| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2010 Red Hat, Inc. |
| * Copyright (c) 2016-2021 Christoph Hellwig. |
| */ |
| #include <linux/module.h> |
| #include <linux/compiler.h> |
| #include <linux/fs.h> |
| #include <linux/fscrypt.h> |
| #include <linux/pagemap.h> |
| #include <linux/iomap.h> |
| #include <linux/backing-dev.h> |
| #include <linux/uio.h> |
| #include <linux/task_io_accounting_ops.h> |
| #include "trace.h" |
| |
| #include "../internal.h" |
| |
| /* |
| * Private flags for iomap_dio, must not overlap with the public ones in |
| * iomap.h: |
| */ |
| #define IOMAP_DIO_CALLER_COMP (1U << 26) |
| #define IOMAP_DIO_INLINE_COMP (1U << 27) |
| #define IOMAP_DIO_WRITE_THROUGH (1U << 28) |
| #define IOMAP_DIO_NEED_SYNC (1U << 29) |
| #define IOMAP_DIO_WRITE (1U << 30) |
| #define IOMAP_DIO_DIRTY (1U << 31) |
| |
| /* |
| * Used for sub block zeroing in iomap_dio_zero() |
| */ |
| #define IOMAP_ZERO_PAGE_SIZE (SZ_64K) |
| #define IOMAP_ZERO_PAGE_ORDER (get_order(IOMAP_ZERO_PAGE_SIZE)) |
| static struct page *zero_page; |
| |
| struct iomap_dio { |
| struct kiocb *iocb; |
| const struct iomap_dio_ops *dops; |
| loff_t i_size; |
| loff_t size; |
| atomic_t ref; |
| unsigned flags; |
| int error; |
| size_t done_before; |
| bool wait_for_completion; |
| |
| union { |
| /* used during submission and for synchronous completion: */ |
| struct { |
| struct iov_iter *iter; |
| struct task_struct *waiter; |
| } submit; |
| |
| /* used for aio completion: */ |
| struct { |
| struct work_struct work; |
| } aio; |
| }; |
| }; |
| |
| static struct bio *iomap_dio_alloc_bio(const struct iomap_iter *iter, |
| struct iomap_dio *dio, unsigned short nr_vecs, blk_opf_t opf) |
| { |
| if (dio->dops && dio->dops->bio_set) |
| return bio_alloc_bioset(iter->iomap.bdev, nr_vecs, opf, |
| GFP_KERNEL, dio->dops->bio_set); |
| return bio_alloc(iter->iomap.bdev, nr_vecs, opf, GFP_KERNEL); |
| } |
| |
| static void iomap_dio_submit_bio(const struct iomap_iter *iter, |
| struct iomap_dio *dio, struct bio *bio, loff_t pos) |
| { |
| struct kiocb *iocb = dio->iocb; |
| |
| atomic_inc(&dio->ref); |
| |
| /* Sync dio can't be polled reliably */ |
| if ((iocb->ki_flags & IOCB_HIPRI) && !is_sync_kiocb(iocb)) { |
| bio_set_polled(bio, iocb); |
| WRITE_ONCE(iocb->private, bio); |
| } |
| |
| if (dio->dops && dio->dops->submit_io) |
| dio->dops->submit_io(iter, bio, pos); |
| else |
| submit_bio(bio); |
| } |
| |
| ssize_t iomap_dio_complete(struct iomap_dio *dio) |
| { |
| const struct iomap_dio_ops *dops = dio->dops; |
| struct kiocb *iocb = dio->iocb; |
| loff_t offset = iocb->ki_pos; |
| ssize_t ret = dio->error; |
| |
| if (dops && dops->end_io) |
| ret = dops->end_io(iocb, dio->size, ret, dio->flags); |
| |
| if (likely(!ret)) { |
| ret = dio->size; |
| /* check for short read */ |
| if (offset + ret > dio->i_size && |
| !(dio->flags & IOMAP_DIO_WRITE)) |
| ret = dio->i_size - offset; |
| } |
| |
| /* |
| * Try again to invalidate clean pages which might have been cached by |
| * non-direct readahead, or faulted in by get_user_pages() if the source |
| * of the write was an mmap'ed region of the file we're writing. Either |
| * one is a pretty crazy thing to do, so we don't support it 100%. If |
| * this invalidation fails, tough, the write still worked... |
| * |
| * And this page cache invalidation has to be after ->end_io(), as some |
| * filesystems convert unwritten extents to real allocations in |
