C_TIMING0 (0x10) |
| #define MXS_I2C_TIMING1 (0x20) |
| #define MXS_I2C_TIMING2 (0x30) |
| |
| #define MXS_I2C_CTRL1 (0x40) |
| #define MXS_I2C_CTRL1_SET (0x44) |
| #define MXS_I2C_CTRL1_CLR (0x48) |
| |
| #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000 |
| #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80 |
| #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40 |
| #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20 |
| #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10 |
| #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08 |
| #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04 |
| #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02 |
| #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01 |
| |
| #define MXS_I2C_STAT (0x50) |
| #define MXS_I2C_STAT_GOT_A_NAK 0x10000000 |
| #define MXS_I2C_STAT_BUS_BUSY 0x00000800 |
| #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400 |
| |
| #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0) |
| |
| #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8) |
| |
| #define MXS_I2C_DEBUG0_DMAREQ 0x80000000 |
| |
| #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \ |
| MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \ |
| MXS_I2C_CTRL1_EARLY_TERM_IRQ | \ |
| MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \ |
| MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \ |
| MXS_I2C_CTRL1_SLAVE_IRQ) |
| |
| |
| #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \ |
| MXS_I2C_CTRL0_PRE_SEND_START | \ |
| MXS_I2C_CTRL0_MASTER_MODE | \ |
| MXS_I2C_CTRL0_DIRECTION | \ |
| MXS_I2C_CTRL0_XFER_COUNT(1)) |
| |
| #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \ |
| MXS_I2C_CTRL0_MASTER_MODE | \ |
| MXS_I2C_CTRL0_DIRECTION) |
| |
| #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \ |
| MXS_I2C_CTRL0_MASTER_MODE) |
| |
| enum mxs_i2c_devtype { |
| MXS_I2C_UNKNOWN = 0, |
| MXS_I2C_V1, |
| MXS_I2C_V2, |
| }; |
| |
| /** |
| * struct mxs_i2c_dev - per device, private MXS-I2C data |
| * |
| * @dev: driver model device node |
| * @dev_type: distinguish i.MX23/i.MX28 features |
| * @regs: IO registers pointer |
| * @cmd_complete: completion object for transaction wait |
| * @cmd_err: error code for last transaction |
| * @adapter: i2c subsystem adapter node |
| */ |
| struct mxs_i2c_dev { |
| struct device *dev; |
| enum mxs_i2c_devtype dev_type; |
| void __iomem *regs; |
| struct completion cmd_complete; |
| int cmd_err; |
| struct i2c_adapter adapter; |
| |
| uint32_t timing0; |
| uint32_t timing1; |
| uint32_t timing2; |
| |
| /* DMA support components */ |
| struct dma_chan *dmach; |
| uint32_t pio_data[2]; |
| uint32_t addr_data; |
| struct scatterlist sg_io[2]; |
| bool dma_read; |
| }; |
| |
| static int mxs_i2c_reset(struct mxs_i2c_dev *i2c) |
| { |
| int ret = stmp_reset_block(i2c->regs); |
| if (ret) |
| return ret; |
| |
| /* |
| * Configure timing for the I2C block. The I2C TIMING2 register has to |
| * be programmed with this particular magic number. The rest is derived |
| * from the XTAL speed and requested I2C speed. |
| * |
| * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4]. |
| */ |
| writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0); |
| writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1); |
| writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2); |
| |
| writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); |
| |
| return 0; |
| } |
| |
| static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c) |
| { |
| if (i2c->dma_read) { |
| dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); |
| dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); |
| } else { |
| dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); |
| } |
| } |
| |
| static void mxs_i2c_dma_irq_callback(void *param) |
| { |
| struct mxs_i2c_dev *i2c = param; |
| |
| complete(&i2c->cmd_complete); |
| mxs_i2c_dma_finish(i2c); |
| } |
| |
| static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap, |
| struct i2c_msg *msg, u8 *buf, uint32_t flags) |
| { |
| struct dma_async_tx_descriptor *desc; |
| struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); |
| |
| i2c->addr_data = i2c_8bit_addr_from_msg(msg); |
| |
| if (msg->flags & I2C_M_RD) { |
| i2c->dma_read = true; |
| |
| /* |
| * SELECT command. |
| */ |
| |
| /* Queue the PIO register write transfer. */ |
| i2c->pio_data[0] = MXS_CMD_I2C_SELECT; |
| desc = dmaengine_prep_slave_sg(i2c->dmach, |
| (struct scatterlist *)&i2c->pio_data[0], |
| 1, DMA_TRANS_NONE, 0); |
| if (!desc) { |
| dev_err(i2c->dev, |
| "Failed to get PIO reg. write descriptor.\n"); |
| goto select_init_pio_fail; |
| } |
| |
| /* Queue the DMA data transfer. */ |
| sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1); |
| dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); |
| desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1, |
| DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | |
| MXS_DMA_CTRL_WAIT4END); |
| if (!desc) { |
| dev_err(i2c->dev, |
| "Failed to get DMA data write descriptor.\n"); |
| goto select_init_dma_fail; |
| } |
| |
| /* |
| * READ command. |
| */ |
| |
| /* Queue the PIO register write transfer. */ |
| i2c->pio_data[1] = flags | MXS_CMD_I2C_READ | |
| MXS_I2C_CTRL0_XFER_COUNT(msg->len); |
| desc = dmaengine_prep_slave_sg(i2c->dmach, |
| (struct scatterlist *)&i2c->pio_data[1], |
| 1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT); |
| if (!desc) { |
| dev_err(i2c->dev, |
| "Failed to get PIO reg. write descriptor.\n"); |
| goto select_init_dma_fail; |
| } |
| |
| /* Queue the DMA data transfer. */ |
| sg_init_one(&i2c->sg_io[1], buf, msg->len); |
| dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); |
| desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1, |
| DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | |
| MXS_DMA_CTRL_WAIT4END); |
| if (!desc) { |
| dev_err(i2c->dev, |
| "Failed to get DMA data write descriptor.\n"); |
| goto read_init_dma_fail; |
| } |
| } else { |
| i2c->dma_read = false; |
| |
| /* |
| * WRITE command. |
| */ |
| |
| /* Queue the PIO register write transfer. */ |
| i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE | |
| MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1); |
| desc = dmaengine_prep_slave_sg(i2c->dmach, |
| (struct scatterlist *)&i2c->pio_data[0], |
| 1, DMA_TRANS_NONE, 0); |
| if (!desc) { |
| dev_err(i2c->dev, |
| "Failed to get PIO reg. write descriptor.\n"); |
| goto write_init_pio_fail; |
| } |
| |
| /* Queue the DMA data transfer. */ |
| sg_init_table(i2c->sg_io, 2); |
| sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1); |
| sg_set_buf(&i2c->sg_io[1], buf, msg->len); |
| dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); |
| desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2, |
| DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | |
| MXS_DMA_CTRL_WAIT4END); |
| if (!desc) { |
| dev_err(i2c->dev, |
| "Failed to get DMA data write descriptor.\n"); |
| goto write_init_dma_fail; |
| } |
| } |
| |
| /* |
| * The last descriptor must have this callback, |
| * to finish the DMA transaction. |
| */ |
| desc->callback = mxs_i2c_dma_irq_callback; |
| desc->callback_param = i2c; |
| |
| /* Start the transfer. */ |
