| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved. |
| * |
| * User extended attribute client side cache functions. |
| * |
| * Author: Frank van der Linden <fllinden@amazon.com> |
| */ |
| #include <linux/errno.h> |
| #include <linux/nfs_fs.h> |
| #include <linux/hashtable.h> |
| #include <linux/refcount.h> |
| #include <uapi/linux/xattr.h> |
| |
| #include "nfs4_fs.h" |
| #include "internal.h" |
| |
| /* |
| * User extended attributes client side caching is implemented by having |
| * a cache structure attached to NFS inodes. This structure is allocated |
| * when needed, and freed when the cache is zapped. |
| * |
| * The cache structure contains as hash table of entries, and a pointer |
| * to a special-cased entry for the listxattr cache. |
| * |
| * Accessing and allocating / freeing the caches is done via reference |
| * counting. The cache entries use a similar refcounting scheme. |
| * |
| * This makes freeing a cache, both from the shrinker and from the |
| * zap cache path, easy. It also means that, in current use cases, |
| * the large majority of inodes will not waste any memory, as they |
| * will never have any user extended attributes assigned to them. |
| * |
| * Attribute entries are hashed in to a simple hash table. They are |
| * also part of an LRU. |
| * |
| * There are three shrinkers. |
| * |
| * Two shrinkers deal with the cache entries themselves: one for |
| * large entries (> PAGE_SIZE), and one for smaller entries. The |
| * shrinker for the larger entries works more aggressively than |
| * those for the smaller entries. |
| * |
| * The other shrinker frees the cache structures themselves. |
| */ |
| |
| /* |
| * 64 buckets is a good default. There is likely no reasonable |
| * workload that uses more than even 64 user extended attributes. |
| * You can certainly add a lot more - but you get what you ask for |
| * in those circumstances. |
| */ |
| #define NFS4_XATTR_HASH_SIZE 64 |
| |
| #define NFSDBG_FACILITY NFSDBG_XATTRCACHE |
| |
| struct nfs4_xattr_cache; |
| struct nfs4_xattr_entry; |
| |
| struct nfs4_xattr_bucket { |
| spinlock_t lock; |
| struct hlist_head hlist; |
| struct nfs4_xattr_cache *cache; |
| bool draining; |
| }; |
| |
| struct nfs4_xattr_cache { |
| struct kref ref; |
| struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE]; |
| struct list_head lru; |
| struct list_head dispose; |
| atomic_long_t nent; |
| spinlock_t listxattr_lock; |
| struct inode *inode; |
| struct nfs4_xattr_entry *listxattr; |
| }; |
| |
| struct nfs4_xattr_entry { |
| struct kref ref; |
| struct hlist_node hnode; |
| struct list_head lru; |
| struct list_head dispose; |
| char *xattr_name; |
| void *xattr_value; |
| size_t xattr_size; |
| struct nfs4_xattr_bucket *bucket; |
| uint32_t flags; |
| }; |
| |
| #define NFS4_XATTR_ENTRY_EXTVAL 0x0001 |
| |
| /* |
| * LRU list of NFS inodes that have xattr caches. |
| */ |
| static struct list_lru nfs4_xattr_cache_lru; |
| static struct list_lru nfs4_xattr_entry_lru; |
| static struct list_lru nfs4_xattr_large_entry_lru; |
| |
| static struct kmem_cache *nfs4_xattr_cache_cachep; |
| |
| /* |
| * Hashing helper functions. |
| */ |
| static void |
| nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) { |
| INIT_HLIST_HEAD(&cache->buckets[i].hlist); |
| spin_lock_init(&cache->buckets[i].lock); |
| cache->buckets[i].cache = cache; |
| cache->buckets[i].draining = false; |
| } |
| } |
| |
| /* |
| * Locking order: |
| * 1. inode i_lock or bucket lock |
| * 2. list_lru lock (taken by list_lru_* functions) |
| */ |
| |
| /* |
| * Wrapper functions to add a cache entry to the right LRU. |
