| // SPDX-License-Identifier: GPL-2.0 |
| // Copyright (C) 2018 Spreadtrum Communications Inc. |
| |
| #include <linux/hwspinlock.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/regmap.h> |
| #include <linux/nvmem-provider.h> |
| |
| /* PMIC global registers definition */ |
| #define SC27XX_MODULE_EN 0xc08 |
| #define SC2730_MODULE_EN 0x1808 |
| #define SC27XX_EFUSE_EN BIT(6) |
| |
| /* Efuse controller registers definition */ |
| #define SC27XX_EFUSE_GLB_CTRL 0x0 |
| #define SC27XX_EFUSE_DATA_RD 0x4 |
| #define SC27XX_EFUSE_DATA_WR 0x8 |
| #define SC27XX_EFUSE_BLOCK_INDEX 0xc |
| #define SC27XX_EFUSE_MODE_CTRL 0x10 |
| #define SC27XX_EFUSE_STATUS 0x14 |
| #define SC27XX_EFUSE_WR_TIMING_CTRL 0x20 |
| #define SC27XX_EFUSE_RD_TIMING_CTRL 0x24 |
| #define SC27XX_EFUSE_EFUSE_DEB_CTRL 0x28 |
| |
| /* Mask definition for SC27XX_EFUSE_BLOCK_INDEX register */ |
| #define SC27XX_EFUSE_BLOCK_MASK GENMASK(4, 0) |
| |
| /* Bits definitions for SC27XX_EFUSE_MODE_CTRL register */ |
| #define SC27XX_EFUSE_PG_START BIT(0) |
| #define SC27XX_EFUSE_RD_START BIT(1) |
| #define SC27XX_EFUSE_CLR_RDDONE BIT(2) |
| |
| /* Bits definitions for SC27XX_EFUSE_STATUS register */ |
| #define SC27XX_EFUSE_PGM_BUSY BIT(0) |
| #define SC27XX_EFUSE_READ_BUSY BIT(1) |
| #define SC27XX_EFUSE_STANDBY BIT(2) |
| #define SC27XX_EFUSE_GLOBAL_PROT BIT(3) |
| #define SC27XX_EFUSE_RD_DONE BIT(4) |
| |
| /* Block number and block width (bytes) definitions */ |
| #define SC27XX_EFUSE_BLOCK_MAX 32 |
| #define SC27XX_EFUSE_BLOCK_WIDTH 2 |
| |
| /* Timeout (ms) for the trylock of hardware spinlocks */ |
| #define SC27XX_EFUSE_HWLOCK_TIMEOUT 5000 |
| |
| /* Timeout (us) of polling the status */ |
| #define SC27XX_EFUSE_POLL_TIMEOUT 3000000 |
| #define SC27XX_EFUSE_POLL_DELAY_US 10000 |
| |
| /* |
| * Since different PMICs of SC27xx series can have different |
| * address , we should save address in the device data structure. |
| */ |
| struct sc27xx_efuse_variant_data { |
| u32 module_en; |
| }; |
| |
| struct sc27xx_efuse { |
| struct device *dev; |
| struct regmap *regmap; |
| struct hwspinlock *hwlock; |
| struct mutex mutex; |
| u32 base; |
| const struct sc27xx_efuse_variant_data *var_data; |
| }; |
| |
| static const struct sc27xx_efuse_variant_data sc2731_edata = { |
| .module_en = SC27XX_MODULE_EN, |
| }; |
| |
| static const struct sc27xx_efuse_variant_data sc2730_edata = { |
| .module_en = SC2730_MODULE_EN, |
| }; |
| |
| /* |
| * On Spreadtrum platform, we have multi-subsystems will access the unique |
| * efuse controller, so we need one hardware spinlock to synchronize between |
| * the multiple subsystems. |
| */ |
| static int sc27xx_efuse_lock(struct sc27xx_efuse *efuse) |
| { |
| int ret; |
| |
| mutex_lock(&efuse->mutex); |
| |
| ret = hwspin_lock_timeout_raw(efuse->hwlock, |
| SC27XX_EFUSE_HWLOCK_TIMEOUT); |
| if (ret) { |
| dev_err(efuse->dev, "timeout to get the hwspinlock\n"); |
| mutex_unlock(&efuse->mutex); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void sc27xx_efuse_unlock(struct sc27xx_efuse *efuse) |
| { |
| hwspin_unlock_raw(efuse->hwlock); |
| mutex_unlock(&efuse->mutex); |
| } |
| |
| static int sc27xx_efuse_poll_status(struct sc27xx_efuse *efuse, u32 bits) |
| { |
| int ret; |
| u32 val; |
| |
| ret = regmap_read_poll_timeout(efuse->regmap, |
| efuse->base + SC27XX_EFUSE_STATUS, |
| val, (val & bits), |
| SC27XX_EFUSE_POLL_DELAY_US, |
| SC27XX_EFUSE_POLL_TIMEOUT); |
| if (ret) { |
| dev_err(efuse->dev, "timeout to update the efuse status\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int sc27xx_efuse_read(void *context, u32 offset, void *val, size_t bytes) |
| { |
| struct sc27xx_efuse *efuse = context; |
| u32 buf, blk_index = offset / SC27XX_EFUSE_BLOCK_WIDTH; |
| u32 blk_offset = (offset % SC27XX_EFUSE_BLOCK_WIDTH) * BITS_PER_BYTE; |
| int ret; |
| |
| if (blk_index > SC27XX_EFUSE_BLOCK_MAX || |
| bytes > SC27XX_EFUSE_BLOCK_WIDTH) |
| return -EINVAL; |
| |
| ret = sc27xx_efuse_lock(efuse); |
| if (ret) |
| return ret; |
| |
| /* Enable the efuse controller. */ |
