blob: 23d063f94ce61d42646dfec778146b1c2529daf2 [file] [log] [blame] [edit]
/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */
//
// This file is dual-licensed, meaning that you can use it under your
// choice of either of the following two licenses:
//
// Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License 2.0 (the "License"). You can obtain
// a copy in the file LICENSE in the source distribution or at
// https://www.openssl.org/source/license.html
//
// or
//
// Copyright (c) 2023, Christoph Müllner <christoph.muellner@vrull.eu>
// Copyright (c) 2023, Phoebe Chen <phoebe.chen@sifive.com>
// Copyright (c) 2023, Jerry Shih <jerry.shih@sifive.com>
// Copyright 2024 Google LLC
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The generated code of this file depends on the following RISC-V extensions:
// - RV64I
// - RISC-V Vector ('V') with VLEN >= 128
// - RISC-V Vector AES block cipher extension ('Zvkned')
#include <linux/linkage.h>
.text
.option arch, +zvkned
#include "aes-macros.S"
#define KEYP a0
#define INP a1
#define OUTP a2
#define LEN a3
#define IVP a4
.macro __aes_crypt_zvkned enc, keylen
vle32.v v16, (INP)
aes_crypt v16, \enc, \keylen
vse32.v v16, (OUTP)
ret
.endm
.macro aes_crypt_zvkned enc
aes_begin KEYP, 128f, 192f
__aes_crypt_zvkned \enc, 256
128:
__aes_crypt_zvkned \enc, 128
192:
__aes_crypt_zvkned \enc, 192
.endm
// void aes_encrypt_zvkned(const struct crypto_aes_ctx *key,
// const u8 in[16], u8 out[16]);
SYM_FUNC_START(aes_encrypt_zvkned)
aes_crypt_zvkned 1
SYM_FUNC_END(aes_encrypt_zvkned)
// Same prototype and calling convention as the encryption function
SYM_FUNC_START(aes_decrypt_zvkned)
aes_crypt_zvkned 0
SYM_FUNC_END(aes_decrypt_zvkned)
.macro __aes_ecb_crypt enc, keylen
srli t0, LEN, 2
// t0 is the remaining length in 32-bit words. It's a multiple of 4.
1:
vsetvli t1, t0, e32, m8, ta, ma
sub t0, t0, t1 // Subtract number of words processed
slli t1, t1, 2 // Words to bytes
vle32.v v16, (INP)
aes_crypt v16, \enc, \keylen
vse32.v v16, (OUTP)
add INP, INP, t1
add OUTP, OUTP, t1
bnez t0, 1b
ret
.endm
.macro aes_ecb_crypt enc
aes_begin KEYP, 128f, 192f
__aes_ecb_crypt \enc, 256
128:
__aes_ecb_crypt \enc, 128
192:
__aes_ecb_crypt \enc, 192
.endm
// void aes_ecb_encrypt_zvkned(const struct crypto_aes_ctx *key,
// const u8 *in, u8 *out, size_t len);
//
// |len| must be nonzero and a multiple of 16 (AES_BLOCK_SIZE).
SYM_FUNC_START(aes_ecb_encrypt_zvkned)
aes_ecb_crypt 1
SYM_FUNC_END(aes_ecb_encrypt_zvkned)
// Same prototype and calling convention as the encryption function
SYM_FUNC_START(aes_ecb_decrypt_zvkned)
aes_ecb_crypt 0
SYM_FUNC_END(aes_ecb_decrypt_zvkned)
.macro aes_cbc_encrypt keylen
vle32.v v16, (IVP) // Load IV
1:
vle32.v v17, (INP) // Load plaintext block
vxor.vv v16, v16, v17 // XOR with IV or prev ciphertext block
aes_encrypt v16, \keylen // Encrypt
vse32.v v16, (OUTP) // Store ciphertext block
addi INP, INP, 16
addi OUTP, OUTP, 16
addi LEN, LEN, -16
bnez LEN, 1b
vse32.v v16, (IVP) // Store next IV
ret
.endm
.macro aes_cbc_decrypt keylen
srli LEN, LEN, 2 // Convert LEN from bytes to words
vle32.v v16, (IVP) // Load IV
1:
vsetvli t0, LEN, e32, m4, ta, ma
vle32.v v20, (INP) // Load ciphertext blocks
vslideup.vi v16, v20, 4 // Setup prev ciphertext blocks
addi t1, t0, -4
vslidedown.vx v24, v20, t1 // Save last ciphertext block
aes_decrypt v20, \keylen // Decrypt the blocks
vxor.vv v20, v20, v16 // XOR with prev ciphertext blocks
vse32.v v20, (OUTP) // Store plaintext blocks
vmv.v.v v16, v24 // Next "IV" is last ciphertext block
slli t1, t0, 2 // Words to bytes
add INP, INP, t1
add OUTP, OUTP, t1
sub LEN, LEN, t0
bnez LEN, 1b
vsetivli zero, 4, e32, m1, ta, ma
vse32.v v16, (IVP) // Store next IV
ret
.endm
// void aes_cbc_encrypt_zvkned(const struct crypto_aes_ctx *key,
// const u8 *in, u8 *out, size_t len, u8 iv[16]);
//
// |len| must be nonzero and a multiple of 16 (AES_BLOCK_SIZE).