| */ |
| static bool |
| nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry) |
| { |
| struct list_lru *lru; |
| |
| lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ? |
| &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru; |
| |
| return list_lru_add(lru, &entry->lru); |
| } |
| |
| static bool |
| nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry) |
| { |
| struct list_lru *lru; |
| |
| lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ? |
| &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru; |
| |
| return list_lru_del(lru, &entry->lru); |
| } |
| |
| /* |
| * This function allocates cache entries. They are the normal |
| * extended attribute name/value pairs, but may also be a listxattr |
| * cache. Those allocations use the same entry so that they can be |
| * treated as one by the memory shrinker. |
| * |
| * xattr cache entries are allocated together with names. If the |
| * value fits in to one page with the entry structure and the name, |
| * it will also be part of the same allocation (kmalloc). This is |
| * expected to be the vast majority of cases. Larger allocations |
| * have a value pointer that is allocated separately by kvmalloc. |
| * |
| * Parameters: |
| * |
| * @name: Name of the extended attribute. NULL for listxattr cache |
| * entry. |
| * @value: Value of attribute, or listxattr cache. NULL if the |
| * value is to be copied from pages instead. |
| * @pages: Pages to copy the value from, if not NULL. Passed in to |
| * make it easier to copy the value after an RPC, even if |
| * the value will not be passed up to application (e.g. |
| * for a 'query' getxattr with NULL buffer). |
| * @len: Length of the value. Can be 0 for zero-length attributes. |
| * @value and @pages will be NULL if @len is 0. |
| */ |
| static struct nfs4_xattr_entry * |
| nfs4_xattr_alloc_entry(const char *name, const void *value, |
| struct page **pages, size_t len) |
| { |
| struct nfs4_xattr_entry *entry; |
| void *valp; |
| char *namep; |
| size_t alloclen, slen; |
| char *buf; |
| uint32_t flags; |
| |
| BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) + |
| XATTR_NAME_MAX + 1 > PAGE_SIZE); |
| |
| alloclen = sizeof(struct nfs4_xattr_entry); |
| if (name != NULL) { |
| slen = strlen(name) + 1; |
| alloclen += slen; |
| } else |
| slen = 0; |
| |
| if (alloclen + len <= PAGE_SIZE) { |
| alloclen += len; |
| flags = 0; |
| } else { |
| flags = NFS4_XATTR_ENTRY_EXTVAL; |
| } |
| |
| buf = kmalloc(alloclen, GFP_KERNEL); |
| if (buf == NULL) |
| return NULL; |
| entry = (struct nfs4_xattr_entry *)buf; |
| |
| if (name != NULL) { |
| namep = buf + sizeof(struct nfs4_xattr_entry); |
| memcpy(namep, name, slen); |
| } else { |
| namep = NULL; |
| } |
| |
| |
| if (flags & NFS4_XATTR_ENTRY_EXTVAL) { |
| valp = kvmalloc(len, GFP_KERNEL); |
| if (valp == NULL) { |
| kfree(buf); |
| return NULL; |
| } |
| } else if (len != 0) { |
| valp = buf + sizeof(struct nfs4_xattr_entry) + slen; |
| } else |
| valp = NULL; |
| |
| if (valp != NULL) { |
| if (value != NULL) |
| memcpy(valp, value, len); |
| else |
| _copy_from_pages(valp, pages, 0, len); |
| } |
| |
| entry->flags = flags; |
| entry->xattr_value = valp; |
| kref_init(&entry->ref); |
| entry->xattr_name = namep; |
| entry->xattr_size = len; |
| entry->bucket = NULL; |
| INIT_LIST_HEAD(&entry->lru); |
| INIT_LIST_HEAD(&entry->dispose); |
| INIT_HLIST_NODE(&entry->hnode); |
| |
| return entry; |
| } |
| |
| static void |
| nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry) |
| { |
| if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) |