| dmaengine_submit(desc); |
| dma_async_issue_pending(i2c->dmach); |
| return 0; |
| |
| /* Read failpath. */ |
| read_init_dma_fail: |
| dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE); |
| select_init_dma_fail: |
| dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE); |
| select_init_pio_fail: |
| dmaengine_terminate_sync(i2c->dmach); |
| return -EINVAL; |
| |
| /* Write failpath. */ |
| write_init_dma_fail: |
| dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE); |
| write_init_pio_fail: |
| dmaengine_terminate_sync(i2c->dmach); |
| return -EINVAL; |
| } |
| |
| static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c) |
| { |
| unsigned long timeout = jiffies + msecs_to_jiffies(1000); |
| |
| while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) { |
| if (readl(i2c->regs + MXS_I2C_CTRL1) & |
| MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) |
| return -ENXIO; |
| if (time_after(jiffies, timeout)) |
| return -ETIMEDOUT; |
| cond_resched(); |
| } |
| |
| return 0; |
| } |
| |
| static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c) |
| { |
| u32 state; |
| |
| state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK; |
| |
| if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) |
| i2c->cmd_err = -ENXIO; |
| else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | |
| MXS_I2C_CTRL1_MASTER_LOSS_IRQ | |
| MXS_I2C_CTRL1_SLAVE_STOP_IRQ | |
| MXS_I2C_CTRL1_SLAVE_IRQ)) |
| i2c->cmd_err = -EIO; |
| |
| return i2c->cmd_err; |
| } |
| |
| static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd) |
| { |
| u32 reg; |
| |
| writel(cmd, i2c->regs + MXS_I2C_CTRL0); |
| |
| /* readback makes sure the write is latched into hardware */ |
| reg = readl(i2c->regs + MXS_I2C_CTRL0); |
| reg |= MXS_I2C_CTRL0_RUN; |
| writel(reg, i2c->regs + MXS_I2C_CTRL0); |
| } |
| |
| /* |
| * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet, |
| * CTRL0::PIO_MODE bit description clarifies the order in which the registers |
| * must be written during PIO mode operation. First, the CTRL0 register has |
| * to be programmed with all the necessary bits but the RUN bit. Then the |
| * payload has to be written into the DATA register. Finally, the transmission |
| * is executed by setting the RUN bit in CTRL0. |
| */ |
| static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd, |
| u32 data) |
| { |
| writel(cmd, i2c->regs + MXS_I2C_CTRL0); |
| |
| if (i2c->dev_type == MXS_I2C_V1) |
| writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET); |
| |
| writel(data, i2c->regs + MXS_I2C_DATA(i2c)); |
| writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET); |
| } |
| |
| static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap, |
| struct i2c_msg *msg, uint32_t flags) |
| { |
| struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); |
| uint32_t addr_data = i2c_8bit_addr_from_msg(msg); |
| uint32_t data = 0; |
| int i, ret, xlen = 0, xmit = 0; |
| uint32_t start; |
| |
| /* Mute IRQs coming from this block. */ |
| writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR); |
| |
| /* |
| * MX23 idea: |
| * - Enable CTRL0::PIO_MODE (1 << 24) |
| * - Enable CTRL1::ACK_MODE (1 << 27) |
| * |
| * WARNING! The MX23 is broken in some way, even if it claims |
| * to support PIO, when we try to transfer any amount of data |
| * that is not aligned to 4 bytes, the DMA engine will have |
| * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the |
| * transfer. This in turn will mess up the next transfer as |
| * the block it emit one byte write onto the bus terminated |
| * with a NAK+STOP. A possible workaround is to reset the IP |
