| // SPDX-License-Identifier: GPL-2.0 |
| #include <stdbool.h> |
| #include <assert.h> |
| #include <errno.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include "metricgroup.h" |
| #include "cpumap.h" |
| #include "cputopo.h" |
| #include "debug.h" |
| #include "expr.h" |
| #include "expr-bison.h" |
| #include "expr-flex.h" |
| #include "smt.h" |
| #include "tsc.h" |
| #include <linux/err.h> |
| #include <linux/kernel.h> |
| #include <linux/zalloc.h> |
| #include <ctype.h> |
| #include <math.h> |
| |
| #ifdef PARSER_DEBUG |
| extern int expr_debug; |
| #endif |
| |
| struct expr_id_data { |
| union { |
| struct { |
| double val; |
| int source_count; |
| } val; |
| struct { |
| double val; |
| const char *metric_name; |
| const char *metric_expr; |
| } ref; |
| }; |
| |
| enum { |
| /* Holding a double value. */ |
| EXPR_ID_DATA__VALUE, |
| /* Reference to another metric. */ |
| EXPR_ID_DATA__REF, |
| /* A reference but the value has been computed. */ |
| EXPR_ID_DATA__REF_VALUE, |
| } kind; |
| }; |
| |
| static size_t key_hash(const void *key, void *ctx __maybe_unused) |
| { |
| const char *str = (const char *)key; |
| size_t hash = 0; |
| |
| while (*str != '\0') { |
| hash *= 31; |
| hash += *str; |
| str++; |
| } |
| return hash; |
| } |
| |
| static bool key_equal(const void *key1, const void *key2, |
| void *ctx __maybe_unused) |
| { |
| return !strcmp((const char *)key1, (const char *)key2); |
| } |
| |
| struct hashmap *ids__new(void) |
| { |
| struct hashmap *hash; |
| |
| hash = hashmap__new(key_hash, key_equal, NULL); |
| if (IS_ERR(hash)) |
| return NULL; |
| return hash; |
| } |
| |
| void ids__free(struct hashmap *ids) |
| { |
| struct hashmap_entry *cur; |
| size_t bkt; |
| |
| if (ids == NULL) |
| return; |
| |
| hashmap__for_each_entry(ids, cur, bkt) { |
| free((char *)cur->key); |
| free(cur->value); |
| } |
| |
| hashmap__free(ids); |
| } |
| |
| int ids__insert(struct hashmap *ids, const char *id) |
| { |
| struct expr_id_data *data_ptr = NULL, *old_data = NULL; |
| char *old_key = NULL; |
| int ret; |
| |
| ret = hashmap__set(ids, id, data_ptr, |
| (const void **)&old_key, (void **)&old_data); |
| if (ret) |
| free(data_ptr); |
| free(old_key); |
| free(old_data); |
| return ret; |
| } |
| |
| struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2) |
| { |
| size_t bkt; |
| struct hashmap_entry *cur; |
| int ret; |
| struct expr_id_data *old_data = NULL; |
| char *old_key = NULL; |
| |
| if (!ids1) |
| return ids2; |
| |
| if (!ids2) |
| return ids1; |
| |
| if (hashmap__size(ids1) < hashmap__size(ids2)) { |
| struct hashmap *tmp = ids1; |
| |
| ids1 = ids2; |
| ids2 = tmp; |
| } |
| hashmap__for_each_entry(ids2, cur, bkt) { |
| ret = hashmap__set(ids1, cur->key, cur->value, |
| (const void **)&old_key, (void **)&old_data); |
| free(old_key); |
| free(old_data); |
| |
| if (ret) { |
| hashmap__free(ids1); |
| hashmap__free(ids2); |
| return NULL; |
| } |
| } |
| hashmap__free(ids2); |
| return ids1; |
| } |
| |
| /* Caller must make sure id is allocated */ |
| int expr__add_id(struct expr_parse_ctx *ctx, const char *id) |
| { |
| return ids__insert(ctx->ids, id); |
| } |
| |
| /* Caller must make sure id is allocated */ |
| int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val) |
| { |
| return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1); |
| } |
| |
| /* Caller must make sure id is allocated */ |
| int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id, |
| double val, int source_count) |
| { |
| struct expr_id_data *data_ptr = NULL, *old_data = NULL; |
| char *old_key = NULL; |
| int ret; |
| |
| data_ptr = malloc(sizeof(*data_ptr)); |
