blob: 2237715e42eb32a14a4134746739a0df5ca27414 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/libnvdimm.h>
#include <linux/sched/mm.h>
#include <linux/vmalloc.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/fcntl.h>
#include <linux/async.h>
#include <linux/ndctl.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/cpu.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/nd.h>
#include "nd-core.h"
#include "nd.h"
#include "pfn.h"
int nvdimm_major;
static int nvdimm_bus_major;
static DEFINE_IDA(nd_ida);
static const struct class nd_class = {
.name = "nd",
};
static int to_nd_device_type(const struct device *dev)
{
if (is_nvdimm(dev))
return ND_DEVICE_DIMM;
else if (is_memory(dev))
return ND_DEVICE_REGION_PMEM;
else if (is_nd_dax(dev))
return ND_DEVICE_DAX_PMEM;
else if (is_nd_region(dev->parent))
return nd_region_to_nstype(to_nd_region(dev->parent));
return 0;
}
static int nvdimm_bus_uevent(const struct device *dev, struct kobj_uevent_env *env)
{
return add_uevent_var(env, "MODALIAS=" ND_DEVICE_MODALIAS_FMT,
to_nd_device_type(dev));
}
static struct module *to_bus_provider(struct device *dev)
{
/* pin bus providers while regions are enabled */
if (is_nd_region(dev)) {
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
return nvdimm_bus->nd_desc->module;
}
return NULL;
}
static void nvdimm_bus_probe_start(struct nvdimm_bus *nvdimm_bus)
{
nvdimm_bus_lock(&nvdimm_bus->dev);
nvdimm_bus->probe_active++;
nvdimm_bus_unlock(&nvdimm_bus->dev);
}
static void nvdimm_bus_probe_end(struct nvdimm_bus *nvdimm_bus)
{
nvdimm_bus_lock(&nvdimm_bus->dev);
if (--nvdimm_bus->probe_active == 0)
wake_up(&nvdimm_bus->wait);
nvdimm_bus_unlock(&nvdimm_bus->dev);
}
static int nvdimm_bus_probe(struct device *dev)
{
struct nd_device_driver *nd_drv = to_nd_device_driver(dev->driver);
struct module *provider = to_bus_provider(dev);
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
int rc;
if (!try_module_get(provider))
return -ENXIO;
dev_dbg(&nvdimm_bus->dev, "START: %s.probe(%s)\n",
dev->driver->name, dev_name(dev));
nvdimm_bus_probe_start(nvdimm_bus);
rc = nd_drv->probe(dev);
if ((rc == 0 || rc == -EOPNOTSUPP) &&
dev->parent && is_nd_region(dev->parent))
nd_region_advance_seeds(to_nd_region(dev->parent), dev);
nvdimm_bus_probe_end(nvdimm_bus);
dev_dbg(&nvdimm_bus->dev, "END: %s.probe(%s) = %d\n", dev->driver->name,
dev_name(dev), rc);
if (rc != 0)
module_put(provider);
return rc;
}
static void nvdimm_bus_remove(struct device *dev)
{
struct nd_device_driver *nd_drv = to_nd_device_driver(dev->driver);
struct module *provider = to_bus_provider(dev);
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
if (nd_drv->remove)
nd_drv->remove(dev);
dev_dbg(&nvdimm_bus->dev, "%s.remove(%s)\n", dev->driver->name,
dev_name(dev));
module_put(provider);
}
static void nvdimm_bus_shutdown(struct device *dev)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
struct nd_device_driver *nd_drv = NULL;
if (dev->driver)
nd_drv = to_nd_device_driver(dev->driver);
if (nd_drv && nd_drv->shutdown) {
nd_drv->shutdown(dev);
dev_dbg(&nvdimm_bus->dev, "%s.shutdown(%s)\n",
dev->driver->name, dev_name(dev));
}
}
void nd_device_notify(struct device *dev, enum nvdimm_event event)
{
device_lock(dev);
if (dev->driver) {
struct nd_device_driver *nd_drv;
nd_drv = to_nd_device_driver(dev->driver);
if (nd_drv->notify)
nd_drv->notify(dev, event);
}
device_unlock(dev);
}
EXPORT_SYMBOL(nd_device_notify);
void nvdimm_region_notify(struct nd_region *nd_region, enum nvdimm_event event)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
if (!nvdimm_bus)
return;
/* caller is responsible for holding a reference on the device */
nd_device_notify(&nd_region->dev, event);
}
EXPORT_SYMBOL_GPL(nvdimm_region_notify);
struct clear_badblocks_context {
resource_size_t phys, cleared;
};
static int nvdimm_clear_badblocks_region(struct device *dev, void *data)
{
struct clear_badblocks_context *ctx = data;
struct nd_region *nd_region;
resource_size_t ndr_end;
sector_t sector;
/* make sure device is a region */
if (!is_memory(dev))
return 0;
nd_region = to_nd_region(dev);
