blob: aaacf514dc09c54dc046c51acc9946ff2568cc2b [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
#include <stdbool.h>
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include "metricgroup.h"
#include "cpumap.h"
#include "cputopo.h"
#include "debug.h"
#include "expr.h"
#include "expr-bison.h"
#include "expr-flex.h"
#include "smt.h"
#include "tsc.h"
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/zalloc.h>
#include <ctype.h>
#include <math.h>
#ifdef PARSER_DEBUG
extern int expr_debug;
#endif
struct expr_id_data {
union {
struct {
double val;
int source_count;
} val;
struct {
double val;
const char *metric_name;
const char *metric_expr;
} ref;
};
enum {
/* Holding a double value. */
EXPR_ID_DATA__VALUE,
/* Reference to another metric. */
EXPR_ID_DATA__REF,
/* A reference but the value has been computed. */
EXPR_ID_DATA__REF_VALUE,
} kind;
};
static size_t key_hash(const void *key, void *ctx __maybe_unused)
{
const char *str = (const char *)key;
size_t hash = 0;
while (*str != '\0') {
hash *= 31;
hash += *str;
str++;
}
return hash;
}
static bool key_equal(const void *key1, const void *key2,
void *ctx __maybe_unused)
{
return !strcmp((const char *)key1, (const char *)key2);
}
struct hashmap *ids__new(void)
{
struct hashmap *hash;
hash = hashmap__new(key_hash, key_equal, NULL);
if (IS_ERR(hash))
return NULL;
return hash;
}
void ids__free(struct hashmap *ids)
{
struct hashmap_entry *cur;
size_t bkt;
if (ids == NULL)
return;
hashmap__for_each_entry(ids, cur, bkt) {
free((char *)cur->key);
free(cur->value);
}
hashmap__free(ids);
}
int ids__insert(struct hashmap *ids, const char *id)
{
struct expr_id_data *data_ptr = NULL, *old_data = NULL;
char *old_key = NULL;
int ret;
ret = hashmap__set(ids, id, data_ptr,
(const void **)&old_key, (void **)&old_data);
if (ret)
free(data_ptr);
free(old_key);
free(old_data);
return ret;
}
struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2)
{
size_t bkt;
struct hashmap_entry *cur;
int ret;
struct expr_id_data *old_data = NULL;
char *old_key = NULL;
if (!ids1)
return ids2;
if (!ids2)
return ids1;
if (hashmap__size(ids1) < hashmap__size(ids2)) {
struct hashmap *tmp = ids1;
ids1 = ids2;
ids2 = tmp;
}
hashmap__for_each_entry(ids2, cur, bkt) {
ret = hashmap__set(ids1, cur->key, cur->value,
(const void **)&old_key, (void **)&old_data);
free(old_key);
free(old_data);
if (ret) {
hashmap__free(ids1);
hashmap__free(ids2);
return NULL;
}
}
hashmap__free(ids2);
return ids1;
}
/* Caller must make sure id is allocated */
int expr__add_id(struct expr_parse_ctx *ctx, const char *id)
{
return ids__insert(ctx->ids, id);
}
/* Caller must make sure id is allocated */
int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val)
{
return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1);
}
/* Caller must make sure id is allocated */
int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id,
double val, int source_count)
{
struct expr_id_data *data_ptr = NULL, *old_data = NULL;
char *old_key = NULL;
int ret;
data_ptr = malloc(sizeof(*data_ptr));
if (!data_ptr)
return -ENOMEM;
data_ptr->val.val = val;
data_ptr->val.source_count = source_count;
data_ptr->kind = EXPR_ID_DATA__VALUE;
ret = hashmap__set(ctx->ids, id, data_ptr,
(const void **)&old_key, (void **)&old_data);
if (ret)
free(data_ptr);
free(old_key);
free(old_data);
return ret;
}
int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref)
{
struct expr_id_data *data_ptr = NULL, *old_data = NULL;
char *old_key = NULL;
char *name;
int ret;
data_ptr = zalloc(sizeof(*data_ptr));
if (!data_ptr)
return -ENOMEM;
name = strdup(ref->metric_name);
if (!name) {
free(data_ptr);
return -ENOMEM;
}
/*
* Intentionally passing just const char pointers,
* originally from 'struct pmu_event' object.
* We don't need to change them, so there's no
* need to create our own copy.
