| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> |
| */ |
| |
| #include <linux/bug.h> |
| #include <linux/completion.h> |
| #include <linux/crc-itu-t.h> |
| #include <linux/device.h> |
| #include <linux/errno.h> |
| #include <linux/firewire.h> |
| #include <linux/firewire-constants.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/kref.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/spinlock.h> |
| #include <linux/workqueue.h> |
| |
| #include <linux/atomic.h> |
| #include <asm/byteorder.h> |
| |
| #include "core.h" |
| #include <trace/events/firewire.h> |
| |
| #define define_fw_printk_level(func, kern_level) \ |
| void func(const struct fw_card *card, const char *fmt, ...) \ |
| { \ |
| struct va_format vaf; \ |
| va_list args; \ |
| \ |
| va_start(args, fmt); \ |
| vaf.fmt = fmt; \ |
| vaf.va = &args; \ |
| printk(kern_level KBUILD_MODNAME " %s: %pV", \ |
| dev_name(card->device), &vaf); \ |
| va_end(args); \ |
| } |
| define_fw_printk_level(fw_err, KERN_ERR); |
| define_fw_printk_level(fw_notice, KERN_NOTICE); |
| |
| int fw_compute_block_crc(__be32 *block) |
| { |
| int length; |
| u16 crc; |
| |
| length = (be32_to_cpu(block[0]) >> 16) & 0xff; |
| crc = crc_itu_t(0, (u8 *)&block[1], length * 4); |
| *block |= cpu_to_be32(crc); |
| |
| return length; |
| } |
| |
| static DEFINE_MUTEX(card_mutex); |
| static LIST_HEAD(card_list); |
| |
| static LIST_HEAD(descriptor_list); |
| static int descriptor_count; |
| |
| static __be32 tmp_config_rom[256]; |
| /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */ |
| static size_t config_rom_length = 1 + 4 + 1 + 1; |
| |
| #define BIB_CRC(v) ((v) << 0) |
| #define BIB_CRC_LENGTH(v) ((v) << 16) |
| #define BIB_INFO_LENGTH(v) ((v) << 24) |
| #define BIB_BUS_NAME 0x31333934 /* "1394" */ |
| #define BIB_LINK_SPEED(v) ((v) << 0) |
| #define BIB_GENERATION(v) ((v) << 4) |
| #define BIB_MAX_ROM(v) ((v) << 8) |
| #define BIB_MAX_RECEIVE(v) ((v) << 12) |
| #define BIB_CYC_CLK_ACC(v) ((v) << 16) |
| #define BIB_PMC ((1) << 27) |
| #define BIB_BMC ((1) << 28) |
| #define BIB_ISC ((1) << 29) |
| #define BIB_CMC ((1) << 30) |
| #define BIB_IRMC ((1) << 31) |
| #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */ |
| |
| /* |
| * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms), |
| * but we have to make it longer because there are many devices whose firmware |
| * is just too slow for that. |
| */ |
| #define DEFAULT_SPLIT_TIMEOUT (2 * 8000) |
| |
| static void generate_config_rom(struct fw_card *card, __be32 *config_rom) |
| { |
| struct fw_descriptor *desc; |
| int i, j, k, length; |
| |
| /* |
| * Initialize contents of config rom buffer. On the OHCI |
| * controller, block reads to the config rom accesses the host |
| * memory, but quadlet read access the hardware bus info block |
| * registers. That's just crack, but it means we should make |
| * sure the contents of bus info block in host memory matches |
| * the version stored in the OHCI registers. |
| */ |
| |
| config_rom[0] = cpu_to_be32( |
| BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0)); |
| config_rom[1] = cpu_to_be32(BIB_BUS_NAME); |
| config_rom[2] = cpu_to_be32( |
| BIB_LINK_SPEED(card->link_speed) | |
| BIB_GENERATION(card->config_rom_generation++ % 14 + 2) | |
| BIB_MAX_ROM(2) | |
| BIB_MAX_RECEIVE(card->max_receive) | |
| BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC); |
| config_rom[3] = cpu_to_be32(card->guid >> 32); |
| config_rom[4] = cpu_to_be32(card->guid); |
| |
| /* Generate root directory. */ |
| config_rom[6] = cpu_to_be32(NODE_CAPABILITIES); |
| i = 7; |
| j = 7 + descriptor_count; |
| |
| /* Generate root directory entries for descriptors. */ |
| list_for_each_entry (desc, &descriptor_list, link) { |
| if (desc->immediate > 0) |
| config_rom[i++] = cpu_to_be32(desc->immediate); |
| config_rom[i] = cpu_to_be32(desc->key | (j - i)); |
| i++; |
| j += desc->length; |
| } |
| |
| /* Update root directory length. */ |
| config_rom[5] = cpu_to_be32((i - 5 - 1) << 16); |