ndr_end = nd_region->ndr_start + nd_region->ndr_size - 1;
/* make sure we are in the region */
if (ctx->phys < nd_region->ndr_start ||
(ctx->phys + ctx->cleared - 1) > ndr_end)
return 0;
sector = (ctx->phys - nd_region->ndr_start) / 512;
badblocks_clear(&nd_region->bb, sector, ctx->cleared / 512);
if (nd_region->bb_state)
sysfs_notify_dirent(nd_region->bb_state);
return 0;
}
static void nvdimm_clear_badblocks_regions(struct nvdimm_bus *nvdimm_bus,
phys_addr_t phys, u64 cleared)
{
struct clear_badblocks_context ctx = {
.phys = phys,
.cleared = cleared,
};
device_for_each_child(&nvdimm_bus->dev, &ctx,
nvdimm_clear_badblocks_region);
}
static void nvdimm_account_cleared_poison(struct nvdimm_bus *nvdimm_bus,
phys_addr_t phys, u64 cleared)
{
if (cleared > 0)
badrange_forget(&nvdimm_bus->badrange, phys, cleared);
if (cleared > 0 && cleared / 512)
nvdimm_clear_badblocks_regions(nvdimm_bus, phys, cleared);
}
long nvdimm_clear_poison(struct device *dev, phys_addr_t phys,
unsigned int len)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
struct nvdimm_bus_descriptor *nd_desc;
struct nd_cmd_clear_error clear_err;
struct nd_cmd_ars_cap ars_cap;
u32 clear_err_unit, mask;
unsigned int noio_flag;
int cmd_rc, rc;
if (!nvdimm_bus)
return -ENXIO;
nd_desc = nvdimm_bus->nd_desc;
/*
* if ndctl does not exist, it's PMEM_LEGACY and
* we want to just pretend everything is handled.
*/
if (!nd_desc->ndctl)
return len;
memset(&ars_cap, 0, sizeof(ars_cap));
ars_cap.address = phys;
ars_cap.length = len;
noio_flag = memalloc_noio_save();
rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, &ars_cap,
sizeof(ars_cap), &cmd_rc);
memalloc_noio_restore(noio_flag);
if (rc < 0)
return rc;
if (cmd_rc < 0)
return cmd_rc;
clear_err_unit = ars_cap.clear_err_unit;
if (!clear_err_unit || !is_power_of_2(clear_err_unit))
return -ENXIO;
mask = clear_err_unit - 1;
if ((phys | len) & mask)
return -ENXIO;
memset(&clear_err, 0, sizeof(clear_err));
clear_err.address = phys;
clear_err.length = len;
noio_flag = memalloc_noio_save();
rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_CLEAR_ERROR, &clear_err,
sizeof(clear_err), &cmd_rc);
memalloc_noio_restore(noio_flag);
if (rc < 0)
return rc;
if (cmd_rc < 0)
return cmd_rc;
nvdimm_account_cleared_poison(nvdimm_bus, phys, clear_err.cleared);
return clear_err.cleared;
}
EXPORT_SYMBOL_GPL(nvdimm_clear_poison);
static int nvdimm_bus_match(struct device *dev, const struct device_driver *drv);
static const struct bus_type nvdimm_bus_type = {
.name = "nd",
.uevent = nvdimm_bus_uevent,
.match = nvdimm_bus_match,
.probe = nvdimm_bus_probe,
.remove = nvdimm_bus_remove,
.shutdown = nvdimm_bus_shutdown,
};
static void nvdimm_bus_release(struct device *dev)
{
struct nvdimm_bus *nvdimm_bus;
nvdimm_bus = container_of(dev, struct nvdimm_bus, dev);
ida_free(&nd_ida, nvdimm_bus->id);
kfree(nvdimm_bus);
}
static const struct device_type nvdimm_bus_dev_type = {
.release = nvdimm_bus_release,
.groups = nvdimm_bus_attribute_groups,
};
bool is_nvdimm_bus(struct device *dev)
{
return dev->type == &nvdimm_bus_dev_type;
}
struct nvdimm_bus *walk_to_nvdimm_bus(struct device *nd_dev)
{
struct device *dev;
for (dev = nd_dev; dev; dev = dev->parent)
if (is_nvdimm_bus(dev))
break;
dev_WARN_ONCE(nd_dev, !dev, "invalid dev, not on nd bus\n");
if (dev)
return to_nvdimm_bus(dev);
return NULL;
}
struct nvdimm_bus *to_nvdimm_bus(struct device *dev)
{
struct nvdimm_bus *nvdimm_bus;
nvdimm_bus = container_of(dev, struct nvdimm_bus, dev);
WARN_ON(!is_nvdimm_bus(dev));
return nvdimm_bus;
}
EXPORT_SYMBOL_GPL(to_nvdimm_bus);
struct nvdimm_bus *nvdimm_to_bus(struct nvdimm *nvdimm)
{
return to_nvdimm_bus(nvdimm->dev.parent);
}
EXPORT_SYMBOL_GPL(nvdimm_to_bus);
static struct lock_class_key nvdimm_bus_key;
struct nvdimm_bus *nvdimm_bus_register(struct device *parent,
struct nvdimm_bus_descriptor *nd_desc)
{
struct nvdimm_bus *nvdimm_bus;
int rc;
nvdimm_bus = kzalloc(sizeof(*nvdimm_bus), GFP_KERNEL);
if (!nvdimm_bus)
return NULL;
INIT_LIST_HEAD(&nvdimm_bus->list);
INIT_LIST_HEAD(&nvdimm_bus->mapping_list);
