blob: f814ee048555b1cf39f50b2e8afc370a8baf88ed [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* AES using the RISC-V vector crypto extensions. Includes the bare block
* cipher and the ECB, CBC, CBC-CTS, CTR, and XTS modes.
*
* Copyright (C) 2023 VRULL GmbH
* Author: Heiko Stuebner <heiko.stuebner@vrull.eu>
*
* Copyright (C) 2023 SiFive, Inc.
* Author: Jerry Shih <jerry.shih@sifive.com>
*
* Copyright 2024 Google LLC
*/
#include <asm/simd.h>
#include <asm/vector.h>
#include <crypto/aes.h>
#include <crypto/internal/cipher.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <crypto/xts.h>
#include <linux/linkage.h>
#include <linux/module.h>
asmlinkage void aes_encrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 in[AES_BLOCK_SIZE],
u8 out[AES_BLOCK_SIZE]);
asmlinkage void aes_decrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 in[AES_BLOCK_SIZE],
u8 out[AES_BLOCK_SIZE]);
asmlinkage void aes_ecb_encrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len);
asmlinkage void aes_ecb_decrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len);
asmlinkage void aes_cbc_encrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
u8 iv[AES_BLOCK_SIZE]);
asmlinkage void aes_cbc_decrypt_zvkned(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
u8 iv[AES_BLOCK_SIZE]);
asmlinkage void aes_cbc_cts_crypt_zvkned(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
const u8 iv[AES_BLOCK_SIZE], bool enc);
asmlinkage void aes_ctr32_crypt_zvkned_zvkb(const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
u8 iv[AES_BLOCK_SIZE]);
asmlinkage void aes_xts_encrypt_zvkned_zvbb_zvkg(
const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
u8 tweak[AES_BLOCK_SIZE]);
asmlinkage void aes_xts_decrypt_zvkned_zvbb_zvkg(
const struct crypto_aes_ctx *key,
const u8 *in, u8 *out, size_t len,
u8 tweak[AES_BLOCK_SIZE]);
static int riscv64_aes_setkey(struct crypto_aes_ctx *ctx,
const u8 *key, unsigned int keylen)
{
/*
* For now we just use the generic key expansion, for these reasons:
*
* - zvkned's key expansion instructions don't support AES-192.
* So, non-zvkned fallback code would be needed anyway.
*
* - Users of AES in Linux usually don't change keys frequently.
* So, key expansion isn't performance-critical.
*
* - For single-block AES exposed as a "cipher" algorithm, it's
* necessary to use struct crypto_aes_ctx and initialize its 'key_dec'
* field with the round keys for the Equivalent Inverse Cipher. This
* is because with "cipher", decryption can be requested from a
* context where the vector unit isn't usable, necessitating a
* fallback to aes_decrypt(). But, zvkned can only generate and use
* the normal round keys. Of course, it's preferable to not have
* special code just for "cipher", as e.g. XTS also uses a
* single-block AES encryption. It's simplest to just use
* struct crypto_aes_ctx and aes_expandkey() everywhere.
