blob: 5d07ee85bdae47db194d2da689f8eebc368f890c [file] [log] [blame] [edit]
/*
* arch/arm64/kernel/topology.c
*
* Copyright (C) 2011,2013,2014 Linaro Limited.
*
* Based on the arm32 version written by Vincent Guittot in turn based on
* arch/sh/kernel/topology.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/acpi.h>
#include <linux/arch_topology.h>
#include <linux/cacheinfo.h>
#include <linux/cpufreq.h>
#include <linux/cpu_smt.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/sched/isolation.h>
#include <linux/xarray.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/topology.h>
#ifdef CONFIG_ACPI
static bool __init acpi_cpu_is_threaded(int cpu)
{
int is_threaded = acpi_pptt_cpu_is_thread(cpu);
/*
* if the PPTT doesn't have thread information, assume a homogeneous
* machine and return the current CPU's thread state.
*/
if (is_threaded < 0)
is_threaded = read_cpuid_mpidr() & MPIDR_MT_BITMASK;
return !!is_threaded;
}
struct cpu_smt_info {
unsigned int thread_num;
int core_id;
};
/*
* Propagate the topology information of the processor_topology_node tree to the
* cpu_topology array.
*/
int __init parse_acpi_topology(void)
{
unsigned int max_smt_thread_num = 1;
struct cpu_smt_info *entry;
struct xarray hetero_cpu;
unsigned long hetero_id;
int cpu, topology_id;
if (acpi_disabled)
return 0;
xa_init(&hetero_cpu);
for_each_possible_cpu(cpu) {
topology_id = find_acpi_cpu_topology(cpu, 0);
if (topology_id < 0)
return topology_id;
if (acpi_cpu_is_threaded(cpu)) {
cpu_topology[cpu].thread_id = topology_id;
topology_id = find_acpi_cpu_topology(cpu, 1);
cpu_topology[cpu].core_id = topology_id;
/*
* In the PPTT, CPUs below a node with the 'identical
* implementation' flag have the same number of threads.
* Count the number of threads for only one CPU (i.e.
* one core_id) among those with the same hetero_id.
* See the comment of find_acpi_cpu_topology_hetero_id()
* for more details.
*
* One entry is created for each node having:
* - the 'identical implementation' flag
* - its parent not having the flag
*/
hetero_id = find_acpi_cpu_topology_hetero_id(cpu);
entry = xa_load(&hetero_cpu, hetero_id);
if (!entry) {
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
WARN_ON_ONCE(!entry);
if (entry) {
entry->core_id = topology_id;
entry->thread_num = 1;
xa_store(&hetero_cpu, hetero_id,
entry, GFP_KERNEL);
}
} else if (entry->core_id == topology_id) {
entry->thread_num++;
}
} else {
cpu_topology[cpu].thread_id = -1;
cpu_topology[cpu].core_id = topology_id;
}
topology_id = find_acpi_cpu_topology_cluster(cpu);
cpu_topology[cpu].cluster_id = topology_id;
topology_id = find_acpi_cpu_topology_package(cpu);
cpu_topology[cpu].package_id = topology_id;
}
/*
* This is a short loop since the number of XArray elements is the
* number of heterogeneous CPU clusters. On a homogeneous system
* there's only one entry in the XArray.
*/
xa_for_each(&hetero_cpu, hetero_id, entry) {
max_smt_thread_num = max(max_smt_thread_num, entry->thread_num);
xa_erase(&hetero_cpu, hetero_id);
kfree(entry);
}
cpu_smt_set_num_threads(max_smt_thread_num, max_smt_thread_num);
xa_destroy(&hetero_cpu);
return 0;
}
#endif
#ifdef CONFIG_ARM64_AMU_EXTN
#define read_corecnt() read_sysreg_s(SYS_AMEVCNTR0_CORE_EL0)
#define read_constcnt() read_sysreg_s(SYS_AMEVCNTR0_CONST_EL0)
#else
#define read_corecnt() (0UL)
#define read_constcnt() (0UL)
#endif
#undef pr_fmt
#define pr_fmt(fmt) "AMU: " fmt
/*
* Ensure that amu_scale_freq_tick() will return SCHED_CAPACITY_SCALE until
* the CPU capacity and its associated frequency have been correctly
* initialized.