init_waitqueue_head(&nvdimm_bus->wait);
nvdimm_bus->id = ida_alloc(&nd_ida, GFP_KERNEL);
if (nvdimm_bus->id < 0) {
kfree(nvdimm_bus);
return NULL;
}
mutex_init(&nvdimm_bus->reconfig_mutex);
badrange_init(&nvdimm_bus->badrange);
nvdimm_bus->nd_desc = nd_desc;
nvdimm_bus->dev.parent = parent;
nvdimm_bus->dev.type = &nvdimm_bus_dev_type;
nvdimm_bus->dev.groups = nd_desc->attr_groups;
nvdimm_bus->dev.bus = &nvdimm_bus_type;
nvdimm_bus->dev.of_node = nd_desc->of_node;
device_initialize(&nvdimm_bus->dev);
lockdep_set_class(&nvdimm_bus->dev.mutex, &nvdimm_bus_key);
device_set_pm_not_required(&nvdimm_bus->dev);
rc = dev_set_name(&nvdimm_bus->dev, "ndbus%d", nvdimm_bus->id);
if (rc)
goto err;
rc = device_add(&nvdimm_bus->dev);
if (rc) {
dev_dbg(&nvdimm_bus->dev, "registration failed: %d\n", rc);
goto err;
}
return nvdimm_bus;
err:
put_device(&nvdimm_bus->dev);
return NULL;
}
EXPORT_SYMBOL_GPL(nvdimm_bus_register);
void nvdimm_bus_unregister(struct nvdimm_bus *nvdimm_bus)
{
if (!nvdimm_bus)
return;
device_unregister(&nvdimm_bus->dev);
}
EXPORT_SYMBOL_GPL(nvdimm_bus_unregister);
static int child_unregister(struct device *dev, void *data)
{
/*
* the singular ndctl class device per bus needs to be
* "device_destroy"ed, so skip it here
*
* i.e. remove classless children
*/
if (dev->class)
return 0;
if (is_nvdimm(dev))
nvdimm_delete(to_nvdimm(dev));
else
nd_device_unregister(dev, ND_SYNC);
return 0;
}
static void free_badrange_list(struct list_head *badrange_list)
{
struct badrange_entry *bre, *next;
list_for_each_entry_safe(bre, next, badrange_list, list) {
list_del(&bre->list);
kfree(bre);
}
list_del_init(badrange_list);
}
static void nd_bus_remove(struct device *dev)
{
struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
mutex_lock(&nvdimm_bus_list_mutex);
list_del_init(&nvdimm_bus->list);
mutex_unlock(&nvdimm_bus_list_mutex);
wait_event(nvdimm_bus->wait,
atomic_read(&nvdimm_bus->ioctl_active) == 0);
nd_synchronize();
device_for_each_child(&nvdimm_bus->dev, NULL, child_unregister);
spin_lock(&nvdimm_bus->badrange.lock);
free_badrange_list(&nvdimm_bus->badrange.list);
spin_unlock(&nvdimm_bus->badrange.lock);
nvdimm_bus_destroy_ndctl(nvdimm_bus);
}
static int nd_bus_probe(struct device *dev)
{
struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
int rc;
rc = nvdimm_bus_create_ndctl(nvdimm_bus);
if (rc)
return rc;
mutex_lock(&nvdimm_bus_list_mutex);
list_add_tail(&nvdimm_bus->list, &nvdimm_bus_list);
mutex_unlock(&nvdimm_bus_list_mutex);
/* enable bus provider attributes to look up their local context */
dev_set_drvdata(dev, nvdimm_bus->nd_desc);
return 0;
}
static struct nd_device_driver nd_bus_driver = {
.probe = nd_bus_probe,
.remove = nd_bus_remove,
.drv = {
.name = "nd_bus",
.suppress_bind_attrs = true,
.bus = &nvdimm_bus_type,
.owner = THIS_MODULE,
.mod_name = KBUILD_MODNAME,
},
};
static int nvdimm_bus_match(struct device *dev, const struct device_driver *drv)
{
const struct nd_device_driver *nd_drv = to_nd_device_driver(drv);
if (is_nvdimm_bus(dev) && nd_drv == &nd_bus_driver)
return true;
return !!test_bit(to_nd_device_type(dev), &nd_drv->type);
}
static ASYNC_DOMAIN_EXCLUSIVE(nd_async_domain);
void nd_synchronize(void)
{
async_synchronize_full_domain(&nd_async_domain);
}
EXPORT_SYMBOL_GPL(nd_synchronize);
static void nd_async_device_register(void *d, async_cookie_t cookie)
{
struct device *dev = d;
if (device_add(dev) != 0) {
dev_err(dev, "%s: failed\n", __func__);
put_device(dev);
}
put_device(dev);
if (dev->parent)
put_device(dev->parent);
}
static void nd_async_device_unregister(void *d, async_cookie_t cookie)
{
struct device *dev = d;
/* flush bus operations before delete */
nvdimm_bus_lock(dev);
nvdimm_bus_unlock(dev);
device_unregister(dev);
put_device(dev);
}
static void __nd_device_register(struct device *dev, bool sync)
{
if (!dev)
return;
/*
* Ensure that region devices always have their NUMA node set as
* early as possible. This way we are able to make certain that
* any memory associated with the creation and the creation
* itself of the region is associated with the correct node.