| |
| /* End of root directory, now copy in descriptors. */ |
| list_for_each_entry (desc, &descriptor_list, link) { |
| for (k = 0; k < desc->length; k++) |
| config_rom[i + k] = cpu_to_be32(desc->data[k]); |
| i += desc->length; |
| } |
| |
| /* Calculate CRCs for all blocks in the config rom. This |
| * assumes that CRC length and info length are identical for |
| * the bus info block, which is always the case for this |
| * implementation. */ |
| for (i = 0; i < j; i += length + 1) |
| length = fw_compute_block_crc(config_rom + i); |
| |
| WARN_ON(j != config_rom_length); |
| } |
| |
| static void update_config_roms(void) |
| { |
| struct fw_card *card; |
| |
| list_for_each_entry (card, &card_list, link) { |
| generate_config_rom(card, tmp_config_rom); |
| card->driver->set_config_rom(card, tmp_config_rom, |
| config_rom_length); |
| } |
| } |
| |
| static size_t required_space(struct fw_descriptor *desc) |
| { |
| /* descriptor + entry into root dir + optional immediate entry */ |
| return desc->length + 1 + (desc->immediate > 0 ? 1 : 0); |
| } |
| |
| int fw_core_add_descriptor(struct fw_descriptor *desc) |
| { |
| size_t i; |
| |
| /* |
| * Check descriptor is valid; the length of all blocks in the |
| * descriptor has to add up to exactly the length of the |
| * block. |
| */ |
| i = 0; |
| while (i < desc->length) |
| i += (desc->data[i] >> 16) + 1; |
| |
| if (i != desc->length) |
| return -EINVAL; |
| |
| guard(mutex)(&card_mutex); |
| |
| if (config_rom_length + required_space(desc) > 256) |
| return -EBUSY; |
| |
| list_add_tail(&desc->link, &descriptor_list); |
| config_rom_length += required_space(desc); |
| descriptor_count++; |
| if (desc->immediate > 0) |
| descriptor_count++; |
| update_config_roms(); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(fw_core_add_descriptor); |
| |
| void fw_core_remove_descriptor(struct fw_descriptor *desc) |
| { |
| guard(mutex)(&card_mutex); |
| |
| list_del(&desc->link); |
| config_rom_length -= required_space(desc); |
| descriptor_count--; |
| if (desc->immediate > 0) |
| descriptor_count--; |
| update_config_roms(); |
| } |
| EXPORT_SYMBOL(fw_core_remove_descriptor); |
| |
| static int reset_bus(struct fw_card *card, bool short_reset) |
| { |
| int reg = short_reset ? 5 : 1; |
| int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET; |
| |
| trace_bus_reset_initiate(card->index, card->generation, short_reset); |
| |
| return card->driver->update_phy_reg(card, reg, 0, bit); |
| } |
| |
| void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset) |
| { |
| trace_bus_reset_schedule(card->index, card->generation, short_reset); |
| |
| /* We don't try hard to sort out requests of long vs. short resets. */ |
| card->br_short = short_reset; |
| |
| /* Use an arbitrary short delay to combine multiple reset requests. */ |
| fw_card_get(card); |
| if (!queue_delayed_work(fw_workqueue, &card->br_work, delayed ? msecs_to_jiffies(10) : 0)) |
| fw_card_put(card); |
| } |
| EXPORT_SYMBOL(fw_schedule_bus_reset); |
| |
| static void br_work(struct work_struct *work) |
| { |
| struct fw_card *card = from_work(card, work, br_work.work); |
| |
| /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */ |
| if (card->reset_jiffies != 0 && |
| time_is_after_jiffies64(card->reset_jiffies + secs_to_jiffies(2))) { |
| trace_bus_reset_postpone(card->index, card->generation, card->br_short); |
| |
| if (!queue_delayed_work(fw_workqueue, &card->br_work, secs_to_jiffies(2))) |
| fw_card_put(card); |
| return; |
| } |
| |
| fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation, |
| FW_PHY_CONFIG_CURRENT_GAP_COUNT); |
| reset_bus(card, card->br_short); |
| fw_card_put(card); |
| } |
| |
| static void allocate_broadcast_channel(struct fw_card *card, int generation) |
| { |
| int channel, bandwidth = 0; |
| |
| if (!card->broadcast_channel_allocated) { |
| fw_iso_resource_manage(card, generation, 1ULL << 31, |
| &channel, &bandwidth, true); |