| kvfree(entry->xattr_value); |
| kfree(entry); |
| } |
| |
| static void |
| nfs4_xattr_free_entry_cb(struct kref *kref) |
| { |
| struct nfs4_xattr_entry *entry; |
| |
| entry = container_of(kref, struct nfs4_xattr_entry, ref); |
| |
| if (WARN_ON(!list_empty(&entry->lru))) |
| return; |
| |
| nfs4_xattr_free_entry(entry); |
| } |
| |
| static void |
| nfs4_xattr_free_cache_cb(struct kref *kref) |
| { |
| struct nfs4_xattr_cache *cache; |
| int i; |
| |
| cache = container_of(kref, struct nfs4_xattr_cache, ref); |
| |
| for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) { |
| if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist))) |
| return; |
| cache->buckets[i].draining = false; |
| } |
| |
| cache->listxattr = NULL; |
| |
| kmem_cache_free(nfs4_xattr_cache_cachep, cache); |
| |
| } |
| |
| static struct nfs4_xattr_cache * |
| nfs4_xattr_alloc_cache(void) |
| { |
| struct nfs4_xattr_cache *cache; |
| |
| cache = kmem_cache_alloc(nfs4_xattr_cache_cachep, GFP_KERNEL); |
| if (cache == NULL) |
| return NULL; |
| |
| kref_init(&cache->ref); |
| atomic_long_set(&cache->nent, 0); |
| |
| return cache; |
| } |
| |
| /* |
| * Set the listxattr cache, which is a special-cased cache entry. |
| * The special value ERR_PTR(-ESTALE) is used to indicate that |
| * the cache is being drained - this prevents a new listxattr |
| * cache from being added to what is now a stale cache. |
| */ |
| static int |
| nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache, |
| struct nfs4_xattr_entry *new) |
| { |
| struct nfs4_xattr_entry *old; |
| int ret = 1; |
| |
| spin_lock(&cache->listxattr_lock); |
| |
| old = cache->listxattr; |
| |
| if (old == ERR_PTR(-ESTALE)) { |
| ret = 0; |
| goto out; |
| } |
| |
| cache->listxattr = new; |
| if (new != NULL && new != ERR_PTR(-ESTALE)) |
| nfs4_xattr_entry_lru_add(new); |
| |
| if (old != NULL) { |
| nfs4_xattr_entry_lru_del(old); |
| kref_put(&old->ref, nfs4_xattr_free_entry_cb); |
| } |
| out: |
| spin_unlock(&cache->listxattr_lock); |
| |
| return ret; |
| } |
| |
| /* |
| * Unlink a cache from its parent inode, clearing out an invalid |
| * cache. Must be called with i_lock held. |
| */ |
| static struct nfs4_xattr_cache * |
| nfs4_xattr_cache_unlink(struct inode *inode) |
| { |
| struct nfs_inode *nfsi; |
| struct nfs4_xattr_cache *oldcache; |
| |
| nfsi = NFS_I(inode); |
| |
| oldcache = nfsi->xattr_cache; |
| if (oldcache != NULL) { |
| list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru); |
| oldcache->inode = NULL; |
| } |
| nfsi->xattr_cache = NULL; |
| nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR; |
| |
| return oldcache; |
| |
| } |
| |
| /* |
| * Discard a cache. Called by get_cache() if there was an old, |
| * invalid cache. Can also be called from a shrinker callback. |
| * |
| * The cache is dead, it has already been unlinked from its inode, |
| * and no longer appears on the cache LRU list. |
| * |
| * Mark all buckets as draining, so that no new entries are added. This |
| * could still happen in the unlikely, but possible case that another |
| * thread had grabbed a reference before it was unlinked from the inode, |
| * and is still holding it for an add operation. |
| * |
| * Remove all entries from the LRU lists, so that there is no longer |
| * any way to 'find' this cache. Then, remove the entries from the hash |
| * table. |
| * |
| * At that point, the cache will remain empty and can be freed when the final |
| * reference drops, which is very likely the kref_put at the end of |
| * this function, or the one called immediately afterwards in the |
| * shrinker callback. |