| ret = regmap_update_bits(efuse->regmap, efuse->var_data->module_en, |
| SC27XX_EFUSE_EN, SC27XX_EFUSE_EN); |
| if (ret) |
| goto unlock_efuse; |
| |
| /* |
| * Before reading, we should ensure the efuse controller is in |
| * standby state. |
| */ |
| ret = sc27xx_efuse_poll_status(efuse, SC27XX_EFUSE_STANDBY); |
| if (ret) |
| goto disable_efuse; |
| |
| /* Set the block address to be read. */ |
| ret = regmap_write(efuse->regmap, |
| efuse->base + SC27XX_EFUSE_BLOCK_INDEX, |
| blk_index & SC27XX_EFUSE_BLOCK_MASK); |
| if (ret) |
| goto disable_efuse; |
| |
| /* Start reading process from efuse memory. */ |
| ret = regmap_update_bits(efuse->regmap, |
| efuse->base + SC27XX_EFUSE_MODE_CTRL, |
| SC27XX_EFUSE_RD_START, |
| SC27XX_EFUSE_RD_START); |
| if (ret) |
| goto disable_efuse; |
| |
| /* |
| * Polling the read done status to make sure the reading process |
| * is completed, that means the data can be read out now. |
| */ |
| ret = sc27xx_efuse_poll_status(efuse, SC27XX_EFUSE_RD_DONE); |
| if (ret) |
| goto disable_efuse; |
| |
| /* Read data from efuse memory. */ |
| ret = regmap_read(efuse->regmap, efuse->base + SC27XX_EFUSE_DATA_RD, |
| &buf); |
| if (ret) |
| goto disable_efuse; |
| |
| /* Clear the read done flag. */ |
| ret = regmap_update_bits(efuse->regmap, |
| efuse->base + SC27XX_EFUSE_MODE_CTRL, |
| SC27XX_EFUSE_CLR_RDDONE, |
| SC27XX_EFUSE_CLR_RDDONE); |
| |
| disable_efuse: |
| /* Disable the efuse controller after reading. */ |
| regmap_update_bits(efuse->regmap, efuse->var_data->module_en, SC27XX_EFUSE_EN, 0); |
| unlock_efuse: |
| sc27xx_efuse_unlock(efuse); |
| |
| if (!ret) { |
| buf >>= blk_offset; |
| memcpy(val, &buf, bytes); |
| } |
| |
| return ret; |
| } |
| |
| static int sc27xx_efuse_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct nvmem_config econfig = { }; |
| struct nvmem_device *nvmem; |
| struct sc27xx_efuse *efuse; |
| int ret; |
| |
| efuse = devm_kzalloc(&pdev->dev, sizeof(*efuse), GFP_KERNEL); |
| if (!efuse) |
| return -ENOMEM; |
| |
| efuse->regmap = dev_get_regmap(pdev->dev.parent, NULL); |
| if (!efuse->regmap) { |
| dev_err(&pdev->dev, "failed to get efuse regmap\n"); |
| return -ENODEV; |
| } |
| |
| ret = of_property_read_u32(np, "reg", &efuse->base); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to get efuse base address\n"); |
| return ret; |
| } |
| |
| ret = of_hwspin_lock_get_id(np, 0); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "failed to get hwspinlock id\n"); |
| return ret; |
| } |
| |
| efuse->hwlock = devm_hwspin_lock_request_specific(&pdev->dev, ret); |
| if (!efuse->hwlock) { |
| dev_err(&pdev->dev, "failed to request hwspinlock\n"); |
| return -ENXIO; |
| } |
| |
| mutex_init(&efuse->mutex); |
| efuse->dev = &pdev->dev; |
| efuse->var_data = of_device_get_match_data(&pdev->dev); |
| |
| econfig.stride = 1; |
| econfig.word_size = 1; |
| econfig.read_only = true; |
| econfig.name = "sc27xx-efuse"; |
| econfig.size = SC27XX_EFUSE_BLOCK_MAX * SC27XX_EFUSE_BLOCK_WIDTH; |
| econfig.reg_read = sc27xx_efuse_read; |
| econfig.priv = efuse; |
| econfig.dev = &pdev->dev; |
| econfig.add_legacy_fixed_of_cells = true; |
| nvmem = devm_nvmem_register(&pdev->dev, &econfig); |
| if (IS_ERR(nvmem)) { |
| dev_err(&pdev->dev, "failed to register nvmem config\n"); |
| return PTR_ERR(nvmem); |
| } |
| |
| return 0; |
| } |
| |
| static const struct of_device_id sc27xx_efuse_of_match[] = { |
| { .compatible = "sprd,sc2731-efuse", .data = &sc2731_edata}, |
| { .compatible = "sprd,sc2730-efuse", .data = &sc2730_edata}, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, sc27xx_efuse_of_match); |
| |
| static struct platform_driver sc27xx_efuse_driver = { |
| .probe = sc27xx_efuse_probe, |
| .driver = { |
| .name = "sc27xx-efuse", |
| .of_match_table = sc27xx_efuse_of_match, |
| }, |
| }; |
| |
| module_platform_driver(sc27xx_efuse_driver); |
| |
| MODULE_AUTHOR("Freeman Liu <freeman.liu@spreadtrum.com>"); |
| MODULE_DESCRIPTION("Spreadtrum SC27xx efuse driver"); |
| MODULE_LICENSE("GPL v2"); |