| if (channel != 31) { |
| fw_notice(card, "failed to allocate broadcast channel\n"); |
| return; |
| } |
| card->broadcast_channel_allocated = true; |
| } |
| |
| device_for_each_child(card->device, (void *)(long)generation, |
| fw_device_set_broadcast_channel); |
| } |
| |
| void fw_schedule_bm_work(struct fw_card *card, unsigned long delay) |
| { |
| fw_card_get(card); |
| if (!schedule_delayed_work(&card->bm_work, delay)) |
| fw_card_put(card); |
| } |
| |
| enum bm_contention_outcome { |
| // The bus management contention window is not expired. |
| BM_CONTENTION_OUTCOME_WITHIN_WINDOW = 0, |
| // The IRM node has link off. |
| BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF, |
| // The IRM node complies IEEE 1394:1994 only. |
| BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY, |
| // Another bus reset, BM work has been rescheduled. |
| BM_CONTENTION_OUTCOME_AT_NEW_GENERATION, |
| // We have been unable to send the lock request to IRM node due to some local problem. |
| BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION, |
| // The lock request failed, maybe the IRM isn't really IRM capable after all. |
| BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM, |
| // Somebody else is BM. |
| BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM, |
| // The local node succeeds after contending for bus manager. |
| BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM, |
| }; |
| |
| static enum bm_contention_outcome contend_for_bm(struct fw_card *card) |
| __must_hold(&card->lock) |
| { |
| int generation = card->generation; |
| int local_id = card->local_node->node_id; |
| __be32 data[2] = { |
| cpu_to_be32(BUS_MANAGER_ID_NOT_REGISTERED), |
| cpu_to_be32(local_id), |
| }; |
| bool grace = time_is_before_jiffies64(card->reset_jiffies + msecs_to_jiffies(125)); |
| struct fw_node *irm_node; |
| struct fw_device *irm_device; |
| int irm_node_id, irm_device_quirks = 0; |
| int rcode; |
| |
| lockdep_assert_held(&card->lock); |
| |
| if (!grace) { |
| if (!is_next_generation(generation, card->bm_generation) || card->bm_abdicate) |
| return BM_CONTENTION_OUTCOME_WITHIN_WINDOW; |
| } |
| |
| irm_node = card->irm_node; |
| if (!irm_node->link_on) { |
| fw_notice(card, "IRM has link off, making local node (%02x) root\n", local_id); |
| return BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF; |
| } |
| |
| // NOTE: It is likely that the quirk detection for IRM device has not done yet. |
| irm_device = fw_node_get_device(irm_node); |
| if (irm_device) |
| irm_device_quirks = READ_ONCE(irm_device->quirks); |
| if ((irm_device_quirks & FW_DEVICE_QUIRK_IRM_IS_1394_1995_ONLY) && |
| !(irm_device_quirks & FW_DEVICE_QUIRK_IRM_IGNORES_BUS_MANAGER)) { |
| fw_notice(card, "IRM is not 1394a compliant, making local node (%02x) root\n", |
| local_id); |
| return BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY; |
| } |
| |
| irm_node_id = irm_node->node_id; |
| |
| spin_unlock_irq(&card->lock); |
| |
| rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, irm_node_id, generation, |
| SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, data, |
| sizeof(data)); |
| |
| spin_lock_irq(&card->lock); |
| |
| switch (rcode) { |
| case RCODE_GENERATION: |
| return BM_CONTENTION_OUTCOME_AT_NEW_GENERATION; |
| case RCODE_SEND_ERROR: |
| return BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION; |
| case RCODE_COMPLETE: |
| { |
| int bm_id = be32_to_cpu(data[0]); |
| |
| // Used by cdev layer for "struct fw_cdev_event_bus_reset". |
| if (bm_id != BUS_MANAGER_ID_NOT_REGISTERED) |
| card->bm_node_id = 0xffc0 & bm_id; |
| else |
| card->bm_node_id = local_id; |
| |
| if (bm_id != BUS_MANAGER_ID_NOT_REGISTERED) |
| return BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM; |
| else |
| return BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM; |
| } |
| default: |
| if (!(irm_device_quirks & FW_DEVICE_QUIRK_IRM_IGNORES_BUS_MANAGER)) { |
| fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n", |