| */ |
| static void |
| nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache) |
| { |
| unsigned int i; |
| struct nfs4_xattr_entry *entry; |
| struct nfs4_xattr_bucket *bucket; |
| struct hlist_node *n; |
| |
| nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE)); |
| |
| for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) { |
| bucket = &cache->buckets[i]; |
| |
| spin_lock(&bucket->lock); |
| bucket->draining = true; |
| hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) { |
| nfs4_xattr_entry_lru_del(entry); |
| hlist_del_init(&entry->hnode); |
| kref_put(&entry->ref, nfs4_xattr_free_entry_cb); |
| } |
| spin_unlock(&bucket->lock); |
| } |
| |
| atomic_long_set(&cache->nent, 0); |
| |
| kref_put(&cache->ref, nfs4_xattr_free_cache_cb); |
| } |
| |
| /* |
| * Get a referenced copy of the cache structure. Avoid doing allocs |
| * while holding i_lock. Which means that we do some optimistic allocation, |
| * and might have to free the result in rare cases. |
| * |
| * This function only checks the NFS_INO_INVALID_XATTR cache validity bit |
| * and acts accordingly, replacing the cache when needed. For the read case |
| * (!add), this means that the caller must make sure that the cache |
| * is valid before caling this function. getxattr and listxattr call |
| * revalidate_inode to do this. The attribute cache timeout (for the |
| * non-delegated case) is expected to be dealt with in the revalidate |
| * call. |
| */ |
| |
| static struct nfs4_xattr_cache * |
| nfs4_xattr_get_cache(struct inode *inode, int add) |
| { |
| struct nfs_inode *nfsi; |
| struct nfs4_xattr_cache *cache, *oldcache, *newcache; |
| |
| nfsi = NFS_I(inode); |
| |
| cache = oldcache = NULL; |
| |
| spin_lock(&inode->i_lock); |
| |
| if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) |
| oldcache = nfs4_xattr_cache_unlink(inode); |
| else |
| cache = nfsi->xattr_cache; |
| |
| if (cache != NULL) |
| kref_get(&cache->ref); |
| |
| spin_unlock(&inode->i_lock); |
| |
| if (add && cache == NULL) { |
| newcache = NULL; |
| |
| cache = nfs4_xattr_alloc_cache(); |
| if (cache == NULL) |
| goto out; |
| |
| spin_lock(&inode->i_lock); |
| if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) { |
| /* |
| * The cache was invalidated again. Give up, |
| * since what we want to enter is now likely |
| * outdated anyway. |
| */ |
| spin_unlock(&inode->i_lock); |
| kref_put(&cache->ref, nfs4_xattr_free_cache_cb); |
| cache = NULL; |
| goto out; |
| } |
| |
| /* |
| * Check if someone beat us to it. |
| */ |
| if (nfsi->xattr_cache != NULL) { |
| newcache = nfsi->xattr_cache; |
| kref_get(&newcache->ref); |
| } else { |
| kref_get(&cache->ref); |
| nfsi->xattr_cache = cache; |
| cache->inode = inode; |
| list_lru_add(&nfs4_xattr_cache_lru, &cache->lru); |
| } |
| |
| spin_unlock(&inode->i_lock); |
| |
| /* |
| * If there was a race, throw away the cache we just |
| * allocated, and use the new one allocated by someone |
| * else. |
| */ |
| if (newcache != NULL) { |
| kref_put(&cache->ref, nfs4_xattr_free_cache_cb); |
| cache = newcache; |
| } |
| } |
| |
| out: |
| /* |
| * Discard the now orphaned old cache. |
| */ |
| if (oldcache != NULL) |
| nfs4_xattr_discard_cache(oldcache); |
| |
| return cache; |
| } |
| |
| static inline struct nfs4_xattr_bucket * |
| nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name) |
| { |
| return &cache->buckets[jhash(name, strlen(name), 0) & |
| (ARRAY_SIZE(cache->buckets) - 1)]; |
| } |
| |
| static struct nfs4_xattr_entry * |
| nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name) |
| { |