| * block after every PIO transmission, which might just work. |
| * |
| * NOTE: The CTRL0::PIO_MODE description is important, since |
| * it outlines how the PIO mode is really supposed to work. |
| */ |
| if (msg->flags & I2C_M_RD) { |
| /* |
| * PIO READ transfer: |
| * |
| * This transfer MUST be limited to 4 bytes maximum. It is not |
| * possible to transfer more than four bytes via PIO, since we |
| * can not in any way make sure we can read the data from the |
| * DATA register fast enough. Besides, the RX FIFO is only four |
| * bytes deep, thus we can only really read up to four bytes at |
| * time. Finally, there is no bit indicating us that new data |
| * arrived at the FIFO and can thus be fetched from the DATA |
| * register. |
| */ |
| BUG_ON(msg->len > 4); |
| |
| /* SELECT command. */ |
| mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT, |
| addr_data); |
| |
| ret = mxs_i2c_pio_wait_xfer_end(i2c); |
| if (ret) { |
| dev_dbg(i2c->dev, |
| "PIO: Failed to send SELECT command!\n"); |
| goto cleanup; |
| } |
| |
| /* READ command. */ |
| mxs_i2c_pio_trigger_cmd(i2c, |
| MXS_CMD_I2C_READ | flags | |
| MXS_I2C_CTRL0_XFER_COUNT(msg->len)); |
| |
| ret = mxs_i2c_pio_wait_xfer_end(i2c); |
| if (ret) { |
| dev_dbg(i2c->dev, |
| "PIO: Failed to send READ command!\n"); |
| goto cleanup; |
| } |
| |
| data = readl(i2c->regs + MXS_I2C_DATA(i2c)); |
| for (i = 0; i < msg->len; i++) { |
| msg->buf[i] = data & 0xff; |
| data >>= 8; |
| } |
| } else { |
| /* |
| * PIO WRITE transfer: |
| * |
| * The code below implements clock stretching to circumvent |
| * the possibility of kernel not being able to supply data |
| * fast enough. It is possible to transfer arbitrary amount |
| * of data using PIO write. |
| */ |
| |
| /* |
| * The LSB of data buffer is the first byte blasted across |
| * the bus. Higher order bytes follow. Thus the following |
| * filling schematic. |
| */ |
| |
| data = addr_data << 24; |
| |
| /* Start the transfer with START condition. */ |
| start = MXS_I2C_CTRL0_PRE_SEND_START; |
| |
| /* If the transfer is long, use clock stretching. */ |
| if (msg->len > 3) |
| start |= MXS_I2C_CTRL0_RETAIN_CLOCK; |
| |
| for (i = 0; i < msg->len; i++) { |
| data >>= 8; |
| data |= (msg->buf[i] << 24); |
| |
| xmit = 0; |
| |
| /* This is the last transfer of the message. */ |
| if (i + 1 == msg->len) { |
| /* Add optional STOP flag. */ |
| start |= flags; |
| /* Remove RETAIN_CLOCK bit. */ |
| start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK; |
| xmit = 1; |
| } |
| |
| /* Four bytes are ready in the "data" variable. */ |
| if ((i & 3) == 2) |
| xmit = 1; |
| |
| /* Nothing interesting happened, continue stuffing. */ |
| if (!xmit) |
| continue; |
| |
| /* |
| * Compute the size of the transfer and shift the |
| * data accordingly. |
| * |
| * i = (4k + 0) .... xlen = 2 |
| * i = (4k + 1) .... xlen = 3 |
| * i = (4k + 2) .... xlen = 4 |
| * i = (4k + 3) .... xlen = 1 |
| */ |
| |
| if ((i % 4) == 3) |
| xlen = 1; |
| else |
| xlen = (i % 4) + 2; |
| |
| data >>= (4 - xlen) * 8; |
| |
| dev_dbg(i2c->dev, |
| "PIO: len=%i pos=%i total=%i [W%s%s%s]\n", |
| xlen, i, msg->len, |
| start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "", |
| start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "", |
| start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : ""); |
| |
| writel(MXS_I2C_DEBUG0_DMAREQ, |
| i2c->regs + MXS_I2C_DEBUG0_CLR(i2c)); |
| |
| mxs_i2c_pio_trigger_write_cmd(i2c, |
| start | MXS_I2C_CTRL0_MASTER_MODE | |
| MXS_I2C_CTRL0_DIRECTION | |
| MXS_I2C_CTRL0_XFER_COUNT(xlen), data); |
| |