*/
return aes_expandkey(ctx, key, keylen);
}
static int riscv64_aes_setkey_cipher(struct crypto_tfm *tfm,
const u8 *key, unsigned int keylen)
{
struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
return riscv64_aes_setkey(ctx, key, keylen);
}
static int riscv64_aes_setkey_skcipher(struct crypto_skcipher *tfm,
const u8 *key, unsigned int keylen)
{
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
return riscv64_aes_setkey(ctx, key, keylen);
}
/* Bare AES, without a mode of operation */
static void riscv64_aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (crypto_simd_usable()) {
kernel_vector_begin();
aes_encrypt_zvkned(ctx, src, dst);
kernel_vector_end();
} else {
aes_encrypt(ctx, dst, src);
}
}
static void riscv64_aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (crypto_simd_usable()) {
kernel_vector_begin();
aes_decrypt_zvkned(ctx, src, dst);
kernel_vector_end();
} else {
aes_decrypt(ctx, dst, src);
}
}
/* AES-ECB */
static inline int riscv64_aes_ecb_crypt(struct skcipher_request *req, bool enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
kernel_vector_begin();
if (enc)
aes_ecb_encrypt_zvkned(ctx, walk.src.virt.addr,
walk.dst.virt.addr,
nbytes & ~(AES_BLOCK_SIZE - 1));
else
aes_ecb_decrypt_zvkned(ctx, walk.src.virt.addr,
walk.dst.virt.addr,
nbytes & ~(AES_BLOCK_SIZE - 1));
kernel_vector_end();
err = skcipher_walk_done(&walk, nbytes & (AES_BLOCK_SIZE - 1));
}
return err;
}
static int riscv64_aes_ecb_encrypt(struct skcipher_request *req)
{
return riscv64_aes_ecb_crypt(req, true);
}
static int riscv64_aes_ecb_decrypt(struct skcipher_request *req)
{
return riscv64_aes_ecb_crypt(req, false);
}
/* AES-CBC */
static int riscv64_aes_cbc_crypt(struct skcipher_request *req, bool enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct skcipher_walk walk;
unsigned int nbytes;
int err;
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
kernel_vector_begin();
if (enc)
aes_cbc_encrypt_zvkned(ctx, walk.src.virt.addr,
walk.dst.virt.addr,
nbytes & ~(AES_BLOCK_SIZE - 1),
walk.iv);
else
aes_cbc_decrypt_zvkned(ctx, walk.src.virt.addr,
walk.dst.virt.addr,
nbytes & ~(AES_BLOCK_SIZE - 1),
walk.iv);
kernel_vector_end();
err = skcipher_walk_done(&walk, nbytes & (AES_BLOCK_SIZE - 1));
}
return err;
}
static int riscv64_aes_cbc_encrypt(struct skcipher_request *req)
{
return riscv64_aes_cbc_crypt(req, true);
}
static int riscv64_aes_cbc_decrypt(struct skcipher_request *req)
{
return riscv64_aes_cbc_crypt(req, false);
}
/* AES-CBC-CTS */
static int riscv64_aes_cbc_cts_crypt(struct skcipher_request *req, bool enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
struct scatterlist sg_src[2], sg_dst[2];
struct skcipher_request subreq;
struct scatterlist *src, *dst;
struct skcipher_walk walk;
unsigned int cbc_len;
int err;
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
err = skcipher_walk_virt(&walk, req, false);
if (err)
return err;
/*
* If the full message is available in one step, decrypt it in one call
* to the CBC-CTS assembly function. This reduces overhead, especially
* on short messages. Otherwise, fall back to doing CBC up to the last
* two blocks, then invoke CTS just for the ciphertext stealing.