| struct nfs4_xattr_entry *entry; |
| |
| entry = NULL; |
| |
| hlist_for_each_entry(entry, &bucket->hlist, hnode) { |
| if (!strcmp(entry->xattr_name, name)) |
| break; |
| } |
| |
| return entry; |
| } |
| |
| static int |
| nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache, |
| struct nfs4_xattr_entry *entry) |
| { |
| struct nfs4_xattr_bucket *bucket; |
| struct nfs4_xattr_entry *oldentry = NULL; |
| int ret = 1; |
| |
| bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name); |
| entry->bucket = bucket; |
| |
| spin_lock(&bucket->lock); |
| |
| if (bucket->draining) { |
| ret = 0; |
| goto out; |
| } |
| |
| oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name); |
| if (oldentry != NULL) { |
| hlist_del_init(&oldentry->hnode); |
| nfs4_xattr_entry_lru_del(oldentry); |
| } else { |
| atomic_long_inc(&cache->nent); |
| } |
| |
| hlist_add_head(&entry->hnode, &bucket->hlist); |
| nfs4_xattr_entry_lru_add(entry); |
| |
| out: |
| spin_unlock(&bucket->lock); |
| |
| if (oldentry != NULL) |
| kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb); |
| |
| return ret; |
| } |
| |
| static void |
| nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name) |
| { |
| struct nfs4_xattr_bucket *bucket; |
| struct nfs4_xattr_entry *entry; |
| |
| bucket = nfs4_xattr_hash_bucket(cache, name); |
| |
| spin_lock(&bucket->lock); |
| |
| entry = nfs4_xattr_get_entry(bucket, name); |
| if (entry != NULL) { |
| hlist_del_init(&entry->hnode); |
| nfs4_xattr_entry_lru_del(entry); |
| atomic_long_dec(&cache->nent); |
| } |
| |
| spin_unlock(&bucket->lock); |
| |
| if (entry != NULL) |
| kref_put(&entry->ref, nfs4_xattr_free_entry_cb); |
| } |
| |
| static struct nfs4_xattr_entry * |
| nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name) |
| { |
| struct nfs4_xattr_bucket *bucket; |
| struct nfs4_xattr_entry *entry; |
| |
| bucket = nfs4_xattr_hash_bucket(cache, name); |
| |
| spin_lock(&bucket->lock); |
| |
| entry = nfs4_xattr_get_entry(bucket, name); |
| if (entry != NULL) |
| kref_get(&entry->ref); |
| |
| spin_unlock(&bucket->lock); |
| |
| return entry; |
| } |
| |
| /* |
| * Entry point to retrieve an entry from the cache. |
| */ |
| ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf, |
| ssize_t buflen) |
| { |
| struct nfs4_xattr_cache *cache; |
| struct nfs4_xattr_entry *entry; |
| ssize_t ret; |
| |
| cache = nfs4_xattr_get_cache(inode, 0); |
| if (cache == NULL) |
| return -ENOENT; |
| |
| ret = 0; |
| entry = nfs4_xattr_hash_find(cache, name); |
| |
| if (entry != NULL) { |
| dprintk("%s: cache hit '%s', len %lu\n", __func__, |
| entry->xattr_name, (unsigned long)entry->xattr_size); |
| if (buflen == 0) { |
| /* Length probe only */ |
| ret = entry->xattr_size; |
| } else if (buflen < entry->xattr_size) |
| ret = -ERANGE; |
| else { |
| memcpy(buf, entry->xattr_value, entry->xattr_size); |
| ret = entry->xattr_size; |
| } |
| kref_put(&entry->ref, nfs4_xattr_free_entry_cb); |
| } else { |
| dprintk("%s: cache miss '%s'\n", __func__, name); |
| ret = -ENOENT; |
| } |
| |
| kref_put(&cache->ref, nfs4_xattr_free_cache_cb); |
| |
| return ret; |
| } |
| |
| /* |
| * Retrieve a cached list of xattrs from the cache. |
| */ |
| ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen) |
| { |
| struct nfs4_xattr_cache *cache; |
| struct nfs4_xattr_entry *entry; |
| ssize_t ret; |
| |
| cache = nfs4_xattr_get_cache(inode, 0); |
| if (cache == NULL) |
| return -ENOENT; |
| |
| spin_lock(&cache->listxattr_lock); |
| |
| entry = cache->listxattr; |
| |
| if (entry != NULL && entry != ERR_PTR(-ESTALE)) { |
| if (buflen == 0) { |
| /* Length probe only */ |