SYM_FUNC_START(aes_cbc_encrypt_zvkned)
aes_begin KEYP, 128f, 192f
aes_cbc_encrypt 256
128:
aes_cbc_encrypt 128
192:
aes_cbc_encrypt 192
SYM_FUNC_END(aes_cbc_encrypt_zvkned)
// Same prototype and calling convention as the encryption function
SYM_FUNC_START(aes_cbc_decrypt_zvkned)
aes_begin KEYP, 128f, 192f
aes_cbc_decrypt 256
128:
aes_cbc_decrypt 128
192:
aes_cbc_decrypt 192
SYM_FUNC_END(aes_cbc_decrypt_zvkned)
.macro aes_cbc_cts_encrypt keylen
// CBC-encrypt all blocks except the last. But don't store the
// second-to-last block to the output buffer yet, since it will be
// handled specially in the ciphertext stealing step. Exception: if the
// message is single-block, still encrypt the last (and only) block.
li t0, 16
j 2f
1:
vse32.v v16, (OUTP) // Store ciphertext block
addi OUTP, OUTP, 16
2:
vle32.v v17, (INP) // Load plaintext block
vxor.vv v16, v16, v17 // XOR with IV or prev ciphertext block
aes_encrypt v16, \keylen // Encrypt
addi INP, INP, 16
addi LEN, LEN, -16
bgt LEN, t0, 1b // Repeat if more than one block remains
// Special case: if the message is a single block, just do CBC.
beqz LEN, .Lcts_encrypt_done\@
// Encrypt the last two blocks using ciphertext stealing as follows:
// C[n-1] = Encrypt(Encrypt(P[n-1] ^ C[n-2]) ^ P[n])
// C[n] = Encrypt(P[n-1] ^ C[n-2])[0..LEN]
//
// C[i] denotes the i'th ciphertext block, and likewise P[i] the i'th
// plaintext block. Block n, the last block, may be partial; its length
// is 1 <= LEN <= 16. If there are only 2 blocks, C[n-2] means the IV.
//
// v16 already contains Encrypt(P[n-1] ^ C[n-2]).
// INP points to P[n]. OUTP points to where C[n-1] should go.
// To support in-place encryption, load P[n] before storing C[n].
addi t0, OUTP, 16 // Get pointer to where C[n] should go
vsetvli zero, LEN, e8, m1, tu, ma
vle8.v v17, (INP) // Load P[n]
vse8.v v16, (t0) // Store C[n]
vxor.vv v16, v16, v17 // v16 = Encrypt(P[n-1] ^ C[n-2]) ^ P[n]
vsetivli zero, 4, e32, m1, ta, ma
aes_encrypt v16, \keylen
.Lcts_encrypt_done\@:
vse32.v v16, (OUTP) // Store C[n-1] (or C[n] in single-block case)
ret
.endm
#define LEN32 t4 // Length of remaining full blocks in 32-bit words
#define LEN_MOD16 t5 // Length of message in bytes mod 16
.macro aes_cbc_cts_decrypt keylen
andi LEN32, LEN, ~15
srli LEN32, LEN32, 2
andi LEN_MOD16, LEN, 15
// Save C[n-2] in v28 so that it's available later during the ciphertext
// stealing step. If there are fewer than three blocks, C[n-2] means
// the IV, otherwise it means the third-to-last ciphertext block.
vmv.v.v v28, v16 // IV
add t0, LEN, -33
bltz t0, .Lcts_decrypt_loop\@
andi t0, t0, ~15
add t0, t0, INP
vle32.v v28, (t0)
// CBC-decrypt all full blocks. For the last full block, or the last 2
// full blocks if the message is block-aligned, this doesn't write the
// correct output blocks (unless the message is only a single block),
// because it XORs the wrong values with the raw AES plaintexts. But we
// fix this after this loop without redoing the AES decryptions. This
// approach allows more of the AES decryptions to be parallelized.