| fw_rcode_string(rcode), local_id); |
| return BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY; |
| } else { |
| return BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM; |
| } |
| } |
| } |
| |
| DEFINE_FREE(node_unref, struct fw_node *, if (_T) fw_node_put(_T)) |
| DEFINE_FREE(card_unref, struct fw_card *, if (_T) fw_card_put(_T)) |
| |
| static void bm_work(struct work_struct *work) |
| { |
| static const char gap_count_table[] = { |
| 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40 |
| }; |
| struct fw_card *card __free(card_unref) = from_work(card, work, bm_work.work); |
| struct fw_node *root_node __free(node_unref) = NULL; |
| int root_id, new_root_id, irm_id, local_id; |
| int expected_gap_count, generation; |
| bool stand_for_root = false; |
| |
| spin_lock_irq(&card->lock); |
| |
| if (card->local_node == NULL) { |
| spin_unlock_irq(&card->lock); |
| return; |
| } |
| |
| generation = card->generation; |
| |
| root_node = fw_node_get(card->root_node); |
| |
| root_id = root_node->node_id; |
| irm_id = card->irm_node->node_id; |
| local_id = card->local_node->node_id; |
| |
| if (card->bm_generation != generation) { |
| enum bm_contention_outcome result = contend_for_bm(card); |
| |
| switch (result) { |
| case BM_CONTENTION_OUTCOME_WITHIN_WINDOW: |
| spin_unlock_irq(&card->lock); |
| fw_schedule_bm_work(card, msecs_to_jiffies(125)); |
| return; |
| case BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF: |
| stand_for_root = true; |
| break; |
| case BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY: |
| stand_for_root = true; |
| break; |
| case BM_CONTENTION_OUTCOME_AT_NEW_GENERATION: |
| // BM work has been rescheduled. |
| spin_unlock_irq(&card->lock); |
| return; |
| case BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION: |
| // Let's try again later and hope that the local problem has gone away by |
| // then. |
| spin_unlock_irq(&card->lock); |
| fw_schedule_bm_work(card, msecs_to_jiffies(125)); |
| return; |
| case BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM: |
| // Let's do a bus reset and pick the local node as root, and thus, IRM. |
| stand_for_root = true; |
| break; |
| case BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM: |
| if (local_id == irm_id) { |
| // Only acts as IRM. |
| spin_unlock_irq(&card->lock); |
| allocate_broadcast_channel(card, generation); |
| spin_lock_irq(&card->lock); |
| } |
| fallthrough; |
| case BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM: |
| default: |
| card->bm_generation = generation; |
| break; |
| } |
| } |
| |
| // We're bus manager for this generation, so next step is to make sure we have an active |
| // cycle master and do gap count optimization. |
| if (!stand_for_root) { |
| if (card->gap_count == GAP_COUNT_MISMATCHED) { |
| // If self IDs have inconsistent gap counts, do a |
| // bus reset ASAP. The config rom read might never |
| // complete, so don't wait for it. However, still |
| // send a PHY configuration packet prior to the |
| // bus reset. The PHY configuration packet might |
| // fail, but 1394-2008 8.4.5.2 explicitly permits |
| // it in this case, so it should be safe to try. |
| stand_for_root = true; |
| |
| // We must always send a bus reset if the gap count |
| // is inconsistent, so bypass the 5-reset limit. |
| card->bm_retries = 0; |
| } else { |
| // Now investigate root node. |
| struct fw_device *root_device = fw_node_get_device(root_node); |
| |
| if (root_device == NULL) { |
| // Either link_on is false, or we failed to read the |
| // config rom. In either case, pick another root. |
| stand_for_root = true; |
| } else { |
| bool root_device_is_running = |
| atomic_read(&root_device->state) == FW_DEVICE_RUNNING; |
| |
| if (!root_device_is_running) { |
| // If we haven't probed this device yet, bail out now |
| // and let's try again once that's done. |
| spin_unlock_irq(&card->lock); |
| return; |
| } else if (!root_device->cmc) { |