| * ->end_io() when necessary, otherwise a racing buffer read would cache |
| * zeros from unwritten extents. |
| */ |
| if (!dio->error && dio->size && (dio->flags & IOMAP_DIO_WRITE)) |
| kiocb_invalidate_post_direct_write(iocb, dio->size); |
| |
| inode_dio_end(file_inode(iocb->ki_filp)); |
| |
| if (ret > 0) { |
| iocb->ki_pos += ret; |
| |
| /* |
| * If this is a DSYNC write, make sure we push it to stable |
| * storage now that we've written data. |
| */ |
| if (dio->flags & IOMAP_DIO_NEED_SYNC) |
| ret = generic_write_sync(iocb, ret); |
| if (ret > 0) |
| ret += dio->done_before; |
| } |
| trace_iomap_dio_complete(iocb, dio->error, ret); |
| kfree(dio); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(iomap_dio_complete); |
| |
| static ssize_t iomap_dio_deferred_complete(void *data) |
| { |
| return iomap_dio_complete(data); |
| } |
| |
| static void iomap_dio_complete_work(struct work_struct *work) |
| { |
| struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work); |
| struct kiocb *iocb = dio->iocb; |
| |
| iocb->ki_complete(iocb, iomap_dio_complete(dio)); |
| } |
| |
| /* |
| * Set an error in the dio if none is set yet. We have to use cmpxchg |
| * as the submission context and the completion context(s) can race to |
| * update the error. |
| */ |
| static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret) |
| { |
| cmpxchg(&dio->error, 0, ret); |
| } |
| |
| void iomap_dio_bio_end_io(struct bio *bio) |
| { |
| struct iomap_dio *dio = bio->bi_private; |
| bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY); |
| struct kiocb *iocb = dio->iocb; |
| |
| if (bio->bi_status) |
| iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status)); |
| if (!atomic_dec_and_test(&dio->ref)) |
| goto release_bio; |
| |
| /* |
| * Synchronous dio, task itself will handle any completion work |
| * that needs after IO. All we need to do is wake the task. |
| */ |
| if (dio->wait_for_completion) { |
| struct task_struct *waiter = dio->submit.waiter; |
| |
| WRITE_ONCE(dio->submit.waiter, NULL); |
| blk_wake_io_task(waiter); |
| goto release_bio; |
| } |
| |
| /* |
| * Flagged with IOMAP_DIO_INLINE_COMP, we can complete it inline |
| */ |
| if (dio->flags & IOMAP_DIO_INLINE_COMP) { |
| WRITE_ONCE(iocb->private, NULL); |
| iomap_dio_complete_work(&dio->aio.work); |
| goto release_bio; |
| } |
| |
| /* |
| * If this dio is flagged with IOMAP_DIO_CALLER_COMP, then schedule |
| * our completion that way to avoid an async punt to a workqueue. |
| */ |
| if (dio->flags & IOMAP_DIO_CALLER_COMP) { |
| /* only polled IO cares about private cleared */ |
| iocb->private = dio; |
| iocb->dio_complete = iomap_dio_deferred_complete; |
| |
| /* |
| * Invoke ->ki_complete() directly. We've assigned our |
| * dio_complete callback handler, and since the issuer set |
| * IOCB_DIO_CALLER_COMP, we know their ki_complete handler will |
| * notice ->dio_complete being set and will defer calling that |
| * handler until it can be done from a safe task context. |
| * |
| * Note that the 'res' being passed in here is not important |
| * for this case. The actual completion value of the request |
| * will be gotten from dio_complete when that is run by the |
| * issuer. |
| */ |
| iocb->ki_complete(iocb, 0); |
| goto release_bio; |
| } |
| |
| /* |
| * Async DIO completion that requires filesystem level completion work |
| * gets punted to a work queue to complete as the operation may require |
| * more IO to be issued to finalise filesystem metadata changes or |
