| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "print-tree.h" |
| #include "transaction.h" |
| #include "locking.h" |
| |
| static struct kmem_cache *btrfs_inode_defrag_cachep; |
| |
| /* |
| * When auto defrag is enabled we queue up these defrag structs to remember |
| * which inodes need defragging passes. |
| */ |
| struct inode_defrag { |
| struct rb_node rb_node; |
| /* Inode number */ |
| u64 ino; |
| /* |
| * Transid where the defrag was added, we search for extents newer than |
| * this. |
| */ |
| u64 transid; |
| |
| /* Root objectid */ |
| u64 root; |
| |
| /* |
| * The extent size threshold for autodefrag. |
| * |
| * This value is different for compressed/non-compressed extents, thus |
| * needs to be passed from higher layer. |
| * (aka, inode_should_defrag()) |
| */ |
| u32 extent_thresh; |
| }; |
| |
| static int __compare_inode_defrag(struct inode_defrag *defrag1, |
| struct inode_defrag *defrag2) |
| { |
| if (defrag1->root > defrag2->root) |
| return 1; |
| else if (defrag1->root < defrag2->root) |
| return -1; |
| else if (defrag1->ino > defrag2->ino) |
| return 1; |
| else if (defrag1->ino < defrag2->ino) |
| return -1; |
| else |
| return 0; |
| } |
| |
| /* |
| * Pop a record for an inode into the defrag tree. The lock must be held |
| * already. |
| * |
| * If you're inserting a record for an older transid than an existing record, |
| * the transid already in the tree is lowered. |
| * |
| * If an existing record is found the defrag item you pass in is freed. |
| */ |
| static int __btrfs_add_inode_defrag(struct btrfs_inode *inode, |
| struct inode_defrag *defrag) |
| { |
| struct btrfs_fs_info *fs_info = inode->root->fs_info; |
| struct inode_defrag *entry; |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| int ret; |
| |
| p = &fs_info->defrag_inodes.rb_node; |
| while (*p) { |
| parent = *p; |
| entry = rb_entry(parent, struct inode_defrag, rb_node); |
| |
| ret = __compare_inode_defrag(defrag, entry); |
| if (ret < 0) |
| p = &parent->rb_left; |
| else if (ret > 0) |
| p = &parent->rb_right; |
| else { |
| /* |
| * If we're reinserting an entry for an old defrag run, |
| * make sure to lower the transid of our existing |
| * record. |
| */ |
| if (defrag->transid < entry->transid) |
| entry->transid = defrag->transid; |
| entry->extent_thresh = min(defrag->extent_thresh, |
| entry->extent_thresh); |
| return -EEXIST; |
| } |
| } |
| set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags); |
| rb_link_node(&defrag->rb_node, parent, p); |
| rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes); |
| return 0; |
| } |
| |
| static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info) |
| { |
| if (!btrfs_test_opt(fs_info, AUTO_DEFRAG)) |
| return 0; |
| |
| if (btrfs_fs_closing(fs_info)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* |
| * Insert a defrag record for this inode if auto defrag is enabled. |
| */ |
| int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, |
| struct btrfs_inode *inode, u32 extent_thresh) |
| { |
| struct btrfs_root *root = inode->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct inode_defrag *defrag; |
| u64 transid; |
| int ret; |
| |
| if (!__need_auto_defrag(fs_info)) |
| return 0; |
| |
| if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) |
| return 0; |
| |
| if (trans) |
| transid = trans->transid; |
| else |
| transid = inode->root->last_trans; |
| |
| defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS); |
| if (!defrag) |
| return -ENOMEM; |
| |
| defrag->ino = btrfs_ino(inode); |
| defrag->transid = transid; |
| defrag->root = root->root_key.objectid; |
| defrag->extent_thresh = extent_thresh; |
| |
| spin_lock(&fs_info->defrag_inodes_lock); |
| if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) { |
| /* |
| * If we set IN_DEFRAG flag and evict the inode from memory, |
| * and then re-read this inode, this new inode doesn't have |
| * IN_DEFRAG flag. At the case, we may find the existed defrag. |
| */ |
| ret = __btrfs_add_inode_defrag(inode, defrag); |