| if (!data_ptr) |
| return -ENOMEM; |
| data_ptr->val.val = val; |
| data_ptr->val.source_count = source_count; |
| data_ptr->kind = EXPR_ID_DATA__VALUE; |
| |
| ret = hashmap__set(ctx->ids, id, data_ptr, |
| (const void **)&old_key, (void **)&old_data); |
| if (ret) |
| free(data_ptr); |
| free(old_key); |
| free(old_data); |
| return ret; |
| } |
| |
| int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref) |
| { |
| struct expr_id_data *data_ptr = NULL, *old_data = NULL; |
| char *old_key = NULL; |
| char *name; |
| int ret; |
| |
| data_ptr = zalloc(sizeof(*data_ptr)); |
| if (!data_ptr) |
| return -ENOMEM; |
| |
| name = strdup(ref->metric_name); |
| if (!name) { |
| free(data_ptr); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Intentionally passing just const char pointers, |
| * originally from 'struct pmu_event' object. |
| * We don't need to change them, so there's no |
| * need to create our own copy. |
| */ |
| data_ptr->ref.metric_name = ref->metric_name; |
| data_ptr->ref.metric_expr = ref->metric_expr; |
| data_ptr->kind = EXPR_ID_DATA__REF; |
| |
| ret = hashmap__set(ctx->ids, name, data_ptr, |
| (const void **)&old_key, (void **)&old_data); |
| if (ret) |
| free(data_ptr); |
| |
| pr_debug2("adding ref metric %s: %s\n", |
| ref->metric_name, ref->metric_expr); |
| |
| free(old_key); |
| free(old_data); |
| return ret; |
| } |
| |
| int expr__get_id(struct expr_parse_ctx *ctx, const char *id, |
| struct expr_id_data **data) |
| { |
| return hashmap__find(ctx->ids, id, (void **)data) ? 0 : -1; |
| } |
| |
| bool expr__subset_of_ids(struct expr_parse_ctx *haystack, |
| struct expr_parse_ctx *needles) |
| { |
| struct hashmap_entry *cur; |
| size_t bkt; |
| struct expr_id_data *data; |
| |
| hashmap__for_each_entry(needles->ids, cur, bkt) { |
| if (expr__get_id(haystack, cur->key, &data)) |
| return false; |
| } |
| return true; |
| } |
| |
| |
| int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id, |
| struct expr_id_data **datap) |
| { |
| struct expr_id_data *data; |
| |
| if (expr__get_id(ctx, id, datap) || !*datap) { |
| pr_debug("%s not found\n", id); |
| return -1; |
| } |
| |
| data = *datap; |
| |
| switch (data->kind) { |
| case EXPR_ID_DATA__VALUE: |
| pr_debug2("lookup(%s): val %f\n", id, data->val.val); |
| break; |
| case EXPR_ID_DATA__REF: |
| pr_debug2("lookup(%s): ref metric name %s\n", id, |
| data->ref.metric_name); |
| pr_debug("processing metric: %s ENTRY\n", id); |
| data->kind = EXPR_ID_DATA__REF_VALUE; |
| if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) { |
| pr_debug("%s failed to count\n", id); |
| return -1; |
| } |
| pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val); |
| break; |
| case EXPR_ID_DATA__REF_VALUE: |
| pr_debug2("lookup(%s): ref val %f metric name %s\n", id, |
| data->ref.val, data->ref.metric_name); |
| break; |
| default: |
| assert(0); /* Unreachable. */ |
| } |
| |
| return 0; |
| } |
| |
| void expr__del_id(struct expr_parse_ctx *ctx, const char *id) |
| { |
| struct expr_id_data *old_val = NULL; |
| char *old_key = NULL; |
| |
| hashmap__delete(ctx->ids, id, |
| (const void **)&old_key, (void **)&old_val); |
| free(old_key); |
| free(old_val); |
| } |
| |
| struct expr_parse_ctx *expr__ctx_new(void) |
| { |
| struct expr_parse_ctx *ctx; |
| |
| ctx = malloc(sizeof(struct expr_parse_ctx)); |
| if (!ctx) |
| return NULL; |
| |
| ctx->ids = hashmap__new(key_hash, key_equal, NULL); |
| if (IS_ERR(ctx->ids)) { |
| free(ctx); |
| return NULL; |
| } |
| ctx->sctx.user_requested_cpu_list = NULL; |
| ctx->sctx.runtime = 0; |
| ctx->sctx.system_wide = false; |
| |
| return ctx; |
| } |
| |