| ret = entry->xattr_size; |
| } else if (entry->xattr_size > buflen) |
| ret = -ERANGE; |
| else { |
| memcpy(buf, entry->xattr_value, entry->xattr_size); |
| ret = entry->xattr_size; |
| } |
| } else { |
| ret = -ENOENT; |
| } |
| |
| spin_unlock(&cache->listxattr_lock); |
| |
| kref_put(&cache->ref, nfs4_xattr_free_cache_cb); |
| |
| return ret; |
| } |
| |
| /* |
| * Add an xattr to the cache. |
| * |
| * This also invalidates the xattr list cache. |
| */ |
| void nfs4_xattr_cache_add(struct inode *inode, const char *name, |
| const char *buf, struct page **pages, ssize_t buflen) |
| { |
| struct nfs4_xattr_cache *cache; |
| struct nfs4_xattr_entry *entry; |
| |
| dprintk("%s: add '%s' len %lu\n", __func__, |
| name, (unsigned long)buflen); |
| |
| cache = nfs4_xattr_get_cache(inode, 1); |
| if (cache == NULL) |
| return; |
| |
| entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen); |
| if (entry == NULL) |
| goto out; |
| |
| (void)nfs4_xattr_set_listcache(cache, NULL); |
| |
| if (!nfs4_xattr_hash_add(cache, entry)) |
| kref_put(&entry->ref, nfs4_xattr_free_entry_cb); |
| |
| out: |
| kref_put(&cache->ref, nfs4_xattr_free_cache_cb); |
| } |
| |
| |
| /* |
| * Remove an xattr from the cache. |
| * |
| * This also invalidates the xattr list cache. |
| */ |
| void nfs4_xattr_cache_remove(struct inode *inode, const char *name) |
| { |
| struct nfs4_xattr_cache *cache; |
| |
| dprintk("%s: remove '%s'\n", __func__, name); |
| |
| cache = nfs4_xattr_get_cache(inode, 0); |
| if (cache == NULL) |
| return; |
| |
| (void)nfs4_xattr_set_listcache(cache, NULL); |
| nfs4_xattr_hash_remove(cache, name); |
| |
| kref_put(&cache->ref, nfs4_xattr_free_cache_cb); |
| } |
| |
| /* |
| * Cache listxattr output, replacing any possible old one. |
| */ |
| void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf, |
| ssize_t buflen) |
| { |
| struct nfs4_xattr_cache *cache; |
| struct nfs4_xattr_entry *entry; |
| |
| cache = nfs4_xattr_get_cache(inode, 1); |
| if (cache == NULL) |
| return; |
| |
| entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen); |
| if (entry == NULL) |
| goto out; |
| |
| /* |
| * This is just there to be able to get to bucket->cache, |
| * which is obviously the same for all buckets, so just |
| * use bucket 0. |
| */ |
| entry->bucket = &cache->buckets[0]; |
| |
| if (!nfs4_xattr_set_listcache(cache, entry)) |
| kref_put(&entry->ref, nfs4_xattr_free_entry_cb); |
| |
| out: |
| kref_put(&cache->ref, nfs4_xattr_free_cache_cb); |
| } |
| |
| /* |
| * Zap the entire cache. Called when an inode is evicted. |
| */ |
| void nfs4_xattr_cache_zap(struct inode *inode) |
| { |
| struct nfs4_xattr_cache *oldcache; |
| |
| spin_lock(&inode->i_lock); |
| oldcache = nfs4_xattr_cache_unlink(inode); |
| spin_unlock(&inode->i_lock); |
| |
| if (oldcache) |
| nfs4_xattr_discard_cache(oldcache); |
| } |
| |
| /* |
| * The entry LRU is shrunk more aggressively than the cache LRU, |
| * by settings @seeks to 1. |
| * |
| * Cache structures are freed only when they've become empty, after |
| * pruning all but one entry. |
| */ |
| |
| static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink, |
| struct shrink_control *sc); |
| static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink, |
| struct shrink_control *sc); |
| static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink, |
| struct shrink_control *sc); |
| static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink, |
| struct shrink_control *sc); |
| |
| static struct shrinker nfs4_xattr_cache_shrinker = { |
| .count_objects = nfs4_xattr_cache_count, |