*/
if (is_nd_region(dev))
set_dev_node(dev, to_nd_region(dev)->numa_node);
dev->bus = &nvdimm_bus_type;
device_set_pm_not_required(dev);
if (dev->parent) {
get_device(dev->parent);
if (dev_to_node(dev) == NUMA_NO_NODE)
set_dev_node(dev, dev_to_node(dev->parent));
}
get_device(dev);
if (sync)
nd_async_device_register(dev, 0);
else
async_schedule_dev_domain(nd_async_device_register, dev,
&nd_async_domain);
}
void nd_device_register(struct device *dev)
{
__nd_device_register(dev, false);
}
EXPORT_SYMBOL(nd_device_register);
void nd_device_register_sync(struct device *dev)
{
__nd_device_register(dev, true);
}
void nd_device_unregister(struct device *dev, enum nd_async_mode mode)
{
bool killed;
switch (mode) {
case ND_ASYNC:
/*
* In the async case this is being triggered with the
* device lock held and the unregistration work needs to
* be moved out of line iff this is thread has won the
* race to schedule the deletion.
*/
if (!kill_device(dev))
return;
get_device(dev);
async_schedule_domain(nd_async_device_unregister, dev,
&nd_async_domain);
break;
case ND_SYNC:
/*
* In the sync case the device is being unregistered due
* to a state change of the parent. Claim the kill state
* to synchronize against other unregistration requests,
* or otherwise let the async path handle it if the
* unregistration was already queued.
*/
device_lock(dev);
killed = kill_device(dev);
device_unlock(dev);
if (!killed)
return;
nd_synchronize();
device_unregister(dev);
break;
}
}
EXPORT_SYMBOL(nd_device_unregister);
/**
* __nd_driver_register() - register a region or a namespace driver
* @nd_drv: driver to register
* @owner: automatically set by nd_driver_register() macro
* @mod_name: automatically set by nd_driver_register() macro
*/
int __nd_driver_register(struct nd_device_driver *nd_drv, struct module *owner,
const char *mod_name)
{
struct device_driver *drv = &nd_drv->drv;
if (!nd_drv->type) {
pr_debug("driver type bitmask not set (%ps)\n",
__builtin_return_address(0));
return -EINVAL;
}
if (!nd_drv->probe) {
pr_debug("%s ->probe() must be specified\n", mod_name);
return -EINVAL;
}
drv->bus = &nvdimm_bus_type;
drv->owner = owner;
drv->mod_name = mod_name;
return driver_register(drv);
}
EXPORT_SYMBOL(__nd_driver_register);
void nvdimm_check_and_set_ro(struct gendisk *disk)
{
struct device *dev = disk_to_dev(disk)->parent;
struct nd_region *nd_region = to_nd_region(dev->parent);
int disk_ro = get_disk_ro(disk);
/* catch the disk up with the region ro state */
if (disk_ro == nd_region->ro)
return;
dev_info(dev, "%s read-%s, marking %s read-%s\n",
dev_name(&nd_region->dev), nd_region->ro ? "only" : "write",
disk->disk_name, nd_region->ro ? "only" : "write");
set_disk_ro(disk, nd_region->ro);
}
EXPORT_SYMBOL(nvdimm_check_and_set_ro);
static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, ND_DEVICE_MODALIAS_FMT "\n",
to_nd_device_type(dev));
}
static DEVICE_ATTR_RO(modalias);
static ssize_t devtype_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%s\n", dev->type->name);
}
static DEVICE_ATTR_RO(devtype);
static struct attribute *nd_device_attributes[] = {
&dev_attr_modalias.attr,
&dev_attr_devtype.attr,
NULL,
};
/*
* nd_device_attribute_group - generic attributes for all devices on an nd bus
*/
const struct attribute_group nd_device_attribute_group = {
.attrs = nd_device_attributes,
};
static ssize_t numa_node_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", dev_to_node(dev));
}
static DEVICE_ATTR_RO(numa_node);
static int nvdimm_dev_to_target_node(struct device *dev)
{
struct device *parent = dev->parent;
struct nd_region *nd_region = NULL;
if (is_nd_region(dev))
