| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * POLYVAL: hash function for HCTR2. |
| * |
| * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi> |
| * Copyright (c) 2009 Intel Corp. |
| * Author: Huang Ying <ying.huang@intel.com> |
| * Copyright 2021 Google LLC |
| */ |
| |
| /* |
| * Code based on crypto/ghash-generic.c |
| * |
| * POLYVAL is a keyed hash function similar to GHASH. POLYVAL uses a different |
| * modulus for finite field multiplication which makes hardware accelerated |
| * implementations on little-endian machines faster. POLYVAL is used in the |
| * kernel to implement HCTR2, but was originally specified for AES-GCM-SIV |
| * (RFC 8452). |
| * |
| * For more information see: |
| * Length-preserving encryption with HCTR2: |
| * https://eprint.iacr.org/2021/1441.pdf |
| * AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption: |
| * https://datatracker.ietf.org/doc/html/rfc8452 |
| * |
| * Like GHASH, POLYVAL is not a cryptographic hash function and should |
| * not be used outside of crypto modes explicitly designed to use POLYVAL. |
| * |
| * This implementation uses a convenient trick involving the GHASH and POLYVAL |
| * fields. This trick allows multiplication in the POLYVAL field to be |
| * implemented by using multiplication in the GHASH field as a subroutine. An |
| * element of the POLYVAL field can be converted to an element of the GHASH |
| * field by computing x*REVERSE(a), where REVERSE reverses the byte-ordering of |
| * a. Similarly, an element of the GHASH field can be converted back to the |
| * POLYVAL field by computing REVERSE(x^{-1}*a). For more information, see: |
| * https://datatracker.ietf.org/doc/html/rfc8452#appendix-A |
| * |
| * By using this trick, we do not need to implement the POLYVAL field for the |
| * generic implementation. |
| * |
| * Warning: this generic implementation is not intended to be used in practice |
| * and is not constant time. For practical use, a hardware accelerated |
| * implementation of POLYVAL should be used instead. |
| * |
| */ |
| |
| #include <linux/unaligned.h> |
| #include <crypto/algapi.h> |
| #include <crypto/gf128mul.h> |
| #include <crypto/polyval.h> |
| #include <crypto/internal/hash.h> |
| #include <linux/crypto.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| |
| struct polyval_tfm_ctx { |
| struct gf128mul_4k *gf128; |
| }; |
| |
| struct polyval_desc_ctx { |
| union { |
| u8 buffer[POLYVAL_BLOCK_SIZE]; |
| be128 buffer128; |
| }; |
| u32 bytes; |
| }; |
| |
| static void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE], |
| const u8 src[POLYVAL_BLOCK_SIZE]) |
| { |
| u64 a = get_unaligned((const u64 *)&src[0]); |
| u64 b = get_unaligned((const u64 *)&src[8]); |
| |
| put_unaligned(swab64(a), (u64 *)&dst[8]); |
| put_unaligned(swab64(b), (u64 *)&dst[0]); |
| } |
| |
| /* |
| * Performs multiplication in the POLYVAL field using the GHASH field as a |
| * subroutine. This function is used as a fallback for hardware accelerated |
| * implementations when simd registers are unavailable. |
| * |
| * Note: This function is not used for polyval-generic, instead we use the 4k |
| * lookup table implementation for finite field multiplication. |
| */ |
| void polyval_mul_non4k(u8 *op1, const u8 *op2) |
| { |
| be128 a, b; |
| |
| // Assume one argument is in Montgomery form and one is not. |
| copy_and_reverse((u8 *)&a, op1); |
| copy_and_reverse((u8 *)&b, op2); |
| gf128mul_x_lle(&a, &a); |
| gf128mul_lle(&a, &b); |
| copy_and_reverse(op1, (u8 *)&a); |
| } |
| EXPORT_SYMBOL_GPL(polyval_mul_non4k); |
| |
| /* |
| * Perform a POLYVAL update using non4k multiplication. This function is used |
| * as a fallback for hardware accelerated implementations when simd registers |