*/
if (unlikely(walk.nbytes != req->cryptlen)) {
cbc_len = round_down(req->cryptlen - AES_BLOCK_SIZE - 1,
AES_BLOCK_SIZE);
skcipher_walk_abort(&walk);
skcipher_request_set_tfm(&subreq, tfm);
skcipher_request_set_callback(&subreq,
skcipher_request_flags(req),
NULL, NULL);
skcipher_request_set_crypt(&subreq, req->src, req->dst,
cbc_len, req->iv);
err = riscv64_aes_cbc_crypt(&subreq, enc);
if (err)
return err;
dst = src = scatterwalk_ffwd(sg_src, req->src, cbc_len);
if (req->dst != req->src)
dst = scatterwalk_ffwd(sg_dst, req->dst, cbc_len);
skcipher_request_set_crypt(&subreq, src, dst,
req->cryptlen - cbc_len, req->iv);
err = skcipher_walk_virt(&walk, &subreq, false);
if (err)
return err;
}
kernel_vector_begin();
aes_cbc_cts_crypt_zvkned(ctx, walk.src.virt.addr, walk.dst.virt.addr,
walk.nbytes, req->iv, enc);
kernel_vector_end();
return skcipher_walk_done(&walk, 0);
}
static int riscv64_aes_cbc_cts_encrypt(struct skcipher_request *req)
{
return riscv64_aes_cbc_cts_crypt(req, true);
}
static int riscv64_aes_cbc_cts_decrypt(struct skcipher_request *req)
{
return riscv64_aes_cbc_cts_crypt(req, false);
}
/* AES-CTR */
static int riscv64_aes_ctr_crypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
unsigned int nbytes, p1_nbytes;
struct skcipher_walk walk;
u32 ctr32, nblocks;
int err;
/* Get the low 32-bit word of the 128-bit big endian counter. */
ctr32 = get_unaligned_be32(req->iv + 12);
err = skcipher_walk_virt(&walk, req, false);
while ((nbytes = walk.nbytes) != 0) {
if (nbytes < walk.total) {
/* Not the end yet, so keep the length block-aligned. */
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
nblocks = nbytes / AES_BLOCK_SIZE;
} else {
/* It's the end, so include any final partial block. */
nblocks = DIV_ROUND_UP(nbytes, AES_BLOCK_SIZE);
}
ctr32 += nblocks;
kernel_vector_begin();
if (ctr32 >= nblocks) {
/* The low 32-bit word of the counter won't overflow. */
aes_ctr32_crypt_zvkned_zvkb(ctx, walk.src.virt.addr,
walk.dst.virt.addr, nbytes,
req->iv);
} else {
/*
* The low 32-bit word of the counter will overflow.
* The assembly doesn't handle this case, so split the
* operation into two at the point where the overflow
* will occur. After the first part, add the carry bit.
*/
p1_nbytes = min_t(unsigned int, nbytes,
(nblocks - ctr32) * AES_BLOCK_SIZE);
aes_ctr32_crypt_zvkned_zvkb(ctx, walk.src.virt.addr,
walk.dst.virt.addr,
p1_nbytes, req->iv);
crypto_inc(req->iv, 12);
if (ctr32) {
aes_ctr32_crypt_zvkned_zvkb(
ctx,
walk.src.virt.addr + p1_nbytes,
walk.dst.virt.addr + p1_nbytes,
nbytes - p1_nbytes, req->iv);
}
}
kernel_vector_end();
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
}
return err;
}
/* AES-XTS */
struct riscv64_aes_xts_ctx {
struct crypto_aes_ctx ctx1;
struct crypto_aes_ctx ctx2;
};
static int riscv64_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
unsigned int keylen)
{
struct riscv64_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
return xts_verify_key(tfm, key, keylen) ?:
riscv64_aes_setkey(&ctx->ctx1, key, keylen / 2) ?:
riscv64_aes_setkey(&ctx->ctx2, key + keylen / 2, keylen / 2);
}
static int riscv64_aes_xts_crypt(struct skcipher_request *req, bool enc)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const struct riscv64_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
int tail = req->cryptlen % AES_BLOCK_SIZE;
struct scatterlist sg_src[2], sg_dst[2];
struct skcipher_request subreq;
struct scatterlist *src, *dst;
struct skcipher_walk walk;
int err;
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
/* Encrypt the IV with the tweak key to get the first tweak. */
kernel_vector_begin();
aes_encrypt_zvkned(&ctx->ctx2, req->iv, req->iv);
kernel_vector_end();
err = skcipher_walk_virt(&walk, req, false);
/*
* If the message length isn't divisible by the AES block size and the
* full message isn't available in one step of the scatterlist walk,
* then separate off the last full block and the partial block. This
* ensures that they are processed in the same call to the assembly
* function, which is required for ciphertext stealing.