.Lcts_decrypt_loop\@:
vsetvli t0, LEN32, e32, m4, ta, ma
addi t1, t0, -4
vle32.v v20, (INP) // Load next set of ciphertext blocks
vmv.v.v v24, v16 // Get IV or last ciphertext block of prev set
vslideup.vi v24, v20, 4 // Setup prev ciphertext blocks
vslidedown.vx v16, v20, t1 // Save last ciphertext block of this set
aes_decrypt v20, \keylen // Decrypt this set of blocks
vxor.vv v24, v24, v20 // XOR prev ciphertext blocks with decrypted blocks
vse32.v v24, (OUTP) // Store this set of plaintext blocks
sub LEN32, LEN32, t0
slli t0, t0, 2 // Words to bytes
add INP, INP, t0
add OUTP, OUTP, t0
bnez LEN32, .Lcts_decrypt_loop\@
vsetivli zero, 4, e32, m4, ta, ma
vslidedown.vx v20, v20, t1 // Extract raw plaintext of last full block
addi t0, OUTP, -16 // Get pointer to last full plaintext block
bnez LEN_MOD16, .Lcts_decrypt_non_block_aligned\@
// Special case: if the message is a single block, just do CBC.
li t1, 16
beq LEN, t1, .Lcts_decrypt_done\@
// Block-aligned message. Just fix up the last 2 blocks. We need:
//
// P[n-1] = Decrypt(C[n]) ^ C[n-2]
// P[n] = Decrypt(C[n-1]) ^ C[n]
//
// We have C[n] in v16, Decrypt(C[n]) in v20, and C[n-2] in v28.
// Together with Decrypt(C[n-1]) ^ C[n-2] from the output buffer, this
// is everything needed to fix the output without re-decrypting blocks.
addi t1, OUTP, -32 // Get pointer to where P[n-1] should go
vxor.vv v20, v20, v28 // Decrypt(C[n]) ^ C[n-2] == P[n-1]
vle32.v v24, (t1) // Decrypt(C[n-1]) ^ C[n-2]
vse32.v v20, (t1) // Store P[n-1]
vxor.vv v20, v24, v16 // Decrypt(C[n-1]) ^ C[n-2] ^ C[n] == P[n] ^ C[n-2]
j .Lcts_decrypt_finish\@
.Lcts_decrypt_non_block_aligned\@:
// Decrypt the last two blocks using ciphertext stealing as follows:
//
// P[n-1] = Decrypt(C[n] || Decrypt(C[n-1])[LEN_MOD16..16]) ^ C[n-2]
// P[n] = (Decrypt(C[n-1]) ^ C[n])[0..LEN_MOD16]
//
// We already have Decrypt(C[n-1]) in v20 and C[n-2] in v28.
vmv.v.v v16, v20 // v16 = Decrypt(C[n-1])
vsetvli zero, LEN_MOD16, e8, m1, tu, ma
vle8.v v20, (INP) // v20 = C[n] || Decrypt(C[n-1])[LEN_MOD16..16]
vxor.vv v16, v16, v20 // v16 = Decrypt(C[n-1]) ^ C[n]
vse8.v v16, (OUTP) // Store P[n]
vsetivli zero, 4, e32, m1, ta, ma
aes_decrypt v20, \keylen // v20 = Decrypt(C[n] || Decrypt(C[n-1])[LEN_MOD16..16])
.Lcts_decrypt_finish\@:
vxor.vv v20, v20, v28 // XOR with C[n-2]
vse32.v v20, (t0) // Store last full plaintext block
.Lcts_decrypt_done\@:
ret
.endm
.macro aes_cbc_cts_crypt keylen
vle32.v v16, (IVP) // Load IV
beqz a5, .Lcts_decrypt\@
aes_cbc_cts_encrypt \keylen
.Lcts_decrypt\@:
aes_cbc_cts_decrypt \keylen
.endm
// void aes_cbc_cts_crypt_zvkned(const struct crypto_aes_ctx *key,
// const u8 *in, u8 *out, size_t len,
// const u8 iv[16], bool enc);
//
// Encrypts or decrypts a message with the CS3 variant of AES-CBC-CTS.
// This is the variant that unconditionally swaps the last two blocks.
SYM_FUNC_START(aes_cbc_cts_crypt_zvkned)
aes_begin KEYP, 128f, 192f
aes_cbc_cts_crypt 256
128:
aes_cbc_cts_crypt 128
192:
aes_cbc_cts_crypt 192
SYM_FUNC_END(aes_cbc_cts_crypt_zvkned)