| if (ret) |
| kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| } else { |
| kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| } |
| spin_unlock(&fs_info->defrag_inodes_lock); |
| return 0; |
| } |
| |
| /* |
| * Pick the defragable inode that we want, if it doesn't exist, we will get the |
| * next one. |
| */ |
| static struct inode_defrag *btrfs_pick_defrag_inode( |
| struct btrfs_fs_info *fs_info, u64 root, u64 ino) |
| { |
| struct inode_defrag *entry = NULL; |
| struct inode_defrag tmp; |
| struct rb_node *p; |
| struct rb_node *parent = NULL; |
| int ret; |
| |
| tmp.ino = ino; |
| tmp.root = root; |
| |
| spin_lock(&fs_info->defrag_inodes_lock); |
| p = fs_info->defrag_inodes.rb_node; |
| while (p) { |
| parent = p; |
| entry = rb_entry(parent, struct inode_defrag, rb_node); |
| |
| ret = __compare_inode_defrag(&tmp, entry); |
| if (ret < 0) |
| p = parent->rb_left; |
| else if (ret > 0) |
| p = parent->rb_right; |
| else |
| goto out; |
| } |
| |
| if (parent && __compare_inode_defrag(&tmp, entry) > 0) { |
| parent = rb_next(parent); |
| if (parent) |
| entry = rb_entry(parent, struct inode_defrag, rb_node); |
| else |
| entry = NULL; |
| } |
| out: |
| if (entry) |
| rb_erase(parent, &fs_info->defrag_inodes); |
| spin_unlock(&fs_info->defrag_inodes_lock); |
| return entry; |
| } |
| |
| void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info) |
| { |
| struct inode_defrag *defrag; |
| struct rb_node *node; |
| |
| spin_lock(&fs_info->defrag_inodes_lock); |
| node = rb_first(&fs_info->defrag_inodes); |
| while (node) { |
| rb_erase(node, &fs_info->defrag_inodes); |
| defrag = rb_entry(node, struct inode_defrag, rb_node); |
| kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| |
| cond_resched_lock(&fs_info->defrag_inodes_lock); |
| |
| node = rb_first(&fs_info->defrag_inodes); |
| } |
| spin_unlock(&fs_info->defrag_inodes_lock); |
| } |
| |
| #define BTRFS_DEFRAG_BATCH 1024 |
| |
| static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info, |
| struct inode_defrag *defrag) |
| { |
| struct btrfs_root *inode_root; |
| struct inode *inode; |
| struct btrfs_ioctl_defrag_range_args range; |
| int ret = 0; |
| u64 cur = 0; |
| |
| again: |
| if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) |
| goto cleanup; |
| if (!__need_auto_defrag(fs_info)) |
| goto cleanup; |
| |
| /* Get the inode */ |
| inode_root = btrfs_get_fs_root(fs_info, defrag->root, true); |
| if (IS_ERR(inode_root)) { |
| ret = PTR_ERR(inode_root); |
| goto cleanup; |
| } |
| |
| inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root); |
| btrfs_put_root(inode_root); |
| if (IS_ERR(inode)) { |
| ret = PTR_ERR(inode); |
| goto cleanup; |
| } |
| |
| if (cur >= i_size_read(inode)) { |
| iput(inode); |
| goto cleanup; |
| } |
| |
| /* Do a chunk of defrag */ |
| clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags); |
| memset(&range, 0, sizeof(range)); |
| range.len = (u64)-1; |
| range.start = cur; |
| range.extent_thresh = defrag->extent_thresh; |
| |
| sb_start_write(fs_info->sb); |
| ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid, |
| BTRFS_DEFRAG_BATCH); |
| sb_end_write(fs_info->sb); |
| iput(inode); |
| |
| if (ret < 0) |
| goto cleanup; |
| |
| cur = max(cur + fs_info->sectorsize, range.start); |
| goto again; |
| |
| cleanup: |
| kmem_cache_free(btrfs_inode_defrag_cachep, defrag); |
| return ret; |
| } |
| |
| /* |
| * Run through the list of inodes in the FS that need defragging. |
| */ |
| int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info) |
| { |
| struct inode_defrag *defrag; |
| u64 first_ino = 0; |
| u64 root_objectid = 0; |
| |
| atomic_inc(&fs_info->defrag_running); |
| while (1) { |
| /* Pause the auto defragger. */ |
| if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)) |
| break; |
| |
| if (!__need_auto_defrag(fs_info)) |
| break; |
| |
| /* find an inode to defrag */ |
| defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino); |
| if (!defrag) { |
| if (root_objectid || first_ino) { |
| root_objectid = 0; |