| * are unavailable. |
| * |
| * Note: This function is not used for polyval-generic, instead we use the 4k |
| * lookup table implementation of finite field multiplication. |
| */ |
| void polyval_update_non4k(const u8 *key, const u8 *in, |
| size_t nblocks, u8 *accumulator) |
| { |
| while (nblocks--) { |
| crypto_xor(accumulator, in, POLYVAL_BLOCK_SIZE); |
| polyval_mul_non4k(accumulator, key); |
| in += POLYVAL_BLOCK_SIZE; |
| } |
| } |
| EXPORT_SYMBOL_GPL(polyval_update_non4k); |
| |
| static int polyval_setkey(struct crypto_shash *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| struct polyval_tfm_ctx *ctx = crypto_shash_ctx(tfm); |
| be128 k; |
| |
| if (keylen != POLYVAL_BLOCK_SIZE) |
| return -EINVAL; |
| |
| gf128mul_free_4k(ctx->gf128); |
| |
| BUILD_BUG_ON(sizeof(k) != POLYVAL_BLOCK_SIZE); |
| copy_and_reverse((u8 *)&k, key); |
| gf128mul_x_lle(&k, &k); |
| |
| ctx->gf128 = gf128mul_init_4k_lle(&k); |
| memzero_explicit(&k, POLYVAL_BLOCK_SIZE); |
| |
| if (!ctx->gf128) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int polyval_init(struct shash_desc *desc) |
| { |
| struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); |
| |
| memset(dctx, 0, sizeof(*dctx)); |
| |
| return 0; |
| } |
| |
| static int polyval_update(struct shash_desc *desc, |
| const u8 *src, unsigned int srclen) |
| { |
| struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); |
| const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); |
| u8 *pos; |
| u8 tmp[POLYVAL_BLOCK_SIZE]; |
| int n; |
| |
| if (dctx->bytes) { |
| n = min(srclen, dctx->bytes); |
| pos = dctx->buffer + dctx->bytes - 1; |
| |
| dctx->bytes -= n; |
| srclen -= n; |
| |
| while (n--) |
| *pos-- ^= *src++; |
| |
| if (!dctx->bytes) |
| gf128mul_4k_lle(&dctx->buffer128, ctx->gf128); |
| } |
| |
| while (srclen >= POLYVAL_BLOCK_SIZE) { |
| copy_and_reverse(tmp, src); |
| crypto_xor(dctx->buffer, tmp, POLYVAL_BLOCK_SIZE); |
| gf128mul_4k_lle(&dctx->buffer128, ctx->gf128); |
| src += POLYVAL_BLOCK_SIZE; |
| srclen -= POLYVAL_BLOCK_SIZE; |
| } |
| |
| if (srclen) { |
| dctx->bytes = POLYVAL_BLOCK_SIZE - srclen; |
| pos = dctx->buffer + POLYVAL_BLOCK_SIZE - 1; |
| while (srclen--) |
| *pos-- ^= *src++; |
| } |
| |
| return 0; |
| } |
| |
| static int polyval_final(struct shash_desc *desc, u8 *dst) |
| { |
| struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); |
| const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); |
| |
| if (dctx->bytes) |
| gf128mul_4k_lle(&dctx->buffer128, ctx->gf128); |
| copy_and_reverse(dst, dctx->buffer); |
| return 0; |
| } |
| |
| static void polyval_exit_tfm(struct crypto_tfm *tfm) |
| { |
| struct polyval_tfm_ctx *ctx = crypto_tfm_ctx(tfm); |
| |
| gf128mul_free_4k(ctx->gf128); |
| } |
| |
| static struct shash_alg polyval_alg = { |
| .digestsize = POLYVAL_DIGEST_SIZE, |
| .init = polyval_init, |
| .update = polyval_update, |
| .final = polyval_final, |
| .setkey = polyval_setkey, |
| .descsize = sizeof(struct polyval_desc_ctx), |
| .base = { |
| .cra_name = "polyval", |
| .cra_driver_name = "polyval-generic", |
| .cra_priority = 100, |
| .cra_blocksize = POLYVAL_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct polyval_tfm_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_exit = polyval_exit_tfm, |
| }, |
| }; |
| |
| static int __init polyval_mod_init(void) |
| { |
| return crypto_register_shash(&polyval_alg); |
| } |
| |
| static void __exit polyval_mod_exit(void) |
| { |
| crypto_unregister_shash(&polyval_alg); |
| } |
| |
| subsys_initcall(polyval_mod_init); |
| module_exit(polyval_mod_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("POLYVAL hash function"); |
| MODULE_ALIAS_CRYPTO("polyval"); |
| MODULE_ALIAS_CRYPTO("polyval-generic"); |