| /* The START condition is sent only once. */ |
| start &= ~MXS_I2C_CTRL0_PRE_SEND_START; |
| |
| /* Wait for the end of the transfer. */ |
| ret = mxs_i2c_pio_wait_xfer_end(i2c); |
| if (ret) { |
| dev_dbg(i2c->dev, |
| "PIO: Failed to finish WRITE cmd!\n"); |
| break; |
| } |
| |
| /* Check NAK here. */ |
| ret = readl(i2c->regs + MXS_I2C_STAT) & |
| MXS_I2C_STAT_GOT_A_NAK; |
| if (ret) { |
| ret = -ENXIO; |
| goto cleanup; |
| } |
| } |
| } |
| |
| /* make sure we capture any occurred error into cmd_err */ |
| ret = mxs_i2c_pio_check_error_state(i2c); |
| |
| cleanup: |
| /* Clear any dangling IRQs and re-enable interrupts. */ |
| writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR); |
| writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET); |
| |
| /* Clear the PIO_MODE on i.MX23 */ |
| if (i2c->dev_type == MXS_I2C_V1) |
| writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR); |
| |
| return ret; |
| } |
| |
| /* |
| * Low level master read/write transaction. |
| */ |
| static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg, |
| int stop) |
| { |
| struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap); |
| int ret; |
| int flags; |
| u8 *dma_buf; |
| int use_pio = 0; |
| unsigned long time_left; |
| |
| flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0; |
| |
| dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n", |
| msg->addr, msg->len, msg->flags, stop); |
| |
| /* |
| * The MX28 I2C IP block can only do PIO READ for transfer of to up |
| * 4 bytes of length. The write transfer is not limited as it can use |
| * clock stretching to avoid FIFO underruns. |
| */ |
| if ((msg->flags & I2C_M_RD) && (msg->len <= 4)) |
| use_pio = 1; |
| if (!(msg->flags & I2C_M_RD) && (msg->len < 7)) |
| use_pio = 1; |
| |
| i2c->cmd_err = 0; |
| if (use_pio) { |
| ret = mxs_i2c_pio_setup_xfer(adap, msg, flags); |
| /* No need to reset the block if NAK was received. */ |
| if (ret && (ret != -ENXIO)) |
| mxs_i2c_reset(i2c); |
| } else { |
| dma_buf = i2c_get_dma_safe_msg_buf(msg, 1); |
| if (!dma_buf) |
| return -ENOMEM; |
| |
| reinit_completion(&i2c->cmd_complete); |
| ret = mxs_i2c_dma_setup_xfer(adap, msg, dma_buf, flags); |
| if (ret) { |
| i2c_put_dma_safe_msg_buf(dma_buf, msg, false); |
| return ret; |
| } |
| |
| time_left = wait_for_completion_timeout(&i2c->cmd_complete, |
| msecs_to_jiffies(1000)); |
| i2c_put_dma_safe_msg_buf(dma_buf, msg, true); |
| if (!time_left) |
| goto timeout; |
| |
| ret = i2c->cmd_err; |
| } |
| |
| if (ret == -ENXIO) { |
| /* |
| * If the transfer fails with a NAK from the slave the |
| * controller halts until it gets told to return to idle state. |
| */ |
| writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK, |
| i2c->regs + MXS_I2C_CTRL1_SET); |
| } |
| |
| /* |
| * WARNING! |
| * The i.MX23 is strange. After each and every operation, it's I2C IP |
| * block must be reset, otherwise the IP block will misbehave. This can |
| * be observed on the bus by the block sending out one single byte onto |
| * the bus. In case such an error happens, bit 27 will be set in the |
| * DEBUG0 register. This bit is not documented in the i.MX23 datasheet |
| * and is marked as "TBD" instead. To reset this bit to a correct state, |
| * reset the whole block. Since the block reset does not take long, do |
| * reset the block after every transfer to play safe. |
| */ |
| if (i2c->dev_type == MXS_I2C_V1) |
| mxs_i2c_reset(i2c); |
| |
| dev_dbg(i2c->dev, "Done with err=%d\n", ret); |
| |
| return ret; |
| |
| timeout: |
| dev_dbg(i2c->dev, "Timeout!\n"); |
| mxs_i2c_dma_finish(i2c); |
| ret = mxs_i2c_reset(i2c); |