| void expr__ctx_clear(struct expr_parse_ctx *ctx) |
| { |
| struct hashmap_entry *cur; |
| size_t bkt; |
| |
| hashmap__for_each_entry(ctx->ids, cur, bkt) { |
| free((char *)cur->key); |
| free(cur->value); |
| } |
| hashmap__clear(ctx->ids); |
| } |
| |
| void expr__ctx_free(struct expr_parse_ctx *ctx) |
| { |
| struct hashmap_entry *cur; |
| size_t bkt; |
| |
| if (!ctx) |
| return; |
| |
| free(ctx->sctx.user_requested_cpu_list); |
| hashmap__for_each_entry(ctx->ids, cur, bkt) { |
| free((char *)cur->key); |
| free(cur->value); |
| } |
| hashmap__free(ctx->ids); |
| free(ctx); |
| } |
| |
| static int |
| __expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr, |
| bool compute_ids) |
| { |
| YY_BUFFER_STATE buffer; |
| void *scanner; |
| int ret; |
| |
| pr_debug2("parsing metric: %s\n", expr); |
| |
| ret = expr_lex_init_extra(&ctx->sctx, &scanner); |
| if (ret) |
| return ret; |
| |
| buffer = expr__scan_string(expr, scanner); |
| |
| #ifdef PARSER_DEBUG |
| expr_debug = 1; |
| expr_set_debug(1, scanner); |
| #endif |
| |
| ret = expr_parse(val, ctx, compute_ids, scanner); |
| |
| expr__flush_buffer(buffer, scanner); |
| expr__delete_buffer(buffer, scanner); |
| expr_lex_destroy(scanner); |
| return ret; |
| } |
| |
| int expr__parse(double *final_val, struct expr_parse_ctx *ctx, |
| const char *expr) |
| { |
| return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0; |
| } |
| |
| int expr__find_ids(const char *expr, const char *one, |
| struct expr_parse_ctx *ctx) |
| { |
| int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true); |
| |
| if (one) |
| expr__del_id(ctx, one); |
| |
| return ret; |
| } |
| |
| double expr_id_data__value(const struct expr_id_data *data) |
| { |
| if (data->kind == EXPR_ID_DATA__VALUE) |
| return data->val.val; |
| assert(data->kind == EXPR_ID_DATA__REF_VALUE); |
| return data->ref.val; |
| } |
| |
| double expr_id_data__source_count(const struct expr_id_data *data) |
| { |
| assert(data->kind == EXPR_ID_DATA__VALUE); |
| return data->val.source_count; |
| } |
| |
| #if !defined(__i386__) && !defined(__x86_64__) |
| double arch_get_tsc_freq(void) |
| { |
| return 0.0; |
| } |
| #endif |
| |
| double expr__get_literal(const char *literal, const struct expr_scanner_ctx *ctx) |
| { |
| static struct cpu_topology *topology; |
| double result = NAN; |
| |
| if (!strcmp("#num_cpus", literal)) { |
| result = cpu__max_present_cpu().cpu; |
| goto out; |
| } |
| |
| if (!strcasecmp("#system_tsc_freq", literal)) { |
| result = arch_get_tsc_freq(); |
| goto out; |
| } |
| |
| /* |
| * Assume that topology strings are consistent, such as CPUs "0-1" |
| * wouldn't be listed as "0,1", and so after deduplication the number of |
| * these strings gives an indication of the number of packages, dies, |
| * etc. |
| */ |
| if (!topology) { |
| topology = cpu_topology__new(); |
| if (!topology) { |
| pr_err("Error creating CPU topology"); |
| goto out; |
| } |
| } |
| if (!strcasecmp("#smt_on", literal)) { |
| result = smt_on(topology) ? 1.0 : 0.0; |
| goto out; |
| } |
| if (!strcmp("#core_wide", literal)) { |
| result = core_wide(ctx->system_wide, ctx->user_requested_cpu_list, topology) |
| ? 1.0 : 0.0; |
| goto out; |
| } |
| if (!strcmp("#num_packages", literal)) { |
| result = topology->package_cpus_lists; |
| goto out; |
| } |
| if (!strcmp("#num_dies", literal)) { |
| result = topology->die_cpus_lists; |
| goto out; |
| } |
| if (!strcmp("#num_cores", literal)) { |
| result = topology->core_cpus_lists; |
| goto out; |
| } |
| |
| pr_err("Unrecognized literal '%s'", literal); |
| out: |
| pr_debug2("literal: %s = %f\n", literal, result); |
| return result; |
| } |