| // Current root has an active link layer and we |
| // successfully read the config rom, but it's not |
| // cycle master capable. |
| stand_for_root = true; |
| } |
| } |
| } |
| } |
| |
| if (stand_for_root) { |
| new_root_id = local_id; |
| } else { |
| // We will send out a force root packet for this node as part of the gap count |
| // optimization on behalf of the node. |
| new_root_id = root_id; |
| } |
| |
| /* |
| * Pick a gap count from 1394a table E-1. The table doesn't cover |
| * the typically much larger 1394b beta repeater delays though. |
| */ |
| if (!card->beta_repeaters_present && |
| root_node->max_hops < ARRAY_SIZE(gap_count_table)) |
| expected_gap_count = gap_count_table[root_node->max_hops]; |
| else |
| expected_gap_count = 63; |
| |
| // Finally, figure out if we should do a reset or not. If we have done less than 5 resets |
| // with the same physical topology and we have either a new root or a new gap count |
| // setting, let's do it. |
| if (card->bm_retries++ < 5 && (card->gap_count != expected_gap_count || new_root_id != root_id)) { |
| int card_gap_count = card->gap_count; |
| |
| spin_unlock_irq(&card->lock); |
| |
| fw_notice(card, "phy config: new root=%x, gap_count=%d\n", |
| new_root_id, expected_gap_count); |
| fw_send_phy_config(card, new_root_id, generation, expected_gap_count); |
| /* |
| * Where possible, use a short bus reset to minimize |
| * disruption to isochronous transfers. But in the event |
| * of a gap count inconsistency, use a long bus reset. |
| * |
| * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus |
| * may set different gap counts after a bus reset. On a mixed |
| * 1394/1394a bus, a short bus reset can get doubled. Some |
| * nodes may treat the double reset as one bus reset and others |
| * may treat it as two, causing a gap count inconsistency |
| * again. Using a long bus reset prevents this. |
| */ |
| reset_bus(card, card_gap_count != 0); |
| /* Will allocate broadcast channel after the reset. */ |
| } else { |
| struct fw_device *root_device = fw_node_get_device(root_node); |
| |
| spin_unlock_irq(&card->lock); |
| |
| if (root_device && root_device->cmc) { |
| // Make sure that the cycle master sends cycle start packets. |
| __be32 data = cpu_to_be32(CSR_STATE_BIT_CMSTR); |
| int rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST, |
| root_id, generation, SCODE_100, |
| CSR_REGISTER_BASE + CSR_STATE_SET, |
| &data, sizeof(data)); |
| if (rcode == RCODE_GENERATION) |
| return; |
| } |
| |
| if (local_id == irm_id) |
| allocate_broadcast_channel(card, generation); |
| } |
| } |
| |
| void fw_card_initialize(struct fw_card *card, |
| const struct fw_card_driver *driver, |
| struct device *device) |
| { |
| static atomic_t index = ATOMIC_INIT(-1); |
| |
| card->index = atomic_inc_return(&index); |
| card->driver = driver; |
| card->device = device; |
| |
| card->transactions.current_tlabel = 0; |
| card->transactions.tlabel_mask = 0; |
| INIT_LIST_HEAD(&card->transactions.list); |
| spin_lock_init(&card->transactions.lock); |
| |
| spin_lock_init(&card->topology_map.lock); |
| |
| card->split_timeout.hi = DEFAULT_SPLIT_TIMEOUT / 8000; |
| card->split_timeout.lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19; |
| card->split_timeout.cycles = DEFAULT_SPLIT_TIMEOUT; |
| card->split_timeout.jiffies = isoc_cycles_to_jiffies(DEFAULT_SPLIT_TIMEOUT); |
| spin_lock_init(&card->split_timeout.lock); |
| |
| card->color = 0; |
| card->broadcast_channel = BROADCAST_CHANNEL_INITIAL; |
| |
| kref_init(&card->kref); |
| init_completion(&card->done); |
| |
| spin_lock_init(&card->lock); |
| |
| card->local_node = NULL; |
| |
| INIT_DELAYED_WORK(&card->br_work, br_work); |
| INIT_DELAYED_WORK(&card->bm_work, bm_work); |
| } |
| EXPORT_SYMBOL(fw_card_initialize); |
| |
| DEFINE_FREE(workqueue_destroy, struct workqueue_struct *, if (_T) destroy_workqueue(_T)) |
| |
| int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid, |