nd_region = to_nd_region(dev);
else if (parent && is_nd_region(parent))
nd_region = to_nd_region(parent);
if (!nd_region)
return NUMA_NO_NODE;
return nd_region->target_node;
}
static ssize_t target_node_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sprintf(buf, "%d\n", nvdimm_dev_to_target_node(dev));
}
static DEVICE_ATTR_RO(target_node);
static struct attribute *nd_numa_attributes[] = {
&dev_attr_numa_node.attr,
&dev_attr_target_node.attr,
NULL,
};
static umode_t nd_numa_attr_visible(struct kobject *kobj, struct attribute *a,
int n)
{
struct device *dev = container_of(kobj, typeof(*dev), kobj);
if (!IS_ENABLED(CONFIG_NUMA))
return 0;
if (a == &dev_attr_target_node.attr &&
nvdimm_dev_to_target_node(dev) == NUMA_NO_NODE)
return 0;
return a->mode;
}
/*
* nd_numa_attribute_group - NUMA attributes for all devices on an nd bus
*/
const struct attribute_group nd_numa_attribute_group = {
.attrs = nd_numa_attributes,
.is_visible = nd_numa_attr_visible,
};
static void ndctl_release(struct device *dev)
{
kfree(dev);
}
static struct lock_class_key nvdimm_ndctl_key;
int nvdimm_bus_create_ndctl(struct nvdimm_bus *nvdimm_bus)
{
dev_t devt = MKDEV(nvdimm_bus_major, nvdimm_bus->id);
struct device *dev;
int rc;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
device_initialize(dev);
lockdep_set_class(&dev->mutex, &nvdimm_ndctl_key);
device_set_pm_not_required(dev);
dev->class = &nd_class;
dev->parent = &nvdimm_bus->dev;
dev->devt = devt;
dev->release = ndctl_release;
rc = dev_set_name(dev, "ndctl%d", nvdimm_bus->id);
if (rc)
goto err;
rc = device_add(dev);
if (rc) {
dev_dbg(&nvdimm_bus->dev, "failed to register ndctl%d: %d\n",
nvdimm_bus->id, rc);
goto err;
}
return 0;
err:
put_device(dev);
return rc;
}
void nvdimm_bus_destroy_ndctl(struct nvdimm_bus *nvdimm_bus)
{
device_destroy(&nd_class, MKDEV(nvdimm_bus_major, nvdimm_bus->id));
}
static const struct nd_cmd_desc __nd_cmd_dimm_descs[] = {
[ND_CMD_IMPLEMENTED] = { },
[ND_CMD_SMART] = {
.out_num = 2,
.out_sizes = { 4, 128, },
},
[ND_CMD_SMART_THRESHOLD] = {
.out_num = 2,
.out_sizes = { 4, 8, },
},
[ND_CMD_DIMM_FLAGS] = {
.out_num = 2,
.out_sizes = { 4, 4 },
},
[ND_CMD_GET_CONFIG_SIZE] = {
.out_num = 3,
.out_sizes = { 4, 4, 4, },
},
[ND_CMD_GET_CONFIG_DATA] = {
.in_num = 2,
.in_sizes = { 4, 4, },
.out_num = 2,
.out_sizes = { 4, UINT_MAX, },
},
[ND_CMD_SET_CONFIG_DATA] = {
.in_num = 3,
.in_sizes = { 4, 4, UINT_MAX, },
.out_num = 1,
.out_sizes = { 4, },
},
[ND_CMD_VENDOR] = {
.in_num = 3,
.in_sizes = { 4, 4, UINT_MAX, },
.out_num = 3,
.out_sizes = { 4, 4, UINT_MAX, },
},
[ND_CMD_CALL] = {
.in_num = 2,
.in_sizes = { sizeof(struct nd_cmd_pkg), UINT_MAX, },
.out_num = 1,
.out_sizes = { UINT_MAX, },
},
};
const struct nd_cmd_desc *nd_cmd_dimm_desc(int cmd)
{
if (cmd < ARRAY_SIZE(__nd_cmd_dimm_descs))
return &__nd_cmd_dimm_descs[cmd];
return NULL;
}
EXPORT_SYMBOL_GPL(nd_cmd_dimm_desc);
static const struct nd_cmd_desc __nd_cmd_bus_descs[] = {
[ND_CMD_IMPLEMENTED] = { },
[ND_CMD_ARS_CAP] = {
.in_num = 2,
.in_sizes = { 8, 8, },
.out_num = 4,
.out_sizes = { 4, 4, 4, 4, },
},
[ND_CMD_ARS_START] = {
.in_num = 5,
.in_sizes = { 8, 8, 2, 1, 5, },
.out_num = 2,
.out_sizes = { 4, 4, },
},
[ND_CMD_ARS_STATUS] = {
.out_num = 3,
.out_sizes = { 4, 4, UINT_MAX, },
},
[ND_CMD_CLEAR_ERROR] = {
.in_num = 2,
.in_sizes = { 8, 8, },
.out_num = 3,
.out_sizes = { 4, 4, 8, },
},
[ND_CMD_CALL] = {
.in_num = 2,
.in_sizes = { sizeof(struct nd_cmd_pkg), UINT_MAX, },
.out_num = 1,
.out_sizes = { UINT_MAX, },
},
};
const struct nd_cmd_desc *nd_cmd_bus_desc(int cmd)
{
if (cmd < ARRAY_SIZE(__nd_cmd_bus_descs))
return &__nd_cmd_bus_descs[cmd];