| * guarantee data integrity. |
| */ |
| INIT_WORK(&dio->aio.work, iomap_dio_complete_work); |
| queue_work(file_inode(iocb->ki_filp)->i_sb->s_dio_done_wq, |
| &dio->aio.work); |
| release_bio: |
| if (should_dirty) { |
| bio_check_pages_dirty(bio); |
| } else { |
| bio_release_pages(bio, false); |
| bio_put(bio); |
| } |
| } |
| EXPORT_SYMBOL_GPL(iomap_dio_bio_end_io); |
| |
| static int iomap_dio_zero(const struct iomap_iter *iter, struct iomap_dio *dio, |
| loff_t pos, unsigned len) |
| { |
| struct inode *inode = file_inode(dio->iocb->ki_filp); |
| struct bio *bio; |
| |
| if (!len) |
| return 0; |
| /* |
| * Max block size supported is 64k |
| */ |
| if (WARN_ON_ONCE(len > IOMAP_ZERO_PAGE_SIZE)) |
| return -EINVAL; |
| |
| bio = iomap_dio_alloc_bio(iter, dio, 1, REQ_OP_WRITE | REQ_SYNC | REQ_IDLE); |
| fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, |
| GFP_KERNEL); |
| bio->bi_iter.bi_sector = iomap_sector(&iter->iomap, pos); |
| bio->bi_private = dio; |
| bio->bi_end_io = iomap_dio_bio_end_io; |
| |
| __bio_add_page(bio, zero_page, len, 0); |
| iomap_dio_submit_bio(iter, dio, bio, pos); |
| return 0; |
| } |
| |
| /* |
| * Figure out the bio's operation flags from the dio request, the |
| * mapping, and whether or not we want FUA. Note that we can end up |
| * clearing the WRITE_THROUGH flag in the dio request. |
| */ |
| static inline blk_opf_t iomap_dio_bio_opflags(struct iomap_dio *dio, |
| const struct iomap *iomap, bool use_fua) |
| { |
| blk_opf_t opflags = REQ_SYNC | REQ_IDLE; |
| |
| if (!(dio->flags & IOMAP_DIO_WRITE)) |
| return REQ_OP_READ; |
| |
| opflags |= REQ_OP_WRITE; |
| if (use_fua) |
| opflags |= REQ_FUA; |
| else |
| dio->flags &= ~IOMAP_DIO_WRITE_THROUGH; |
| |
| return opflags; |
| } |
| |
| static loff_t iomap_dio_bio_iter(const struct iomap_iter *iter, |
| struct iomap_dio *dio) |
| { |
| const struct iomap *iomap = &iter->iomap; |
| struct inode *inode = iter->inode; |
| unsigned int fs_block_size = i_blocksize(inode), pad; |
| loff_t length = iomap_length(iter); |
| loff_t pos = iter->pos; |
| blk_opf_t bio_opf; |
| struct bio *bio; |
| bool need_zeroout = false; |
| bool use_fua = false; |
| int nr_pages, ret = 0; |
| size_t copied = 0; |
| size_t orig_count; |
| |
| if ((pos | length) & (bdev_logical_block_size(iomap->bdev) - 1) || |
| !bdev_iter_is_aligned(iomap->bdev, dio->submit.iter)) |
| return -EINVAL; |
| |
| if (iomap->type == IOMAP_UNWRITTEN) { |
| dio->flags |= IOMAP_DIO_UNWRITTEN; |
| need_zeroout = true; |
| } |
| |
| if (iomap->flags & IOMAP_F_SHARED) |
| dio->flags |= IOMAP_DIO_COW; |
| |
| if (iomap->flags & IOMAP_F_NEW) { |
| need_zeroout = true; |
| } else if (iomap->type == IOMAP_MAPPED) { |
| /* |
| * Use a FUA write if we need datasync semantics, this is a pure |
| * data IO that doesn't require any metadata updates (including |
| * after IO completion such as unwritten extent conversion) and |
| * the underlying device either supports FUA or doesn't have |
| * a volatile write cache. This allows us to avoid cache flushes |
| * on IO completion. If we can't use writethrough and need to |
| * sync, disable in-task completions as dio completion will |
| * need to call generic_write_sync() which will do a blocking |
| * fsync / cache flush call. |
| */ |
| if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) && |
| (dio->flags & IOMAP_DIO_WRITE_THROUGH) && |
| (bdev_fua(iomap->bdev) || !bdev_write_cache(iomap->bdev))) |
| use_fua = true; |