| .scan_objects = nfs4_xattr_cache_scan, |
| .seeks = DEFAULT_SEEKS, |
| .flags = SHRINKER_MEMCG_AWARE, |
| }; |
| |
| static struct shrinker nfs4_xattr_entry_shrinker = { |
| .count_objects = nfs4_xattr_entry_count, |
| .scan_objects = nfs4_xattr_entry_scan, |
| .seeks = DEFAULT_SEEKS, |
| .batch = 512, |
| .flags = SHRINKER_MEMCG_AWARE, |
| }; |
| |
| static struct shrinker nfs4_xattr_large_entry_shrinker = { |
| .count_objects = nfs4_xattr_entry_count, |
| .scan_objects = nfs4_xattr_entry_scan, |
| .seeks = 1, |
| .batch = 512, |
| .flags = SHRINKER_MEMCG_AWARE, |
| }; |
| |
| static enum lru_status |
| cache_lru_isolate(struct list_head *item, |
| struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) |
| { |
| struct list_head *dispose = arg; |
| struct inode *inode; |
| struct nfs4_xattr_cache *cache = container_of(item, |
| struct nfs4_xattr_cache, lru); |
| |
| if (atomic_long_read(&cache->nent) > 1) |
| return LRU_SKIP; |
| |
| /* |
| * If a cache structure is on the LRU list, we know that |
| * its inode is valid. Try to lock it to break the link. |
| * Since we're inverting the lock order here, only try. |
| */ |
| inode = cache->inode; |
| |
| if (!spin_trylock(&inode->i_lock)) |
| return LRU_SKIP; |
| |
| kref_get(&cache->ref); |
| |
| cache->inode = NULL; |
| NFS_I(inode)->xattr_cache = NULL; |
| NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR; |
| list_lru_isolate(lru, &cache->lru); |
| |
| spin_unlock(&inode->i_lock); |
| |
| list_add_tail(&cache->dispose, dispose); |
| return LRU_REMOVED; |
| } |
| |
| static unsigned long |
| nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| LIST_HEAD(dispose); |
| unsigned long freed; |
| struct nfs4_xattr_cache *cache; |
| |
| freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc, |
| cache_lru_isolate, &dispose); |
| while (!list_empty(&dispose)) { |
| cache = list_first_entry(&dispose, struct nfs4_xattr_cache, |
| dispose); |
| list_del_init(&cache->dispose); |
| nfs4_xattr_discard_cache(cache); |
| kref_put(&cache->ref, nfs4_xattr_free_cache_cb); |
| } |
| |
| return freed; |
| } |
| |
| |
| static unsigned long |
| nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| unsigned long count; |
| |
| count = list_lru_shrink_count(&nfs4_xattr_cache_lru, sc); |
| return vfs_pressure_ratio(count); |
| } |
| |
| static enum lru_status |
| entry_lru_isolate(struct list_head *item, |
| struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) |
| { |
| struct list_head *dispose = arg; |
| struct nfs4_xattr_bucket *bucket; |
| struct nfs4_xattr_cache *cache; |
| struct nfs4_xattr_entry *entry = container_of(item, |
| struct nfs4_xattr_entry, lru); |
| |
| bucket = entry->bucket; |
| cache = bucket->cache; |
| |
| /* |
| * Unhook the entry from its parent (either a cache bucket |
| * or a cache structure if it's a listxattr buf), so that |
| * it's no longer found. Then add it to the isolate list, |
| * to be freed later. |
| * |
| * In both cases, we're reverting lock order, so use |
| * trylock and skip the entry if we can't get the lock. |
| */ |
| if (entry->xattr_name != NULL) { |
| /* Regular cache entry */ |
| if (!spin_trylock(&bucket->lock)) |
| return LRU_SKIP; |
| |
| kref_get(&entry->ref); |
| |
| hlist_del_init(&entry->hnode); |
| atomic_long_dec(&cache->nent); |
| list_lru_isolate(lru, &entry->lru); |
| |
| spin_unlock(&bucket->lock); |
| } else { |
| /* Listxattr cache entry */ |
| if (!spin_trylock(&cache->listxattr_lock)) |
| return LRU_SKIP; |
| |
| kref_get(&entry->ref); |
| |
| cache->listxattr = NULL; |
| list_lru_isolate(lru, &entry->lru); |
| |