return NULL;
}
EXPORT_SYMBOL_GPL(nd_cmd_bus_desc);
u32 nd_cmd_in_size(struct nvdimm *nvdimm, int cmd,
const struct nd_cmd_desc *desc, int idx, void *buf)
{
if (idx >= desc->in_num)
return UINT_MAX;
if (desc->in_sizes[idx] < UINT_MAX)
return desc->in_sizes[idx];
if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA && idx == 2) {
struct nd_cmd_set_config_hdr *hdr = buf;
return hdr->in_length;
} else if (nvdimm && cmd == ND_CMD_VENDOR && idx == 2) {
struct nd_cmd_vendor_hdr *hdr = buf;
return hdr->in_length;
} else if (cmd == ND_CMD_CALL) {
struct nd_cmd_pkg *pkg = buf;
return pkg->nd_size_in;
}
return UINT_MAX;
}
EXPORT_SYMBOL_GPL(nd_cmd_in_size);
u32 nd_cmd_out_size(struct nvdimm *nvdimm, int cmd,
const struct nd_cmd_desc *desc, int idx, const u32 *in_field,
const u32 *out_field, unsigned long remainder)
{
if (idx >= desc->out_num)
return UINT_MAX;
if (desc->out_sizes[idx] < UINT_MAX)
return desc->out_sizes[idx];
if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA && idx == 1)
return in_field[1];
else if (nvdimm && cmd == ND_CMD_VENDOR && idx == 2)
return out_field[1];
else if (!nvdimm && cmd == ND_CMD_ARS_STATUS && idx == 2) {
/*
* Per table 9-276 ARS Data in ACPI 6.1, out_field[1] is
* "Size of Output Buffer in bytes, including this
* field."
*/
if (out_field[1] < 4)
return 0;
/*
* ACPI 6.1 is ambiguous if 'status' is included in the
* output size. If we encounter an output size that
* overshoots the remainder by 4 bytes, assume it was
* including 'status'.
*/
if (out_field[1] - 4 == remainder)
return remainder;
return out_field[1] - 8;
} else if (cmd == ND_CMD_CALL) {
struct nd_cmd_pkg *pkg = (struct nd_cmd_pkg *) in_field;
return pkg->nd_size_out;
}
return UINT_MAX;
}
EXPORT_SYMBOL_GPL(nd_cmd_out_size);
void wait_nvdimm_bus_probe_idle(struct device *dev)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
do {
if (nvdimm_bus->probe_active == 0)
break;
nvdimm_bus_unlock(dev);
device_unlock(dev);
wait_event(nvdimm_bus->wait,
nvdimm_bus->probe_active == 0);
device_lock(dev);
nvdimm_bus_lock(dev);
} while (true);
}
static int nd_pmem_forget_poison_check(struct device *dev, void *data)
{
struct nd_cmd_clear_error *clear_err =
(struct nd_cmd_clear_error *)data;
struct nd_btt *nd_btt = is_nd_btt(dev) ? to_nd_btt(dev) : NULL;
struct nd_pfn *nd_pfn = is_nd_pfn(dev) ? to_nd_pfn(dev) : NULL;
struct nd_dax *nd_dax = is_nd_dax(dev) ? to_nd_dax(dev) : NULL;
struct nd_namespace_common *ndns = NULL;
struct nd_namespace_io *nsio;
resource_size_t offset = 0, end_trunc = 0, start, end, pstart, pend;
if (nd_dax || !dev->driver)
return 0;
start = clear_err->address;
end = clear_err->address + clear_err->cleared - 1;
if (nd_btt || nd_pfn || nd_dax) {
if (nd_btt)
ndns = nd_btt->ndns;
else if (nd_pfn)
ndns = nd_pfn->ndns;
else if (nd_dax)
ndns = nd_dax->nd_pfn.ndns;
if (!ndns)
return 0;
} else
ndns = to_ndns(dev);
nsio = to_nd_namespace_io(&ndns->dev);
pstart = nsio->res.start + offset;
pend = nsio->res.end - end_trunc;
if ((pstart >= start) && (pend <= end))
return -EBUSY;
return 0;
}
static int nd_ns_forget_poison_check(struct device *dev, void *data)
{
return device_for_each_child(dev, data, nd_pmem_forget_poison_check);
}
/* set_config requires an idle interleave set */
static int nd_cmd_clear_to_send(struct nvdimm_bus *nvdimm_bus,
struct nvdimm *nvdimm, unsigned int cmd, void *data)
{
struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
/* ask the bus provider if it would like to block this request */
if (nd_desc->clear_to_send) {
int rc = nd_desc->clear_to_send(nd_desc, nvdimm, cmd, data);
if (rc)
return rc;
}
/* require clear error to go through the pmem driver */