| unsigned int supported_isoc_contexts) |
| { |
| struct workqueue_struct *isoc_wq __free(workqueue_destroy) = NULL; |
| struct workqueue_struct *async_wq __free(workqueue_destroy) = NULL; |
| int ret; |
| |
| // This workqueue should be: |
| // * != WQ_BH Sleepable. |
| // * == WQ_UNBOUND Any core can process data for isoc context. The |
| // implementation of unit protocol could consumes the core |
| // longer somehow. |
| // * != WQ_MEM_RECLAIM Not used for any backend of block device. |
| // * == WQ_FREEZABLE Isochronous communication is at regular interval in real |
| // time, thus should be drained if possible at freeze phase. |
| // * == WQ_HIGHPRI High priority to process semi-realtime timestamped data. |
| // * == WQ_SYSFS Parameters are available via sysfs. |
| // * max_active == n_it + n_ir A hardIRQ could notify events for multiple isochronous |
| // contexts if they are scheduled to the same cycle. |
| isoc_wq = alloc_workqueue("firewire-isoc-card%u", |
| WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS, |
| supported_isoc_contexts, card->index); |
| if (!isoc_wq) |
| return -ENOMEM; |
| |
| // This workqueue should be: |
| // * != WQ_BH Sleepable. |
| // * == WQ_UNBOUND Any core can process data for asynchronous context. |
| // * == WQ_MEM_RECLAIM Used for any backend of block device. |
| // * == WQ_FREEZABLE The target device would not be available when being freezed. |
| // * == WQ_HIGHPRI High priority to process semi-realtime timestamped data. |
| // * == WQ_SYSFS Parameters are available via sysfs. |
| // * max_active == 4 A hardIRQ could notify events for a pair of requests and |
| // response AR/AT contexts. |
| async_wq = alloc_workqueue("firewire-async-card%u", |
| WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS, |
| 4, card->index); |
| if (!async_wq) |
| return -ENOMEM; |
| |
| card->isoc_wq = isoc_wq; |
| card->async_wq = async_wq; |
| card->max_receive = max_receive; |
| card->link_speed = link_speed; |
| card->guid = guid; |
| |
| scoped_guard(mutex, &card_mutex) { |
| generate_config_rom(card, tmp_config_rom); |
| ret = card->driver->enable(card, tmp_config_rom, config_rom_length); |
| if (ret < 0) { |
| card->isoc_wq = NULL; |
| card->async_wq = NULL; |
| return ret; |
| } |
| retain_and_null_ptr(isoc_wq); |
| retain_and_null_ptr(async_wq); |
| |
| list_add_tail(&card->link, &card_list); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(fw_card_add); |
| |
| /* |
| * The next few functions implement a dummy driver that is used once a card |
| * driver shuts down an fw_card. This allows the driver to cleanly unload, |
| * as all IO to the card will be handled (and failed) by the dummy driver |
| * instead of calling into the module. Only functions for iso context |
| * shutdown still need to be provided by the card driver. |
| * |
| * .read/write_csr() should never be called anymore after the dummy driver |
| * was bound since they are only used within request handler context. |
| * .set_config_rom() is never called since the card is taken out of card_list |
| * before switching to the dummy driver. |
| */ |
| |
| static int dummy_read_phy_reg(struct fw_card *card, int address) |
| { |
| return -ENODEV; |
| } |
| |
| static int dummy_update_phy_reg(struct fw_card *card, int address, |
| int clear_bits, int set_bits) |
| { |
| return -ENODEV; |
| } |
| |
| static void dummy_send_request(struct fw_card *card, struct fw_packet *packet) |
| { |
| packet->callback(packet, card, RCODE_CANCELLED); |
| } |
| |
| static void dummy_send_response(struct fw_card *card, struct fw_packet *packet) |
| { |
| packet->callback(packet, card, RCODE_CANCELLED); |
| } |
| |
| static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet) |
| { |
| return -ENOENT; |
| } |
| |
| static int dummy_enable_phys_dma(struct fw_card *card, |
| int node_id, int generation) |
| { |
| return -ENODEV; |
| } |
| |
| static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card, |
| int type, int channel, size_t header_size) |