| spin_unlock(&cache->listxattr_lock); |
| } |
| |
| list_add_tail(&entry->dispose, dispose); |
| return LRU_REMOVED; |
| } |
| |
| static unsigned long |
| nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| LIST_HEAD(dispose); |
| unsigned long freed; |
| struct nfs4_xattr_entry *entry; |
| struct list_lru *lru; |
| |
| lru = (shrink == &nfs4_xattr_large_entry_shrinker) ? |
| &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru; |
| |
| freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose); |
| |
| while (!list_empty(&dispose)) { |
| entry = list_first_entry(&dispose, struct nfs4_xattr_entry, |
| dispose); |
| list_del_init(&entry->dispose); |
| |
| /* |
| * Drop two references: the one that we just grabbed |
| * in entry_lru_isolate, and the one that was set |
| * when the entry was first allocated. |
| */ |
| kref_put(&entry->ref, nfs4_xattr_free_entry_cb); |
| kref_put(&entry->ref, nfs4_xattr_free_entry_cb); |
| } |
| |
| return freed; |
| } |
| |
| static unsigned long |
| nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc) |
| { |
| unsigned long count; |
| struct list_lru *lru; |
| |
| lru = (shrink == &nfs4_xattr_large_entry_shrinker) ? |
| &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru; |
| |
| count = list_lru_shrink_count(lru, sc); |
| return vfs_pressure_ratio(count); |
| } |
| |
| |
| static void nfs4_xattr_cache_init_once(void *p) |
| { |
| struct nfs4_xattr_cache *cache = p; |
| |
| spin_lock_init(&cache->listxattr_lock); |
| atomic_long_set(&cache->nent, 0); |
| nfs4_xattr_hash_init(cache); |
| cache->listxattr = NULL; |
| INIT_LIST_HEAD(&cache->lru); |
| INIT_LIST_HEAD(&cache->dispose); |
| } |
| |
| static int nfs4_xattr_shrinker_init(struct shrinker *shrinker, |
| struct list_lru *lru, const char *name) |
| { |
| int ret = 0; |
| |
| ret = register_shrinker(shrinker, name); |
| if (ret) |
| return ret; |
| |
| ret = list_lru_init_memcg(lru, shrinker); |
| if (ret) |
| unregister_shrinker(shrinker); |
| |
| return ret; |
| } |
| |
| static void nfs4_xattr_shrinker_destroy(struct shrinker *shrinker, |
| struct list_lru *lru) |
| { |
| unregister_shrinker(shrinker); |
| list_lru_destroy(lru); |
| } |
| |
| int __init nfs4_xattr_cache_init(void) |
| { |
| int ret = 0; |
| |
| nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache", |
| sizeof(struct nfs4_xattr_cache), 0, |
| (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD), |
| nfs4_xattr_cache_init_once); |
| if (nfs4_xattr_cache_cachep == NULL) |
| return -ENOMEM; |
| |
| ret = nfs4_xattr_shrinker_init(&nfs4_xattr_cache_shrinker, |
| &nfs4_xattr_cache_lru, |
| "nfs-xattr_cache"); |
| if (ret) |
| goto out1; |
| |
| ret = nfs4_xattr_shrinker_init(&nfs4_xattr_entry_shrinker, |
| &nfs4_xattr_entry_lru, |
| "nfs-xattr_entry"); |
| if (ret) |
| goto out2; |
| |
| ret = nfs4_xattr_shrinker_init(&nfs4_xattr_large_entry_shrinker, |
| &nfs4_xattr_large_entry_lru, |
| "nfs-xattr_large_entry"); |
| if (!ret) |
| return 0; |
| |
| nfs4_xattr_shrinker_destroy(&nfs4_xattr_entry_shrinker, |
| &nfs4_xattr_entry_lru); |
| out2: |
| nfs4_xattr_shrinker_destroy(&nfs4_xattr_cache_shrinker, |
| &nfs4_xattr_cache_lru); |
| out1: |
| kmem_cache_destroy(nfs4_xattr_cache_cachep); |
| |
| return ret; |
| } |
| |
| void nfs4_xattr_cache_exit(void) |
| { |
| nfs4_xattr_shrinker_destroy(&nfs4_xattr_large_entry_shrinker, |
| &nfs4_xattr_large_entry_lru); |
| nfs4_xattr_shrinker_destroy(&nfs4_xattr_entry_shrinker, |
| &nfs4_xattr_entry_lru); |
| nfs4_xattr_shrinker_destroy(&nfs4_xattr_cache_shrinker, |
| &nfs4_xattr_cache_lru); |
| kmem_cache_destroy(nfs4_xattr_cache_cachep); |
| } |