| else if (dio->flags & IOMAP_DIO_NEED_SYNC) |
| dio->flags &= ~IOMAP_DIO_CALLER_COMP; |
| } |
| |
| /* |
| * Save the original count and trim the iter to just the extent we |
| * are operating on right now. The iter will be re-expanded once |
| * we are done. |
| */ |
| orig_count = iov_iter_count(dio->submit.iter); |
| iov_iter_truncate(dio->submit.iter, length); |
| |
| if (!iov_iter_count(dio->submit.iter)) |
| goto out; |
| |
| /* |
| * We can only do deferred completion for pure overwrites that |
| * don't require additional IO at completion. This rules out |
| * writes that need zeroing or extent conversion, extend |
| * the file size, or issue journal IO or cache flushes |
| * during completion processing. |
| */ |
| if (need_zeroout || |
| ((dio->flags & IOMAP_DIO_NEED_SYNC) && !use_fua) || |
| ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) |
| dio->flags &= ~IOMAP_DIO_CALLER_COMP; |
| |
| /* |
| * The rules for polled IO completions follow the guidelines as the |
| * ones we set for inline and deferred completions. If none of those |
| * are available for this IO, clear the polled flag. |
| */ |
| if (!(dio->flags & (IOMAP_DIO_INLINE_COMP|IOMAP_DIO_CALLER_COMP))) |
| dio->iocb->ki_flags &= ~IOCB_HIPRI; |
| |
| if (need_zeroout) { |
| /* zero out from the start of the block to the write offset */ |
| pad = pos & (fs_block_size - 1); |
| |
| ret = iomap_dio_zero(iter, dio, pos - pad, pad); |
| if (ret) |
| goto out; |
| } |
| |
| /* |
| * Set the operation flags early so that bio_iov_iter_get_pages |
| * can set up the page vector appropriately for a ZONE_APPEND |
| * operation. |
| */ |
| bio_opf = iomap_dio_bio_opflags(dio, iomap, use_fua); |
| |
| nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, BIO_MAX_VECS); |
| do { |
| size_t n; |
| if (dio->error) { |
| iov_iter_revert(dio->submit.iter, copied); |
| copied = ret = 0; |
| goto out; |
| } |
| |
| bio = iomap_dio_alloc_bio(iter, dio, nr_pages, bio_opf); |
| fscrypt_set_bio_crypt_ctx(bio, inode, pos >> inode->i_blkbits, |
| GFP_KERNEL); |
| bio->bi_iter.bi_sector = iomap_sector(iomap, pos); |
| bio->bi_write_hint = inode->i_write_hint; |
| bio->bi_ioprio = dio->iocb->ki_ioprio; |
| bio->bi_private = dio; |
| bio->bi_end_io = iomap_dio_bio_end_io; |
| |
| ret = bio_iov_iter_get_pages(bio, dio->submit.iter); |
| if (unlikely(ret)) { |
| /* |
| * We have to stop part way through an IO. We must fall |
| * through to the sub-block tail zeroing here, otherwise |
| * this short IO may expose stale data in the tail of |
| * the block we haven't written data to. |
| */ |
| bio_put(bio); |
| goto zero_tail; |
| } |
| |
| n = bio->bi_iter.bi_size; |
| if (dio->flags & IOMAP_DIO_WRITE) { |
| task_io_account_write(n); |
| } else { |
| if (dio->flags & IOMAP_DIO_DIRTY) |
| bio_set_pages_dirty(bio); |
| } |
| |
| dio->size += n; |
| copied += n; |
| |
| nr_pages = bio_iov_vecs_to_alloc(dio->submit.iter, |
| BIO_MAX_VECS); |
| /* |
| * We can only poll for single bio I/Os. |
| */ |
| if (nr_pages) |
| dio->iocb->ki_flags &= ~IOCB_HIPRI; |
| iomap_dio_submit_bio(iter, dio, bio, pos); |
| pos += n; |
| } while (nr_pages); |
| |
| /* |
| * We need to zeroout the tail of a sub-block write if the extent type |
| * requires zeroing or the write extends beyond EOF. If we don't zero |
| * the block tail in the latter case, we can expose stale data via mmap |
| * reads of the EOF block. |
| */ |
| zero_tail: |
| if (need_zeroout || |
| ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) { |
| /* zero out from the end of the write to the end of the block */ |
| pad = pos & (fs_block_size - 1); |
| if (pad) |
| ret = iomap_dio_zero(iter, dio, pos, |
| fs_block_size - pad); |
| } |
| out: |
| /* Undo iter limitation to current extent */ |
| iov_iter_reexpand(dio->submit.iter, orig_count - copied); |
| if (copied) |
| return copied; |
| return ret; |
| } |
| |
| static loff_t iomap_dio_hole_iter(const struct iomap_iter *iter, |
| struct iomap_dio *dio) |
| { |
| loff_t length = iov_iter_zero(iomap_length(iter), dio->submit.iter); |
| |
| dio->size += length; |
| if (!length) |
| return -EFAULT; |
| return length; |
| } |
| |
| static loff_t iomap_dio_inline_iter(const struct iomap_iter *iomi, |
| struct iomap_dio *dio) |
| { |
| const struct iomap *iomap = &iomi->iomap; |
| struct iov_iter *iter = dio->submit.iter; |
| void *inline_data = iomap_inline_data(iomap, iomi->pos); |
| loff_t length = iomap_length(iomi); |
| loff_t pos = iomi->pos; |
| size_t copied; |
| |
| if (WARN_ON_ONCE(!iomap_inline_data_valid(iomap))) |
| return -EIO; |
| |
| if (dio->flags & IOMAP_DIO_WRITE) { |
| loff_t size = iomi->inode->i_size; |
| |
| if (pos > size) |
| memset(iomap_inline_data(iomap, size), 0, pos - size); |
| copied = copy_from_iter(inline_data, length, iter); |
| if (copied) { |
| if (pos + copied > size) |
| i_size_write(iomi->inode, pos + copied); |
| mark_inode_dirty(iomi->inode); |
| } |
| } else { |
| copied = copy_to_iter(inline_data, length, iter); |
| } |
| dio->size += copied; |
| if (!copied) |
| return -EFAULT; |
| return copied; |
| } |
| |
| static loff_t iomap_dio_iter(const struct iomap_iter *iter, |
| struct iomap_dio *dio) |
| { |
| switch (iter->iomap.type) { |
| case IOMAP_HOLE: |
| if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE)) |
| return -EIO; |
| return iomap_dio_hole_iter(iter, dio); |
| case IOMAP_UNWRITTEN: |
| if (!(dio->flags & IOMAP_DIO_WRITE)) |
| return iomap_dio_hole_iter(iter, dio); |
| return iomap_dio_bio_iter(iter, dio); |
| case IOMAP_MAPPED: |
| return iomap_dio_bio_iter(iter, dio); |
| case IOMAP_INLINE: |
| return iomap_dio_inline_iter(iter, dio); |
| case IOMAP_DELALLOC: |
| /* |
| * DIO is not serialised against mmap() access at all, and so |
| * if the page_mkwrite occurs between the writeback and the |
| * iomap_iter() call in the DIO path, then it will see the |
| * DELALLOC block that the page-mkwrite allocated. |
| */ |
| pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n", |
| dio->iocb->ki_filp, current->comm); |
| return -EIO; |
| default: |
| WARN_ON_ONCE(1); |
| return -EIO; |
| } |
| } |
| |
| /* |
| * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO |
| * is being issued as AIO or not. This allows us to optimise pure data writes |
| * to use REQ_FUA rather than requiring generic_write_sync() to issue a |
| * REQ_FLUSH post write. This is slightly tricky because a single request here |
| * can be mapped into multiple disjoint IOs and only a subset of the IOs issued |
| * may be pure data writes. In that case, we still need to do a full data sync |
| * completion. |
| * |
| * When page faults are disabled and @dio_flags includes IOMAP_DIO_PARTIAL, |
| * __iomap_dio_rw can return a partial result if it encounters a non-resident |
| * page in @iter after preparing a transfer. In that case, the non-resident |
| * pages can be faulted in and the request resumed with @done_before set to the |