*/
static DEFINE_PER_CPU_READ_MOSTLY(unsigned long, arch_max_freq_scale) = 1UL << (2 * SCHED_CAPACITY_SHIFT);
static cpumask_var_t amu_fie_cpus;
struct amu_cntr_sample {
u64 arch_const_cycles_prev;
u64 arch_core_cycles_prev;
unsigned long last_scale_update;
};
static DEFINE_PER_CPU_SHARED_ALIGNED(struct amu_cntr_sample, cpu_amu_samples);
void update_freq_counters_refs(void)
{
struct amu_cntr_sample *amu_sample = this_cpu_ptr(&cpu_amu_samples);
amu_sample->arch_core_cycles_prev = read_corecnt();
amu_sample->arch_const_cycles_prev = read_constcnt();
}
static inline bool freq_counters_valid(int cpu)
{
struct amu_cntr_sample *amu_sample = per_cpu_ptr(&cpu_amu_samples, cpu);
if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
return false;
if (!cpu_has_amu_feat(cpu)) {
pr_debug("CPU%d: counters are not supported.\n", cpu);
return false;
}
if (unlikely(!amu_sample->arch_const_cycles_prev ||
!amu_sample->arch_core_cycles_prev)) {
pr_debug("CPU%d: cycle counters are not enabled.\n", cpu);
return false;
}
return true;
}
void freq_inv_set_max_ratio(int cpu, u64 max_rate)
{
u64 ratio, ref_rate = arch_timer_get_rate();
if (unlikely(!max_rate || !ref_rate)) {
WARN_ONCE(1, "CPU%d: invalid maximum or reference frequency.\n",
cpu);
return;
}
/*
* Pre-compute the fixed ratio between the frequency of the constant
* reference counter and the maximum frequency of the CPU.
*
* ref_rate
* arch_max_freq_scale = ---------- * SCHED_CAPACITY_SCALE²
* max_rate
*
* We use a factor of 2 * SCHED_CAPACITY_SHIFT -> SCHED_CAPACITY_SCALE²
* in order to ensure a good resolution for arch_max_freq_scale for
* very low reference frequencies (down to the KHz range which should
* be unlikely).
*/
ratio = ref_rate << (2 * SCHED_CAPACITY_SHIFT);
ratio = div64_u64(ratio, max_rate);
if (!ratio) {
WARN_ONCE(1, "Reference frequency too low.\n");
return;
}
WRITE_ONCE(per_cpu(arch_max_freq_scale, cpu), (unsigned long)ratio);
}
static void amu_scale_freq_tick(void)
{
struct amu_cntr_sample *amu_sample = this_cpu_ptr(&cpu_amu_samples);
u64 prev_core_cnt, prev_const_cnt;
u64 core_cnt, const_cnt, scale;
prev_const_cnt = amu_sample->arch_const_cycles_prev;
prev_core_cnt = amu_sample->arch_core_cycles_prev;
update_freq_counters_refs();
const_cnt = amu_sample->arch_const_cycles_prev;
core_cnt = amu_sample->arch_core_cycles_prev;
/*
* This should not happen unless the AMUs have been reset and the
* counter values have not been restored - unlikely
*/
if (unlikely(core_cnt <= prev_core_cnt ||
const_cnt <= prev_const_cnt))
return;
/*
* /\core arch_max_freq_scale
* scale = ------- * --------------------
* /\const SCHED_CAPACITY_SCALE
*
* See validate_cpu_freq_invariance_counters() for details on
* arch_max_freq_scale and the use of SCHED_CAPACITY_SHIFT.