if (!nvdimm && cmd == ND_CMD_CLEAR_ERROR)
return device_for_each_child(&nvdimm_bus->dev, data,
nd_ns_forget_poison_check);
if (!nvdimm || cmd != ND_CMD_SET_CONFIG_DATA)
return 0;
/* prevent label manipulation while the kernel owns label updates */
wait_nvdimm_bus_probe_idle(&nvdimm_bus->dev);
if (atomic_read(&nvdimm->busy))
return -EBUSY;
return 0;
}
static int __nd_ioctl(struct nvdimm_bus *nvdimm_bus, struct nvdimm *nvdimm,
int read_only, unsigned int ioctl_cmd, unsigned long arg)
{
struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
const struct nd_cmd_desc *desc = NULL;
unsigned int cmd = _IOC_NR(ioctl_cmd);
struct device *dev = &nvdimm_bus->dev;
void __user *p = (void __user *) arg;
char *out_env = NULL, *in_env = NULL;
const char *cmd_name, *dimm_name;
u32 in_len = 0, out_len = 0;
unsigned int func = cmd;
unsigned long cmd_mask;
struct nd_cmd_pkg pkg;
int rc, i, cmd_rc;
void *buf = NULL;
u64 buf_len = 0;
if (nvdimm) {
desc = nd_cmd_dimm_desc(cmd);
cmd_name = nvdimm_cmd_name(cmd);
cmd_mask = nvdimm->cmd_mask;
dimm_name = dev_name(&nvdimm->dev);
} else {
desc = nd_cmd_bus_desc(cmd);
cmd_name = nvdimm_bus_cmd_name(cmd);
cmd_mask = nd_desc->cmd_mask;
dimm_name = "bus";
}
/* Validate command family support against bus declared support */
if (cmd == ND_CMD_CALL) {
unsigned long *mask;
if (copy_from_user(&pkg, p, sizeof(pkg)))
return -EFAULT;
if (nvdimm) {
if (pkg.nd_family > NVDIMM_FAMILY_MAX)
return -EINVAL;
mask = &nd_desc->dimm_family_mask;
} else {
if (pkg.nd_family > NVDIMM_BUS_FAMILY_MAX)
return -EINVAL;
mask = &nd_desc->bus_family_mask;
}
if (!test_bit(pkg.nd_family, mask))
return -EINVAL;
}
if (!desc ||
(desc->out_num + desc->in_num == 0) ||
cmd > ND_CMD_CALL ||
!test_bit(cmd, &cmd_mask))
return -ENOTTY;
/* fail write commands (when read-only) */
if (read_only)
switch (cmd) {
case ND_CMD_VENDOR:
case ND_CMD_SET_CONFIG_DATA:
case ND_CMD_ARS_START:
case ND_CMD_CLEAR_ERROR:
case ND_CMD_CALL:
dev_dbg(dev, "'%s' command while read-only.\n",
nvdimm ? nvdimm_cmd_name(cmd)
: nvdimm_bus_cmd_name(cmd));
return -EPERM;
default:
break;
}
/* process an input envelope */
in_env = kzalloc(ND_CMD_MAX_ENVELOPE, GFP_KERNEL);
if (!in_env)
return -ENOMEM;
for (i = 0; i < desc->in_num; i++) {
u32 in_size, copy;
in_size = nd_cmd_in_size(nvdimm, cmd, desc, i, in_env);
if (in_size == UINT_MAX) {
dev_err(dev, "%s:%s unknown input size cmd: %s field: %d\n",
__func__, dimm_name, cmd_name, i);
rc = -ENXIO;
goto out;
}
if (in_len < ND_CMD_MAX_ENVELOPE)
copy = min_t(u32, ND_CMD_MAX_ENVELOPE - in_len, in_size);
else
copy = 0;
if (copy && copy_from_user(&in_env[in_len], p + in_len, copy)) {
rc = -EFAULT;
goto out;
}
in_len += in_size;
}
if (cmd == ND_CMD_CALL) {
func = pkg.nd_command;
dev_dbg(dev, "%s, idx: %llu, in: %u, out: %u, len %llu\n",
dimm_name, pkg.nd_command,
in_len, out_len, buf_len);
}
/* process an output envelope */
out_env = kzalloc(ND_CMD_MAX_ENVELOPE, GFP_KERNEL);
if (!out_env) {
rc = -ENOMEM;
goto out;
}
for (i = 0; i < desc->out_num; i++) {
u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i,
(u32 *) in_env, (u32 *) out_env, 0);
u32 copy;
if (out_size == UINT_MAX) {
dev_dbg(dev, "%s unknown output size cmd: %s field: %d\n",
dimm_name, cmd_name, i);
rc = -EFAULT;
goto out;
}
if (out_len < ND_CMD_MAX_ENVELOPE)
copy = min_t(u32, ND_CMD_MAX_ENVELOPE - out_len, out_size);
else
copy = 0;
if (copy && copy_from_user(&out_env[out_len],
p + in_len + out_len, copy)) {
rc = -EFAULT;
goto out;
}
out_len += out_size;
}
buf_len = (u64) out_len + (u64) in_len;
if (buf_len > ND_IOCTL_MAX_BUFLEN) {
dev_dbg(dev, "%s cmd: %s buf_len: %llu > %d\n", dimm_name,