| first_ino = 0; |
| continue; |
| } else { |
| break; |
| } |
| } |
| |
| first_ino = defrag->ino + 1; |
| root_objectid = defrag->root; |
| |
| __btrfs_run_defrag_inode(fs_info, defrag); |
| } |
| atomic_dec(&fs_info->defrag_running); |
| |
| /* |
| * During unmount, we use the transaction_wait queue to wait for the |
| * defragger to stop. |
| */ |
| wake_up(&fs_info->transaction_wait); |
| return 0; |
| } |
| |
| /* |
| * Defrag all the leaves in a given btree. |
| * Read all the leaves and try to get key order to |
| * better reflect disk order |
| */ |
| |
| int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_path *path = NULL; |
| struct btrfs_key key; |
| int ret = 0; |
| int wret; |
| int level; |
| int next_key_ret = 0; |
| u64 last_ret = 0; |
| |
| if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) |
| goto out; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| level = btrfs_header_level(root->node); |
| |
| if (level == 0) |
| goto out; |
| |
| if (root->defrag_progress.objectid == 0) { |
| struct extent_buffer *root_node; |
| u32 nritems; |
| |
| root_node = btrfs_lock_root_node(root); |
| nritems = btrfs_header_nritems(root_node); |
| root->defrag_max.objectid = 0; |
| /* from above we know this is not a leaf */ |
| btrfs_node_key_to_cpu(root_node, &root->defrag_max, |
| nritems - 1); |
| btrfs_tree_unlock(root_node); |
| free_extent_buffer(root_node); |
| memset(&key, 0, sizeof(key)); |
| } else { |
| memcpy(&key, &root->defrag_progress, sizeof(key)); |
| } |
| |
| path->keep_locks = 1; |
| |
| ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = 0; |
| goto out; |
| } |
| btrfs_release_path(path); |
| /* |
| * We don't need a lock on a leaf. btrfs_realloc_node() will lock all |
| * leafs from path->nodes[1], so set lowest_level to 1 to avoid later |
| * a deadlock (attempting to write lock an already write locked leaf). |
| */ |
| path->lowest_level = 1; |
| wret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| |
| if (wret < 0) { |
| ret = wret; |
| goto out; |
| } |
| if (!path->nodes[1]) { |
| ret = 0; |
| goto out; |
| } |
| /* |
| * The node at level 1 must always be locked when our path has |
| * keep_locks set and lowest_level is 1, regardless of the value of |
| * path->slots[1]. |
| */ |
| BUG_ON(path->locks[1] == 0); |
| ret = btrfs_realloc_node(trans, root, |
| path->nodes[1], 0, |
| &last_ret, |
| &root->defrag_progress); |
| if (ret) { |
| WARN_ON(ret == -EAGAIN); |
| goto out; |
| } |
| /* |
| * Now that we reallocated the node we can find the next key. Note that |
| * btrfs_find_next_key() can release our path and do another search |
| * without COWing, this is because even with path->keep_locks = 1, |
| * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a |
| * node when path->slots[node_level - 1] does not point to the last |
| * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore |
| * we search for the next key after reallocating our node. |
| */ |
| path->slots[1] = btrfs_header_nritems(path->nodes[1]); |
| next_key_ret = btrfs_find_next_key(root, path, &key, 1, |
| BTRFS_OLDEST_GENERATION); |
| if (next_key_ret == 0) { |
| memcpy(&root->defrag_progress, &key, sizeof(key)); |
| ret = -EAGAIN; |
| } |
| out: |
| btrfs_free_path(path); |
| if (ret == -EAGAIN) { |
| if (root->defrag_max.objectid > root->defrag_progress.objectid) |
| goto done; |
| if (root->defrag_max.type > root->defrag_progress.type) |
| goto done; |
| if (root->defrag_max.offset > root->defrag_progress.offset) |
| goto done; |
| ret = 0; |
| } |
| done: |
| if (ret != -EAGAIN) |
| memset(&root->defrag_progress, 0, |
| sizeof(root->defrag_progress)); |
| |
| return ret; |
| } |
| |
| void __cold btrfs_auto_defrag_exit(void) |
| { |
| kmem_cache_destroy(btrfs_inode_defrag_cachep); |
| } |
| |
| int __init btrfs_auto_defrag_init(void) |
| { |
| btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag", |
| sizeof(struct inode_defrag), 0, |
| SLAB_MEM_SPREAD, |
| NULL); |
| if (!btrfs_inode_defrag_cachep) |
| return -ENOMEM; |
| |
| return 0; |
| } |