*/
if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
skcipher_walk_abort(&walk);
skcipher_request_set_tfm(&subreq, tfm);
skcipher_request_set_callback(&subreq,
skcipher_request_flags(req),
NULL, NULL);
skcipher_request_set_crypt(&subreq, req->src, req->dst,
req->cryptlen - tail - AES_BLOCK_SIZE,
req->iv);
req = &subreq;
err = skcipher_walk_virt(&walk, req, false);
} else {
tail = 0;
}
while (walk.nbytes) {
unsigned int nbytes = walk.nbytes;
if (nbytes < walk.total)
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
kernel_vector_begin();
if (enc)
aes_xts_encrypt_zvkned_zvbb_zvkg(
&ctx->ctx1, walk.src.virt.addr,
walk.dst.virt.addr, nbytes, req->iv);
else
aes_xts_decrypt_zvkned_zvbb_zvkg(
&ctx->ctx1, walk.src.virt.addr,
walk.dst.virt.addr, nbytes, req->iv);
kernel_vector_end();
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
}
if (err || likely(!tail))
return err;
/* Do ciphertext stealing with the last full block and partial block. */
dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
if (req->dst != req->src)
dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
req->iv);
err = skcipher_walk_virt(&walk, req, false);
if (err)
return err;
kernel_vector_begin();
if (enc)
aes_xts_encrypt_zvkned_zvbb_zvkg(
&ctx->ctx1, walk.src.virt.addr,
walk.dst.virt.addr, walk.nbytes, req->iv);
else
aes_xts_decrypt_zvkned_zvbb_zvkg(
&ctx->ctx1, walk.src.virt.addr,
walk.dst.virt.addr, walk.nbytes, req->iv);
kernel_vector_end();
return skcipher_walk_done(&walk, 0);
}
static int riscv64_aes_xts_encrypt(struct skcipher_request *req)
{
return riscv64_aes_xts_crypt(req, true);
}
static int riscv64_aes_xts_decrypt(struct skcipher_request *req)
{
return riscv64_aes_xts_crypt(req, false);
}
/* Algorithm definitions */
static struct crypto_alg riscv64_zvkned_aes_cipher_alg = {
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_priority = 300,
.cra_name = "aes",
.cra_driver_name = "aes-riscv64-zvkned",
.cra_cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = riscv64_aes_setkey_cipher,
.cia_encrypt = riscv64_aes_encrypt,
.cia_decrypt = riscv64_aes_decrypt,
},
.cra_module = THIS_MODULE,
};
static struct skcipher_alg riscv64_zvkned_aes_skcipher_algs[] = {
{
.setkey = riscv64_aes_setkey_skcipher,
.encrypt = riscv64_aes_ecb_encrypt,
.decrypt = riscv64_aes_ecb_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.walksize = 8 * AES_BLOCK_SIZE, /* matches LMUL=8 */
.base = {
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_priority = 300,
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-riscv64-zvkned",
.cra_module = THIS_MODULE,
},
}, {
.setkey = riscv64_aes_setkey_skcipher,
.encrypt = riscv64_aes_cbc_encrypt,
.decrypt = riscv64_aes_cbc_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_priority = 300,
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-riscv64-zvkned",
.cra_module = THIS_MODULE,
},
}, {
.setkey = riscv64_aes_setkey_skcipher,
.encrypt = riscv64_aes_cbc_cts_encrypt,
.decrypt = riscv64_aes_cbc_cts_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.walksize = 4 * AES_BLOCK_SIZE, /* matches LMUL=4 */
.base = {
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_priority = 300,
.cra_name = "cts(cbc(aes))",
.cra_driver_name = "cts-cbc-aes-riscv64-zvkned",