| if (ret) |
| return ret; |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], |
| int num) |
| { |
| int i; |
| int err; |
| |
| for (i = 0; i < num; i++) { |
| err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1)); |
| if (err) |
| return err; |
| } |
| |
| return num; |
| } |
| |
| static u32 mxs_i2c_func(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; |
| } |
| |
| static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id) |
| { |
| struct mxs_i2c_dev *i2c = dev_id; |
| u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK; |
| |
| if (!stat) |
| return IRQ_NONE; |
| |
| if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ) |
| i2c->cmd_err = -ENXIO; |
| else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ | |
| MXS_I2C_CTRL1_MASTER_LOSS_IRQ | |
| MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ)) |
| /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */ |
| i2c->cmd_err = -EIO; |
| |
| writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static const struct i2c_algorithm mxs_i2c_algo = { |
| .master_xfer = mxs_i2c_xfer, |
| .functionality = mxs_i2c_func, |
| }; |
| |
| static const struct i2c_adapter_quirks mxs_i2c_quirks = { |
| .flags = I2C_AQ_NO_ZERO_LEN, |
| }; |
| |
| static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed) |
| { |
| /* The I2C block clock runs at 24MHz */ |
| const uint32_t clk = 24000000; |
| uint32_t divider; |
| uint16_t high_count, low_count, rcv_count, xmit_count; |
| uint32_t bus_free, leadin; |
| struct device *dev = i2c->dev; |
| |
| divider = DIV_ROUND_UP(clk, speed); |
| |
| if (divider < 25) { |
| /* |
| * limit the divider, so that min(low_count, high_count) |
| * is >= 1 |
| */ |
| divider = 25; |
| dev_warn(dev, |
| "Speed too high (%u.%03u kHz), using %u.%03u kHz\n", |
| speed / 1000, speed % 1000, |
| clk / divider / 1000, clk / divider % 1000); |
| } else if (divider > 1897) { |
| /* |
| * limit the divider, so that max(low_count, high_count) |
| * cannot exceed 1023 |
| */ |
| divider = 1897; |
| dev_warn(dev, |
| "Speed too low (%u.%03u kHz), using %u.%03u kHz\n", |
| speed / 1000, speed % 1000, |
| clk / divider / 1000, clk / divider % 1000); |
| } |
| |
| /* |
| * The I2C spec specifies the following timing data: |
| * standard mode fast mode Bitfield name |
| * tLOW (SCL LOW period) 4700 ns 1300 ns |
| * tHIGH (SCL HIGH period) 4000 ns 600 ns |
| * tSU;DAT (data setup time) 250 ns 100 ns |
| * tHD;STA (START hold time) 4000 ns 600 ns |
| * tBUF (bus free time) 4700 ns 1300 ns |
| * |
| * The hardware (of the i.MX28 at least) seems to add 2 additional |
| * clock cycles to the low_count and 7 cycles to the high_count. |
| * This is compensated for by subtracting the respective constants |
| * from the values written to the timing registers. |
| */ |
| if (speed > I2C_MAX_STANDARD_MODE_FREQ) { |
| /* fast mode */ |
| low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6)); |
| high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6)); |
| leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000); |
| bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000); |
| } else { |
| /* normal mode */ |
| low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40)); |
| high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40)); |
| leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); |
| bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000); |
| } |
| rcv_count = high_count * 3 / 8; |
| xmit_count = low_count * 3 / 8; |
| |
| dev_dbg(dev, |
| "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n", |
| speed, clk / divider, divider, low_count, high_count, |
| xmit_count, rcv_count, leadin, bus_free); |
| |
| low_count -= 2; |
| high_count -= 7; |
| i2c->timing0 = (high_count << 16) | rcv_count; |
| i2c->timing1 = (low_count << 16) | xmit_count; |
| i2c->timing2 = (bus_free << 16 | leadin); |
| } |
| |
| static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c) |
| { |
| uint32_t speed; |
| struct device *dev = i2c->dev; |
| struct device_node *node = dev->of_node; |
| int ret; |
| |
| ret = of_property_read_u32(node, "clock-frequency", &speed); |
| if (ret) { |
| dev_warn(dev, "No I2C speed selected, using 100kHz\n"); |
| speed = I2C_MAX_STANDARD_MODE_FREQ; |
| } |
| |
| mxs_i2c_derive_timing(i2c, speed); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id mxs_i2c_dt_ids[] = { |
| { .compatible = "fsl,imx23-i2c", .data = (void *)MXS_I2C_V1, }, |
| { .compatible = "fsl,imx28-i2c", .data = (void *)MXS_I2C_V2, }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids); |
| |
| static int mxs_i2c_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct mxs_i2c_dev *i2c; |
| struct i2c_adapter *adap; |
| int err, irq; |
| |
| i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL); |
| if (!i2c) |
| return -ENOMEM; |
| |
| i2c->dev_type = (uintptr_t)of_device_get_match_data(&pdev->dev); |
| |
| i2c->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(i2c->regs)) |
| return PTR_ERR(i2c->regs); |
| |
| irq = platform_get_irq(pdev, 0); |
| if (irq < 0) |
| return irq; |
| |
| err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c); |
| if (err) |
| return err; |
| |
| i2c->dev = dev; |
| |
| init_completion(&i2c->cmd_complete); |
| |
| if (dev->of_node) { |
| err = mxs_i2c_get_ofdata(i2c); |
| if (err) |
| return err; |
| } |
| |
| /* Setup the DMA */ |
| i2c->dmach = dma_request_chan(dev, "rx-tx"); |
| if (IS_ERR(i2c->dmach)) { |
| return dev_err_probe(dev, PTR_ERR(i2c->dmach), |
| "Failed to request dma\n"); |
| } |
| |
| platform_set_drvdata(pdev, i2c); |
| |
| /* Do reset to enforce correct startup after pinmuxing */ |
| err = mxs_i2c_reset(i2c); |
| if (err) |
| return err; |
| |
| adap = &i2c->adapter; |
| strscpy(adap->name, "MXS I2C adapter", sizeof(adap->name)); |
| adap->owner = THIS_MODULE; |
| adap->algo = &mxs_i2c_algo; |
| adap->quirks = &mxs_i2c_quirks; |
| adap->dev.parent = dev; |
| adap->nr = pdev->id; |
| adap->dev.of_node = pdev->dev.of_node; |
| i2c_set_adapdata(adap, i2c); |
| err = i2c_add_numbered_adapter(adap); |
| if (err) { |
| writel(MXS_I2C_CTRL0_SFTRST, |
| i2c->regs + MXS_I2C_CTRL0_SET); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int mxs_i2c_remove(struct platform_device *pdev) |
| { |
| struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev); |
| |
| i2c_del_adapter(&i2c->adapter); |
| |
| if (i2c->dmach) |
| dma_release_channel(i2c->dmach); |
| |
| writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET); |
| |
| return 0; |
| } |
| |
| static struct platform_driver mxs_i2c_driver = { |
| .driver = { |
| .name = DRIVER_NAME, |
| .of_match_table = mxs_i2c_dt_ids, |
| }, |
| .probe = mxs_i2c_probe, |
| .remove = mxs_i2c_remove, |
| }; |
| |
| static int __init mxs_i2c_init(void) |
| { |
| return platform_driver_register(&mxs_i2c_driver); |
| } |
| subsys_initcall(mxs_i2c_init); |
| |
| static void __exit mxs_i2c_exit(void) |
| { |
| platform_driver_unregister(&mxs_i2c_driver); |
| } |
| module_exit(mxs_i2c_exit); |
| |
| MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); |
| MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>"); |
| MODULE_DESCRIPTION("MXS I2C Bus Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:" DRIVER_NAME); |