| * number of bytes previously transferred. The request will then complete with |
| * the correct total number of bytes transferred; this is essential for |
| * completing partial requests asynchronously. |
| * |
| * Returns -ENOTBLK In case of a page invalidation invalidation failure for |
| * writes. The callers needs to fall back to buffered I/O in this case. |
| */ |
| struct iomap_dio * |
| __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, |
| const struct iomap_ops *ops, const struct iomap_dio_ops *dops, |
| unsigned int dio_flags, void *private, size_t done_before) |
| { |
| struct inode *inode = file_inode(iocb->ki_filp); |
| struct iomap_iter iomi = { |
| .inode = inode, |
| .pos = iocb->ki_pos, |
| .len = iov_iter_count(iter), |
| .flags = IOMAP_DIRECT, |
| .private = private, |
| }; |
| bool wait_for_completion = |
| is_sync_kiocb(iocb) || (dio_flags & IOMAP_DIO_FORCE_WAIT); |
| struct blk_plug plug; |
| struct iomap_dio *dio; |
| loff_t ret = 0; |
| |
| trace_iomap_dio_rw_begin(iocb, iter, dio_flags, done_before); |
| |
| if (!iomi.len) |
| return NULL; |
| |
| dio = kmalloc(sizeof(*dio), GFP_KERNEL); |
| if (!dio) |
| return ERR_PTR(-ENOMEM); |
| |
| dio->iocb = iocb; |
| atomic_set(&dio->ref, 1); |
| dio->size = 0; |
| dio->i_size = i_size_read(inode); |
| dio->dops = dops; |
| dio->error = 0; |
| dio->flags = 0; |
| dio->done_before = done_before; |
| |
| dio->submit.iter = iter; |
| dio->submit.waiter = current; |
| |
| if (iocb->ki_flags & IOCB_NOWAIT) |
| iomi.flags |= IOMAP_NOWAIT; |
| |
| if (iov_iter_rw(iter) == READ) { |
| /* reads can always complete inline */ |
| dio->flags |= IOMAP_DIO_INLINE_COMP; |
| |
| if (iomi.pos >= dio->i_size) |
| goto out_free_dio; |
| |
| if (user_backed_iter(iter)) |
| dio->flags |= IOMAP_DIO_DIRTY; |
| |
| ret = kiocb_write_and_wait(iocb, iomi.len); |
| if (ret) |
| goto out_free_dio; |
| } else { |
| iomi.flags |= IOMAP_WRITE; |
| dio->flags |= IOMAP_DIO_WRITE; |
| |
| /* |
| * Flag as supporting deferred completions, if the issuer |
| * groks it. This can avoid a workqueue punt for writes. |
| * We may later clear this flag if we need to do other IO |
| * as part of this IO completion. |
| */ |
| if (iocb->ki_flags & IOCB_DIO_CALLER_COMP) |
| dio->flags |= IOMAP_DIO_CALLER_COMP; |
| |
| if (dio_flags & IOMAP_DIO_OVERWRITE_ONLY) { |
| ret = -EAGAIN; |
| if (iomi.pos >= dio->i_size || |
| iomi.pos + iomi.len > dio->i_size) |
| goto out_free_dio; |
| iomi.flags |= IOMAP_OVERWRITE_ONLY; |
| } |
| |
| /* for data sync or sync, we need sync completion processing */ |
| if (iocb_is_dsync(iocb)) { |
| dio->flags |= IOMAP_DIO_NEED_SYNC; |
| |
| /* |
| * For datasync only writes, we optimistically try using |
| * WRITE_THROUGH for this IO. This flag requires either |
| * FUA writes through the device's write cache, or a |
| * normal write to a device without a volatile write |
| * cache. For the former, Any non-FUA write that occurs |
| * will clear this flag, hence we know before completion |
| * whether a cache flush is necessary. |
| */ |
| if (!(iocb->ki_flags & IOCB_SYNC)) |
| dio->flags |= IOMAP_DIO_WRITE_THROUGH; |
| } |
| |
| /* |
| * Try to invalidate cache pages for the range we are writing. |
| * If this invalidation fails, let the caller fall back to |
| * buffered I/O. |
| */ |
| ret = kiocb_invalidate_pages(iocb, iomi.len); |
| if (ret) { |
| if (ret != -EAGAIN) { |
| trace_iomap_dio_invalidate_fail(inode, iomi.pos, |
| iomi.len); |
| ret = -ENOTBLK; |
| } |