.cra_module = THIS_MODULE,
},
}
};
static struct skcipher_alg riscv64_zvkned_zvkb_aes_skcipher_alg = {
.setkey = riscv64_aes_setkey_skcipher,
.encrypt = riscv64_aes_ctr_crypt,
.decrypt = riscv64_aes_ctr_crypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.walksize = 4 * AES_BLOCK_SIZE, /* matches LMUL=4 */
.base = {
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto_aes_ctx),
.cra_priority = 300,
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-riscv64-zvkned-zvkb",
.cra_module = THIS_MODULE,
},
};
static struct skcipher_alg riscv64_zvkned_zvbb_zvkg_aes_skcipher_alg = {
.setkey = riscv64_aes_xts_setkey,
.encrypt = riscv64_aes_xts_encrypt,
.decrypt = riscv64_aes_xts_decrypt,
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.walksize = 4 * AES_BLOCK_SIZE, /* matches LMUL=4 */
.base = {
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct riscv64_aes_xts_ctx),
.cra_priority = 300,
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-riscv64-zvkned-zvbb-zvkg",
.cra_module = THIS_MODULE,
},
};
static inline bool riscv64_aes_xts_supported(void)
{
return riscv_isa_extension_available(NULL, ZVBB) &&
riscv_isa_extension_available(NULL, ZVKG) &&
riscv_vector_vlen() < 2048 /* Implementation limitation */;
}
static int __init riscv64_aes_mod_init(void)
{
int err = -ENODEV;
if (riscv_isa_extension_available(NULL, ZVKNED) &&
riscv_vector_vlen() >= 128) {
err = crypto_register_alg(&riscv64_zvkned_aes_cipher_alg);
if (err)
return err;
err = crypto_register_skciphers(
riscv64_zvkned_aes_skcipher_algs,
ARRAY_SIZE(riscv64_zvkned_aes_skcipher_algs));
if (err)
goto unregister_zvkned_cipher_alg;
if (riscv_isa_extension_available(NULL, ZVKB)) {
err = crypto_register_skcipher(
&riscv64_zvkned_zvkb_aes_skcipher_alg);
if (err)
goto unregister_zvkned_skcipher_algs;
}
if (riscv64_aes_xts_supported()) {
err = crypto_register_skcipher(
&riscv64_zvkned_zvbb_zvkg_aes_skcipher_alg);
if (err)
goto unregister_zvkned_zvkb_skcipher_alg;
}
}
return err;
unregister_zvkned_zvkb_skcipher_alg:
if (riscv_isa_extension_available(NULL, ZVKB))
crypto_unregister_skcipher(&riscv64_zvkned_zvkb_aes_skcipher_alg);
unregister_zvkned_skcipher_algs:
crypto_unregister_skciphers(riscv64_zvkned_aes_skcipher_algs,
ARRAY_SIZE(riscv64_zvkned_aes_skcipher_algs));
unregister_zvkned_cipher_alg:
crypto_unregister_alg(&riscv64_zvkned_aes_cipher_alg);
return err;
}
static void __exit riscv64_aes_mod_exit(void)
{
if (riscv64_aes_xts_supported())
crypto_unregister_skcipher(&riscv64_zvkned_zvbb_zvkg_aes_skcipher_alg);
if (riscv_isa_extension_available(NULL, ZVKB))
crypto_unregister_skcipher(&riscv64_zvkned_zvkb_aes_skcipher_alg);
crypto_unregister_skciphers(riscv64_zvkned_aes_skcipher_algs,
ARRAY_SIZE(riscv64_zvkned_aes_skcipher_algs));
crypto_unregister_alg(&riscv64_zvkned_aes_cipher_alg);
}
module_init(riscv64_aes_mod_init);
module_exit(riscv64_aes_mod_exit);
MODULE_DESCRIPTION("AES-ECB/CBC/CTS/CTR/XTS (RISC-V accelerated)");
MODULE_AUTHOR("Jerry Shih <jerry.shih@sifive.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("aes");
MODULE_ALIAS_CRYPTO("ecb(aes)");
MODULE_ALIAS_CRYPTO("cbc(aes)");
MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
MODULE_ALIAS_CRYPTO("ctr(aes)");
MODULE_ALIAS_CRYPTO("xts(aes)");