cmd_name, buf_len, ND_IOCTL_MAX_BUFLEN);
rc = -EINVAL;
goto out;
}
buf = vmalloc(buf_len);
if (!buf) {
rc = -ENOMEM;
goto out;
}
if (copy_from_user(buf, p, buf_len)) {
rc = -EFAULT;
goto out;
}
device_lock(dev);
nvdimm_bus_lock(dev);
rc = nd_cmd_clear_to_send(nvdimm_bus, nvdimm, func, buf);
if (rc)
goto out_unlock;
rc = nd_desc->ndctl(nd_desc, nvdimm, cmd, buf, buf_len, &cmd_rc);
if (rc < 0)
goto out_unlock;
if (!nvdimm && cmd == ND_CMD_CLEAR_ERROR && cmd_rc >= 0) {
struct nd_cmd_clear_error *clear_err = buf;
nvdimm_account_cleared_poison(nvdimm_bus, clear_err->address,
clear_err->cleared);
}
if (copy_to_user(p, buf, buf_len))
rc = -EFAULT;
out_unlock:
nvdimm_bus_unlock(dev);
device_unlock(dev);
out:
kfree(in_env);
kfree(out_env);
vfree(buf);
return rc;
}
enum nd_ioctl_mode {
BUS_IOCTL,
DIMM_IOCTL,
};
static int match_dimm(struct device *dev, void *data)
{
long id = (long) data;
if (is_nvdimm(dev)) {
struct nvdimm *nvdimm = to_nvdimm(dev);
return nvdimm->id == id;
}
return 0;
}
static long nd_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
enum nd_ioctl_mode mode)
{
struct nvdimm_bus *nvdimm_bus, *found = NULL;
long id = (long) file->private_data;
struct nvdimm *nvdimm = NULL;
int rc, ro;
ro = ((file->f_flags & O_ACCMODE) == O_RDONLY);
mutex_lock(&nvdimm_bus_list_mutex);
list_for_each_entry(nvdimm_bus, &nvdimm_bus_list, list) {
if (mode == DIMM_IOCTL) {
struct device *dev;
dev = device_find_child(&nvdimm_bus->dev,
file->private_data, match_dimm);
if (!dev)
continue;
nvdimm = to_nvdimm(dev);
found = nvdimm_bus;
} else if (nvdimm_bus->id == id) {
found = nvdimm_bus;
}
if (found) {
atomic_inc(&nvdimm_bus->ioctl_active);
break;
}
}
mutex_unlock(&nvdimm_bus_list_mutex);
if (!found)
return -ENXIO;
nvdimm_bus = found;
rc = __nd_ioctl(nvdimm_bus, nvdimm, ro, cmd, arg);
if (nvdimm)
put_device(&nvdimm->dev);
if (atomic_dec_and_test(&nvdimm_bus->ioctl_active))
wake_up(&nvdimm_bus->wait);
return rc;
}
static long bus_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return nd_ioctl(file, cmd, arg, BUS_IOCTL);
}
static long dimm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return nd_ioctl(file, cmd, arg, DIMM_IOCTL);
}
static int nd_open(struct inode *inode, struct file *file)
{
long minor = iminor(inode);
file->private_data = (void *) minor;
return 0;
}
static const struct file_operations nvdimm_bus_fops = {
.owner = THIS_MODULE,
.open = nd_open,
.unlocked_ioctl = bus_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.llseek = noop_llseek,
};
static const struct file_operations nvdimm_fops = {
.owner = THIS_MODULE,
.open = nd_open,
.unlocked_ioctl = dimm_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.llseek = noop_llseek,
};
int __init nvdimm_bus_init(void)
{
int rc;
rc = bus_register(&nvdimm_bus_type);
if (rc)
return rc;
rc = register_chrdev(0, "ndctl", &nvdimm_bus_fops);
if (rc < 0)
goto err_bus_chrdev;
nvdimm_bus_major = rc;
rc = register_chrdev(0, "dimmctl", &nvdimm_fops);
if (rc < 0)
goto err_dimm_chrdev;
nvdimm_major = rc;
rc = class_register(&nd_class);
if (rc)
goto err_class;
rc = driver_register(&nd_bus_driver.drv);
if (rc)
goto err_nd_bus;
return 0;
err_nd_bus:
class_unregister(&nd_class);
err_class:
unregister_chrdev(nvdimm_major, "dimmctl");
err_dimm_chrdev:
unregister_chrdev(nvdimm_bus_major, "ndctl");
err_bus_chrdev:
bus_unregister(&nvdimm_bus_type);
return rc;
}
void nvdimm_bus_exit(void)
{
driver_unregister(&nd_bus_driver.drv);
class_unregister(&nd_class);
unregister_chrdev(nvdimm_bus_major, "ndctl");
unregister_chrdev(nvdimm_major, "dimmctl");
bus_unregister(&nvdimm_bus_type);
ida_destroy(&nd_ida);
}