| goto out_free_dio; |
| } |
| |
| if (!wait_for_completion && !inode->i_sb->s_dio_done_wq) { |
| ret = sb_init_dio_done_wq(inode->i_sb); |
| if (ret < 0) |
| goto out_free_dio; |
| } |
| } |
| |
| inode_dio_begin(inode); |
| |
| blk_start_plug(&plug); |
| while ((ret = iomap_iter(&iomi, ops)) > 0) { |
| iomi.processed = iomap_dio_iter(&iomi, dio); |
| |
| /* |
| * We can only poll for single bio I/Os. |
| */ |
| iocb->ki_flags &= ~IOCB_HIPRI; |
| } |
| |
| blk_finish_plug(&plug); |
| |
| /* |
| * We only report that we've read data up to i_size. |
| * Revert iter to a state corresponding to that as some callers (such |
| * as the splice code) rely on it. |
| */ |
| if (iov_iter_rw(iter) == READ && iomi.pos >= dio->i_size) |
| iov_iter_revert(iter, iomi.pos - dio->i_size); |
| |
| if (ret == -EFAULT && dio->size && (dio_flags & IOMAP_DIO_PARTIAL)) { |
| if (!(iocb->ki_flags & IOCB_NOWAIT)) |
| wait_for_completion = true; |
| ret = 0; |
| } |
| |
| /* magic error code to fall back to buffered I/O */ |
| if (ret == -ENOTBLK) { |
| wait_for_completion = true; |
| ret = 0; |
| } |
| if (ret < 0) |
| iomap_dio_set_error(dio, ret); |
| |
| /* |
| * If all the writes we issued were already written through to the |
| * media, we don't need to flush the cache on IO completion. Clear the |
| * sync flag for this case. |
| */ |
| if (dio->flags & IOMAP_DIO_WRITE_THROUGH) |
| dio->flags &= ~IOMAP_DIO_NEED_SYNC; |
| |
| /* |
| * We are about to drop our additional submission reference, which |
| * might be the last reference to the dio. There are three different |
| * ways we can progress here: |
| * |
| * (a) If this is the last reference we will always complete and free |
| * the dio ourselves. |
| * (b) If this is not the last reference, and we serve an asynchronous |
| * iocb, we must never touch the dio after the decrement, the |
| * I/O completion handler will complete and free it. |
| * (c) If this is not the last reference, but we serve a synchronous |
| * iocb, the I/O completion handler will wake us up on the drop |
| * of the final reference, and we will complete and free it here |
| * after we got woken by the I/O completion handler. |
| */ |
| dio->wait_for_completion = wait_for_completion; |
| if (!atomic_dec_and_test(&dio->ref)) { |
| if (!wait_for_completion) { |
| trace_iomap_dio_rw_queued(inode, iomi.pos, iomi.len); |
| return ERR_PTR(-EIOCBQUEUED); |
| } |
| |
| for (;;) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| if (!READ_ONCE(dio->submit.waiter)) |
| break; |
| |
| blk_io_schedule(); |
| } |
| __set_current_state(TASK_RUNNING); |
| } |
| |
| return dio; |
| |
| out_free_dio: |
| kfree(dio); |
| if (ret) |
| return ERR_PTR(ret); |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(__iomap_dio_rw); |
| |
| ssize_t |
| iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, |
| const struct iomap_ops *ops, const struct iomap_dio_ops *dops, |
| unsigned int dio_flags, void *private, size_t done_before) |
| { |
| struct iomap_dio *dio; |
| |
| dio = __iomap_dio_rw(iocb, iter, ops, dops, dio_flags, private, |
| done_before); |
| if (IS_ERR_OR_NULL(dio)) |
| return PTR_ERR_OR_ZERO(dio); |
| return iomap_dio_complete(dio); |
| } |
| EXPORT_SYMBOL_GPL(iomap_dio_rw); |
| |
| static int __init iomap_dio_init(void) |
| { |
| zero_page = alloc_pages(GFP_KERNEL | __GFP_ZERO, |
| IOMAP_ZERO_PAGE_ORDER); |
| |
| if (!zero_page) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| fs_initcall(iomap_dio_init); |