*/
scale = core_cnt - prev_core_cnt;
scale *= this_cpu_read(arch_max_freq_scale);
scale = div64_u64(scale >> SCHED_CAPACITY_SHIFT,
const_cnt - prev_const_cnt);
scale = min_t(unsigned long, scale, SCHED_CAPACITY_SCALE);
this_cpu_write(arch_freq_scale, (unsigned long)scale);
amu_sample->last_scale_update = jiffies;
}
static struct scale_freq_data amu_sfd = {
.source = SCALE_FREQ_SOURCE_ARCH,
.set_freq_scale = amu_scale_freq_tick,
};
static __always_inline bool amu_fie_cpu_supported(unsigned int cpu)
{
return cpumask_available(amu_fie_cpus) &&
cpumask_test_cpu(cpu, amu_fie_cpus);
}
void arch_cpu_idle_enter(void)
{
unsigned int cpu = smp_processor_id();
if (!amu_fie_cpu_supported(cpu))
return;
/* Kick in AMU update but only if one has not happened already */
if (housekeeping_cpu(cpu, HK_TYPE_TICK) &&
time_is_before_jiffies(per_cpu(cpu_amu_samples.last_scale_update, cpu)))
amu_scale_freq_tick();
}
#define AMU_SAMPLE_EXP_MS 20
int arch_freq_get_on_cpu(int cpu)
{
struct amu_cntr_sample *amu_sample;
unsigned int start_cpu = cpu;
unsigned long last_update;
unsigned int freq = 0;
u64 scale;
if (!amu_fie_cpu_supported(cpu) || !arch_scale_freq_ref(cpu))
return -EOPNOTSUPP;
while (1) {
amu_sample = per_cpu_ptr(&cpu_amu_samples, cpu);
last_update = amu_sample->last_scale_update;
/*
* For those CPUs that are in full dynticks mode, or those that have
* not seen tick for a while, try an alternative source for the counters
* (and thus freq scale), if available, for given policy: this boils
* down to identifying an active cpu within the same freq domain, if any.
*/
if (!housekeeping_cpu(cpu, HK_TYPE_TICK) ||
time_is_before_jiffies(last_update + msecs_to_jiffies(AMU_SAMPLE_EXP_MS))) {
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
int ref_cpu;
if (!policy)
return -EINVAL;
if (!cpumask_intersects(policy->related_cpus,
housekeeping_cpumask(HK_TYPE_TICK))) {
cpufreq_cpu_put(policy);
return -EOPNOTSUPP;
}
for_each_cpu_wrap(ref_cpu, policy->cpus, cpu + 1) {
if (ref_cpu == start_cpu) {
/* Prevent verifying same CPU twice */
ref_cpu = nr_cpu_ids;
break;
}
if (!idle_cpu(ref_cpu))
break;
}
cpufreq_cpu_put(policy);
if (ref_cpu >= nr_cpu_ids)
/* No alternative to pull info from */
return -EAGAIN;
cpu = ref_cpu;
} else {
break;
}
}
/*
* Reversed computation to the one used to determine
* the arch_freq_scale value
* (see amu_scale_freq_tick for details)
*/
scale = arch_scale_freq_capacity(cpu);
freq = scale * arch_scale_freq_ref(cpu);
freq >>= SCHED_CAPACITY_SHIFT;
return freq;
}
static void amu_fie_setup(const struct cpumask *cpus)
{
int cpu;
/* We are already set since the last insmod of cpufreq driver */
if (cpumask_available(amu_fie_cpus) &&
unlikely(cpumask_subset(cpus, amu_fie_cpus)))
return;
for_each_cpu(cpu, cpus)
if (!freq_counters_valid(cpu))
return;
if (!cpumask_available(amu_fie_cpus) &&
!zalloc_cpumask_var(&amu_fie_cpus, GFP_KERNEL)) {
WARN_ONCE(1, "Failed to allocate FIE cpumask for CPUs[%*pbl]\n",
cpumask_pr_args(cpus));
return;
}
cpumask_or(amu_fie_cpus, amu_fie_cpus, cpus);
topology_set_scale_freq_source(&amu_sfd, amu_fie_cpus);
pr_debug("CPUs[%*pbl]: counters will be used for FIE.",
cpumask_pr_args(cpus));
}
static int init_amu_fie_callback(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_policy *policy = data;
if (val == CPUFREQ_CREATE_POLICY)
amu_fie_setup(policy->related_cpus);
/*
* We don't need to handle CPUFREQ_REMOVE_POLICY event as the AMU
* counters don't have any dependency on cpufreq driver once we have
* initialized AMU support and enabled invariance. The AMU counters will
* keep on working just fine in the absence of the cpufreq driver, and
* for the CPUs for which there are no counters available, the last set
* value of arch_freq_scale will remain valid as that is the frequency
* those CPUs are running at.