| { |
| return ERR_PTR(-ENODEV); |
| } |
| |
| static u32 dummy_read_csr(struct fw_card *card, int csr_offset) |
| { |
| return 0; |
| } |
| |
| static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value) |
| { |
| } |
| |
| static int dummy_start_iso(struct fw_iso_context *ctx, |
| s32 cycle, u32 sync, u32 tags) |
| { |
| return -ENODEV; |
| } |
| |
| static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels) |
| { |
| return -ENODEV; |
| } |
| |
| static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p, |
| struct fw_iso_buffer *buffer, unsigned long payload) |
| { |
| return -ENODEV; |
| } |
| |
| static void dummy_flush_queue_iso(struct fw_iso_context *ctx) |
| { |
| } |
| |
| static int dummy_flush_iso_completions(struct fw_iso_context *ctx) |
| { |
| return -ENODEV; |
| } |
| |
| static const struct fw_card_driver dummy_driver_template = { |
| .read_phy_reg = dummy_read_phy_reg, |
| .update_phy_reg = dummy_update_phy_reg, |
| .send_request = dummy_send_request, |
| .send_response = dummy_send_response, |
| .cancel_packet = dummy_cancel_packet, |
| .enable_phys_dma = dummy_enable_phys_dma, |
| .read_csr = dummy_read_csr, |
| .write_csr = dummy_write_csr, |
| .allocate_iso_context = dummy_allocate_iso_context, |
| .start_iso = dummy_start_iso, |
| .set_iso_channels = dummy_set_iso_channels, |
| .queue_iso = dummy_queue_iso, |
| .flush_queue_iso = dummy_flush_queue_iso, |
| .flush_iso_completions = dummy_flush_iso_completions, |
| }; |
| |
| void fw_card_release(struct kref *kref) |
| { |
| struct fw_card *card = container_of(kref, struct fw_card, kref); |
| |
| complete(&card->done); |
| } |
| EXPORT_SYMBOL_GPL(fw_card_release); |
| |
| void fw_core_remove_card(struct fw_card *card) |
| { |
| struct fw_card_driver dummy_driver = dummy_driver_template; |
| |
| might_sleep(); |
| |
| card->driver->update_phy_reg(card, 4, |
| PHY_LINK_ACTIVE | PHY_CONTENDER, 0); |
| fw_schedule_bus_reset(card, false, true); |
| |
| scoped_guard(mutex, &card_mutex) |
| list_del_init(&card->link); |
| |
| /* Switch off most of the card driver interface. */ |
| dummy_driver.free_iso_context = card->driver->free_iso_context; |
| dummy_driver.stop_iso = card->driver->stop_iso; |
| dummy_driver.disable = card->driver->disable; |
| card->driver = &dummy_driver; |
| |
| drain_workqueue(card->isoc_wq); |
| drain_workqueue(card->async_wq); |
| card->driver->disable(card); |
| fw_cancel_pending_transactions(card); |
| |
| scoped_guard(spinlock_irqsave, &card->lock) |
| fw_destroy_nodes(card); |
| |
| /* Wait for all users, especially device workqueue jobs, to finish. */ |
| fw_card_put(card); |
| wait_for_completion(&card->done); |
| |
| destroy_workqueue(card->isoc_wq); |
| destroy_workqueue(card->async_wq); |
| |
| WARN_ON(!list_empty(&card->transactions.list)); |
| } |
| EXPORT_SYMBOL(fw_core_remove_card); |
| |
| /** |
| * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region |
| * for controller card. |
| * @card: The instance of card for 1394 OHCI controller. |
| * @cycle_time: The mutual reference to value of cycle time for the read operation. |
| * |
| * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given |
| * controller card. This function accesses the region without any lock primitives or IRQ mask. |
| * When returning successfully, the content of @value argument has value aligned to host endianness, |
| * formetted by CYCLE_TIME CSR Register of IEEE 1394 std. |
| * |
| * Context: Any context. |
| * Return: |
| * * 0 - Read successfully. |
| * * -ENODEV - The controller is unavailable due to being removed or unbound. |
| */ |
| int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time) |
| { |
| if (card->driver->read_csr == dummy_read_csr) |
| return -ENODEV; |
| |
| // It's possible to switch to dummy driver between the above and the below. This is the best |
| // effort to return -ENODEV. |
| *cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(fw_card_read_cycle_time); |