*/
data_ptr->ref.metric_name = ref->metric_name;
data_ptr->ref.metric_expr = ref->metric_expr;
data_ptr->kind = EXPR_ID_DATA__REF;
ret = hashmap__set(ctx->ids, name, data_ptr,
(const void **)&old_key, (void **)&old_data);
if (ret)
free(data_ptr);
pr_debug2("adding ref metric %s: %s\n",
ref->metric_name, ref->metric_expr);
free(old_key);
free(old_data);
return ret;
}
int expr__get_id(struct expr_parse_ctx *ctx, const char *id,
struct expr_id_data **data)
{
return hashmap__find(ctx->ids, id, (void **)data) ? 0 : -1;
}
bool expr__subset_of_ids(struct expr_parse_ctx *haystack,
struct expr_parse_ctx *needles)
{
struct hashmap_entry *cur;
size_t bkt;
struct expr_id_data *data;
hashmap__for_each_entry(needles->ids, cur, bkt) {
if (expr__get_id(haystack, cur->key, &data))
return false;
}
return true;
}
int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id,
struct expr_id_data **datap)
{
struct expr_id_data *data;
if (expr__get_id(ctx, id, datap) || !*datap) {
pr_debug("%s not found\n", id);
return -1;
}
data = *datap;
switch (data->kind) {
case EXPR_ID_DATA__VALUE:
pr_debug2("lookup(%s): val %f\n", id, data->val.val);
break;
case EXPR_ID_DATA__REF:
pr_debug2("lookup(%s): ref metric name %s\n", id,
data->ref.metric_name);
pr_debug("processing metric: %s ENTRY\n", id);
data->kind = EXPR_ID_DATA__REF_VALUE;
if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) {
pr_debug("%s failed to count\n", id);
return -1;
}
pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val);
break;
case EXPR_ID_DATA__REF_VALUE:
pr_debug2("lookup(%s): ref val %f metric name %s\n", id,
data->ref.val, data->ref.metric_name);
break;
default:
assert(0); /* Unreachable. */
}
return 0;
}
void expr__del_id(struct expr_parse_ctx *ctx, const char *id)
{
struct expr_id_data *old_val = NULL;
char *old_key = NULL;
hashmap__delete(ctx->ids, id,
(const void **)&old_key, (void **)&old_val);
free(old_key);
free(old_val);
}
struct expr_parse_ctx *expr__ctx_new(void)
{
struct expr_parse_ctx *ctx;
ctx = malloc(sizeof(struct expr_parse_ctx));
if (!ctx)
return NULL;
ctx->ids = hashmap__new(key_hash, key_equal, NULL);
if (IS_ERR(ctx->ids)) {
free(ctx);
return NULL;
}
ctx->sctx.user_requested_cpu_list = NULL;
ctx->sctx.runtime = 0;
ctx->sctx.system_wide = false;
return ctx;
}
void expr__ctx_clear(struct expr_parse_ctx *ctx)
{
struct hashmap_entry *cur;
size_t bkt;
hashmap__for_each_entry(ctx->ids, cur, bkt) {
free((char *)cur->key);
free(cur->value);
}
hashmap__clear(ctx->ids);
}
void expr__ctx_free(struct expr_parse_ctx *ctx)
{
struct hashmap_entry *cur;
size_t bkt;
if (!ctx)
return;
free(ctx->sctx.user_requested_cpu_list);
hashmap__for_each_entry(ctx->ids, cur, bkt) {
free((char *)cur->key);
free(cur->value);
}
hashmap__free(ctx->ids);
free(ctx);
}
static int
__expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr,
bool compute_ids)
{
YY_BUFFER_STATE buffer;
void *scanner;
int ret;
pr_debug2("parsing metric: %s\n", expr);
ret = expr_lex_init_extra(&ctx->sctx, &scanner);
if (ret)
return ret;
buffer = expr__scan_string(expr, scanner);
#ifdef PARSER_DEBUG
expr_debug = 1;
expr_set_debug(1, scanner);
#endif
ret = expr_parse(val, ctx, compute_ids, scanner);
expr__flush_buffer(buffer, scanner);
expr__delete_buffer(buffer, scanner);
expr_lex_destroy(scanner);
return ret;
}
int expr__parse(double *final_val, struct expr_parse_ctx *ctx,
const char *expr)
{
return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0;
}
int expr__find_ids(const char *expr, const char *one,
struct expr_parse_ctx *ctx)
{
int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true);
if (one)
expr__del_id(ctx, one);
return ret;
}
double expr_id_data__value(const struct expr_id_data *data)
{
if (data->kind == EXPR_ID_DATA__VALUE)
return data->val.val;
assert(data->kind == EXPR_ID_DATA__REF_VALUE);
return data->ref.val;
}
double expr_id_data__source_count(const struct expr_id_data *data)
{
assert(data->kind == EXPR_ID_DATA__VALUE);
return data->val.source_count;
}
#if !defined(__i386__) && !defined(__x86_64__)
double arch_get_tsc_freq(void)
{
return 0.0;
}
#endif
double expr__get_literal(const char *literal, const struct expr_scanner_ctx *ctx)
{
static struct cpu_topology *topology;
double result = NAN;
if (!strcmp("#num_cpus", literal)) {
result = cpu__max_present_cpu().cpu;
goto out;
}
if (!strcasecmp("#system_tsc_freq", literal)) {
result = arch_get_tsc_freq();
goto out;
}
/*
* Assume that topology strings are consistent, such as CPUs "0-1"
* wouldn't be listed as "0,1", and so after deduplication the number of
* these strings gives an indication of the number of packages, dies,
* etc.
*/
if (!topology) {
topology = cpu_topology__new();
if (!topology) {
pr_err("Error creating CPU topology");
goto out;
}
}
if (!strcasecmp("#smt_on", literal)) {
result = smt_on(topology) ? 1.0 : 0.0;
goto out;
}
if (!strcmp("#core_wide", literal)) {
result = core_wide(ctx->system_wide, ctx->user_requested_cpu_list, topology)
? 1.0 : 0.0;
goto out;
}
if (!strcmp("#num_packages", literal)) {
result = topology->package_cpus_lists;
goto out;
}
if (!strcmp("#num_dies", literal)) {
result = topology->die_cpus_lists;
goto out;
}
if (!strcmp("#num_cores", literal)) {
result = topology->core_cpus_lists;
goto out;
}
pr_err("Unrecognized literal '%s'", literal);
out:
pr_debug2("literal: %s = %f\n", literal, result);
return result;
}