*/
return 0;
}
static struct notifier_block init_amu_fie_notifier = {
.notifier_call = init_amu_fie_callback,
};
static int __init init_amu_fie(void)
{
return cpufreq_register_notifier(&init_amu_fie_notifier,
CPUFREQ_POLICY_NOTIFIER);
}
core_initcall(init_amu_fie);
#ifdef CONFIG_ACPI_CPPC_LIB
#include <acpi/cppc_acpi.h>
static void cpu_read_corecnt(void *val)
{
/*
* A value of 0 can be returned if the current CPU does not support AMUs
* or if the counter is disabled for this CPU. A return value of 0 at
* counter read is properly handled as an error case by the users of the
* counter.
*/
*(u64 *)val = read_corecnt();
}
static void cpu_read_constcnt(void *val)
{
/*
* Return 0 if the current CPU is affected by erratum 2457168. A value
* of 0 is also returned if the current CPU does not support AMUs or if
* the counter is disabled. A return value of 0 at counter read is
* properly handled as an error case by the users of the counter.
*/
*(u64 *)val = this_cpu_has_cap(ARM64_WORKAROUND_2457168) ?
0UL : read_constcnt();
}
static inline
int counters_read_on_cpu(int cpu, smp_call_func_t func, u64 *val)
{
/*
* Abort call on counterless CPU or when interrupts are
* disabled - can lead to deadlock in smp sync call.
*/
if (!cpu_has_amu_feat(cpu))
return -EOPNOTSUPP;
if (WARN_ON_ONCE(irqs_disabled()))
return -EPERM;
smp_call_function_single(cpu, func, val, 1);
return 0;
}
/*
* Refer to drivers/acpi/cppc_acpi.c for the description of the functions
* below.
*/
bool cpc_ffh_supported(void)
{
int cpu = get_cpu_with_amu_feat();
/*
* FFH is considered supported if there is at least one present CPU that
* supports AMUs. Using FFH to read core and reference counters for CPUs
* that do not support AMUs, have counters disabled or that are affected
* by errata, will result in a return value of 0.
*
* This is done to allow any enabled and valid counters to be read
* through FFH, knowing that potentially returning 0 as counter value is
* properly handled by the users of these counters.
*/
if ((cpu >= nr_cpu_ids) || !cpumask_test_cpu(cpu, cpu_present_mask))
return false;
return true;
}
int cpc_read_ffh(int cpu, struct cpc_reg *reg, u64 *val)
{
int ret = -EOPNOTSUPP;
switch ((u64)reg->address) {
case 0x0:
ret = counters_read_on_cpu(cpu, cpu_read_corecnt, val);
break;
case 0x1:
ret = counters_read_on_cpu(cpu, cpu_read_constcnt, val);
break;
}
if (!ret) {
*val &= GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
reg->bit_offset);
*val >>= reg->bit_offset;
}
return ret;
}
int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
return -EOPNOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */