| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * crash.c - kernel crash support code. |
| * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/buildid.h> |
| #include <linux/init.h> |
| #include <linux/utsname.h> |
| #include <linux/vmalloc.h> |
| #include <linux/sizes.h> |
| #include <linux/kexec.h> |
| #include <linux/memory.h> |
| #include <linux/mm.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/memblock.h> |
| #include <linux/kmemleak.h> |
| #include <linux/crash_core.h> |
| #include <linux/reboot.h> |
| #include <linux/btf.h> |
| #include <linux/objtool.h> |
| |
| #include <asm/page.h> |
| #include <asm/sections.h> |
| |
| #include <crypto/sha1.h> |
| |
| #include "kallsyms_internal.h" |
| #include "kexec_internal.h" |
| |
| /* Per cpu memory for storing cpu states in case of system crash. */ |
| note_buf_t __percpu *crash_notes; |
| |
| #ifdef CONFIG_CRASH_DUMP |
| |
| int kimage_crash_copy_vmcoreinfo(struct kimage *image) |
| { |
| struct page *vmcoreinfo_page; |
| void *safecopy; |
| |
| if (!IS_ENABLED(CONFIG_CRASH_DUMP)) |
| return 0; |
| if (image->type != KEXEC_TYPE_CRASH) |
| return 0; |
| |
| /* |
| * For kdump, allocate one vmcoreinfo safe copy from the |
| * crash memory. as we have arch_kexec_protect_crashkres() |
| * after kexec syscall, we naturally protect it from write |
| * (even read) access under kernel direct mapping. But on |
| * the other hand, we still need to operate it when crash |
| * happens to generate vmcoreinfo note, hereby we rely on |
| * vmap for this purpose. |
| */ |
| vmcoreinfo_page = kimage_alloc_control_pages(image, 0); |
| if (!vmcoreinfo_page) { |
| pr_warn("Could not allocate vmcoreinfo buffer\n"); |
| return -ENOMEM; |
| } |
| safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); |
| if (!safecopy) { |
| pr_warn("Could not vmap vmcoreinfo buffer\n"); |
| return -ENOMEM; |
| } |
| |
| image->vmcoreinfo_data_copy = safecopy; |
| crash_update_vmcoreinfo_safecopy(safecopy); |
| |
| return 0; |
| } |
| |
| |
| |
| int kexec_should_crash(struct task_struct *p) |
| { |
| /* |
| * If crash_kexec_post_notifiers is enabled, don't run |
| * crash_kexec() here yet, which must be run after panic |
| * notifiers in panic(). |
| */ |
| if (crash_kexec_post_notifiers) |
| return 0; |
| /* |
| * There are 4 panic() calls in make_task_dead() path, each of which |
| * corresponds to each of these 4 conditions. |
| */ |
| if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) |
| return 1; |
| return 0; |
| } |
| |
| int kexec_crash_loaded(void) |
| { |
| return !!kexec_crash_image; |
| } |
| EXPORT_SYMBOL_GPL(kexec_crash_loaded); |
| |
| /* |
| * No panic_cpu check version of crash_kexec(). This function is called |
| * only when panic_cpu holds the current CPU number; this is the only CPU |
| * which processes crash_kexec routines. |
| */ |
| void __noclone __crash_kexec(struct pt_regs *regs) |
| { |
| /* Take the kexec_lock here to prevent sys_kexec_load |
| * running on one cpu from replacing the crash kernel |
| * we are using after a panic on a different cpu. |
| * |
| * If the crash kernel was not located in a fixed area |
| * of memory the xchg(&kexec_crash_image) would be |
| * sufficient. But since I reuse the memory... |
| */ |
| if (kexec_trylock()) { |
| if (kexec_crash_image) { |
| struct pt_regs fixed_regs; |
| |
| crash_setup_regs(&fixed_regs, regs); |
| crash_save_vmcoreinfo(); |
| machine_crash_shutdown(&fixed_regs); |
| machine_kexec(kexec_crash_image); |
| } |
| kexec_unlock(); |
| } |
| } |
| STACK_FRAME_NON_STANDARD(__crash_kexec); |
| |
| __bpf_kfunc void crash_kexec(struct pt_regs *regs) |
| { |
| int old_cpu, this_cpu; |
| |
| /* |
| * Only one CPU is allowed to execute the crash_kexec() code as with |
| * panic(). Otherwise parallel calls of panic() and crash_kexec() |
| * may stop each other. To exclude them, we use panic_cpu here too. |
| */ |
| old_cpu = PANIC_CPU_INVALID; |
| this_cpu = raw_smp_processor_id(); |
| |
| if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) { |
| /* This is the 1st CPU which comes here, so go ahead. */ |
| __crash_kexec(regs); |
| |
| /* |
| * Reset panic_cpu to allow another panic()/crash_kexec() |
| * call. |
| */ |
| atomic_set(&panic_cpu, PANIC_CPU_INVALID); |
| } |
| } |
| |
| static inline resource_size_t crash_resource_size(const struct resource *res) |
| { |
| return !res->end ? 0 : resource_size(res); |
| } |
| |
| |
| |
| |
| int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map, |
| void **addr, unsigned long *sz) |
| { |
| Elf64_Ehdr *ehdr; |
| Elf64_Phdr *phdr; |
| unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; |
| unsigned char *buf; |
| unsigned int cpu, i; |
| unsigned long long notes_addr; |
| unsigned long mstart, mend; |
| |
| /* extra phdr for vmcoreinfo ELF note */ |
| nr_phdr = nr_cpus + 1; |
| nr_phdr += mem->nr_ranges; |
| |
| /* |
| * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping |
| * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). |
| * I think this is required by tools like gdb. So same physical |
| * memory will be mapped in two ELF headers. One will contain kernel |
| * text virtual addresses and other will have __va(physical) addresses. |
| */ |
| |
| nr_phdr++; |
| elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); |
| elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); |
| |
| buf = vzalloc(elf_sz); |
| if (!buf) |
| return -ENOMEM; |
| |
| ehdr = (Elf64_Ehdr *)buf; |
| phdr = (Elf64_Phdr *)(ehdr + 1); |
| memcpy(ehdr->e_ident, ELFMAG, SELFMAG); |
| ehdr->e_ident[EI_CLASS] = ELFCLASS64; |
| ehdr->e_ident[EI_DATA] = ELFDATA2LSB; |
| ehdr->e_ident[EI_VERSION] = EV_CURRENT; |
| ehdr->e_ident[EI_OSABI] = ELF_OSABI; |
| memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); |
| ehdr->e_type = ET_CORE; |
| ehdr->e_machine = ELF_ARCH; |
| ehdr->e_version = EV_CURRENT; |
| ehdr->e_phoff = sizeof(Elf64_Ehdr); |
| ehdr->e_ehsize = sizeof(Elf64_Ehdr); |
| ehdr->e_phentsize = sizeof(Elf64_Phdr); |
| |
| /* Prepare one phdr of type PT_NOTE for each possible CPU */ |
| for_each_possible_cpu(cpu) { |
| phdr->p_type = PT_NOTE; |
| notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); |
| phdr->p_offset = phdr->p_paddr = notes_addr; |
| phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); |
| (ehdr->e_phnum)++; |
| phdr++; |
| } |
| |
| /* Prepare one PT_NOTE header for vmcoreinfo */ |
| phdr->p_type = PT_NOTE; |
| phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); |
| phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; |
| (ehdr->e_phnum)++; |
| phdr++; |
| |
| /* Prepare PT_LOAD type program header for kernel text region */ |
| if (need_kernel_map) { |
| phdr->p_type = PT_LOAD; |
| phdr->p_flags = PF_R|PF_W|PF_X; |
| phdr->p_vaddr = (unsigned long) _text; |
| phdr->p_filesz = phdr->p_memsz = _end - _text; |
| phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); |
| ehdr->e_phnum++; |
| phdr++; |
| } |
| |
| /* Go through all the ranges in mem->ranges[] and prepare phdr */ |
| for (i = 0; i < mem->nr_ranges; i++) { |
| mstart = mem->ranges[i].start; |
| mend = mem->ranges[i].end; |
| |
| phdr->p_type = PT_LOAD; |
| phdr->p_flags = PF_R|PF_W|PF_X; |
| phdr->p_offset = mstart; |
| |
| phdr->p_paddr = mstart; |
| phdr->p_vaddr = (unsigned long) __va(mstart); |
| phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; |
| phdr->p_align = 0; |
| ehdr->e_phnum++; |
| #ifdef CONFIG_KEXEC_FILE |
| kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", |
| phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, |
| ehdr->e_phnum, phdr->p_offset); |
| #endif |
| phdr++; |
| } |
| |
| *addr = buf; |
| *sz = elf_sz; |
| return 0; |
| } |
| |
| int crash_exclude_mem_range(struct crash_mem *mem, |
| unsigned long long mstart, unsigned long long mend) |
| { |
| int i; |
| unsigned long long start, end, p_start, p_end; |
| |
| for (i = 0; i < mem->nr_ranges; i++) { |
| start = mem->ranges[i].start; |
| end = mem->ranges[i].end; |
| p_start = mstart; |
| p_end = mend; |
| |
| if (p_start > end) |
| continue; |
| |
| /* |
| * Because the memory ranges in mem->ranges are stored in |
| * ascending order, when we detect `p_end < start`, we can |
| * immediately exit the for loop, as the subsequent memory |
| * ranges will definitely be outside the range we are looking |
| * for. |
| */ |
| if (p_end < start) |
| break; |
| |
| /* Truncate any area outside of range */ |
| if (p_start < start) |
| p_start = start; |
| if (p_end > end) |
| p_end = end; |
| |
| /* Found completely overlapping range */ |
| if (p_start == start && p_end == end) { |
| memmove(&mem->ranges[i], &mem->ranges[i + 1], |
| (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); |
| i--; |
| mem->nr_ranges--; |
| } else if (p_start > start && p_end < end) { |
| /* Split original range */ |
| if (mem->nr_ranges >= mem->max_nr_ranges) |
| return -ENOMEM; |
| |
| memmove(&mem->ranges[i + 2], &mem->ranges[i + 1], |
| (mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i])); |
| |
| mem->ranges[i].end = p_start - 1; |
| mem->ranges[i + 1].start = p_end + 1; |
| mem->ranges[i + 1].end = end; |
| |
| i++; |
| mem->nr_ranges++; |
| } else if (p_start != start) |
| mem->ranges[i].end = p_start - 1; |
| else |
| mem->ranges[i].start = p_end + 1; |
| } |
| |
| return 0; |
| } |
| |
| ssize_t crash_get_memory_size(void) |
| { |
| ssize_t size = 0; |
| |
| if (!kexec_trylock()) |
| return -EBUSY; |
| |
| size += crash_resource_size(&crashk_res); |
| size += crash_resource_size(&crashk_low_res); |
| |
| kexec_unlock(); |
| return size; |
| } |
| |
| static int __crash_shrink_memory(struct resource *old_res, |
| unsigned long new_size) |
| { |
| struct resource *ram_res; |
| |
| ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); |
| if (!ram_res) |
| return -ENOMEM; |
| |
| ram_res->start = old_res->start + new_size; |
| ram_res->end = old_res->end; |
| ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; |
| ram_res->name = "System RAM"; |
| |
| if (!new_size) { |
| release_resource(old_res); |
| old_res->start = 0; |
| old_res->end = 0; |
| } else { |
| crashk_res.end = ram_res->start - 1; |
| } |
| |
| crash_free_reserved_phys_range(ram_res->start, ram_res->end); |
| insert_resource(&iomem_resource, ram_res); |
| |
| return 0; |
| } |
| |
| int crash_shrink_memory(unsigned long new_size) |
| { |
| int ret = 0; |
| unsigned long old_size, low_size; |
| |
| if (!kexec_trylock()) |
| return -EBUSY; |
| |
| if (kexec_crash_image) { |
| ret = -ENOENT; |
| goto unlock; |
| } |
| |
| low_size = crash_resource_size(&crashk_low_res); |
| old_size = crash_resource_size(&crashk_res) + low_size; |
| new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); |
| if (new_size >= old_size) { |
| ret = (new_size == old_size) ? 0 : -EINVAL; |
| goto unlock; |
| } |
| |
| /* |
| * (low_size > new_size) implies that low_size is greater than zero. |
| * This also means that if low_size is zero, the else branch is taken. |
| * |
| * If low_size is greater than 0, (low_size > new_size) indicates that |
| * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res |
| * needs to be shrunken. |
| */ |
| if (low_size > new_size) { |
| ret = __crash_shrink_memory(&crashk_res, 0); |
| if (ret) |
| goto unlock; |
| |
| ret = __crash_shrink_memory(&crashk_low_res, new_size); |
| } else { |
| ret = __crash_shrink_memory(&crashk_res, new_size - low_size); |
| } |
| |
| /* Swap crashk_res and crashk_low_res if needed */ |
| if (!crashk_res.end && crashk_low_res.end) { |
| crashk_res.start = crashk_low_res.start; |
| crashk_res.end = crashk_low_res.end; |
| release_resource(&crashk_low_res); |
| crashk_low_res.start = 0; |
| crashk_low_res.end = 0; |
| insert_resource(&iomem_resource, &crashk_res); |
| } |
| |
| unlock: |
| kexec_unlock(); |
| return ret; |
| } |
| |
| void crash_save_cpu(struct pt_regs *regs, int cpu) |
| { |
| struct elf_prstatus prstatus; |
| u32 *buf; |
| |
| if ((cpu < 0) || (cpu >= nr_cpu_ids)) |
| return; |
| |
| /* Using ELF notes here is opportunistic. |
| * I need a well defined structure format |
| * for the data I pass, and I need tags |
| * on the data to indicate what information I have |
| * squirrelled away. ELF notes happen to provide |
| * all of that, so there is no need to invent something new. |
| */ |
| buf = (u32 *)per_cpu_ptr(crash_notes, cpu); |
| if (!buf) |
| return; |
| memset(&prstatus, 0, sizeof(prstatus)); |
| prstatus.common.pr_pid = current->pid; |
| elf_core_copy_regs(&prstatus.pr_reg, regs); |
| buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
| &prstatus, sizeof(prstatus)); |
| final_note(buf); |
| } |
| |
| |
| |
| static int __init crash_notes_memory_init(void) |
| { |
| /* Allocate memory for saving cpu registers. */ |
| size_t size, align; |
| |
| /* |
| * crash_notes could be allocated across 2 vmalloc pages when percpu |
| * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc |
| * pages are also on 2 continuous physical pages. In this case the |
| * 2nd part of crash_notes in 2nd page could be lost since only the |
| * starting address and size of crash_notes are exported through sysfs. |
| * Here round up the size of crash_notes to the nearest power of two |
| * and pass it to __alloc_percpu as align value. This can make sure |
| * crash_notes is allocated inside one physical page. |
| */ |
| size = sizeof(note_buf_t); |
| align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); |
| |
| /* |
| * Break compile if size is bigger than PAGE_SIZE since crash_notes |
| * definitely will be in 2 pages with that. |
| */ |
| BUILD_BUG_ON(size > PAGE_SIZE); |
| |
| crash_notes = __alloc_percpu(size, align); |
| if (!crash_notes) { |
| pr_warn("Memory allocation for saving cpu register states failed\n"); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| subsys_initcall(crash_notes_memory_init); |
| |
| #endif /*CONFIG_CRASH_DUMP*/ |
| |
| #ifdef CONFIG_CRASH_HOTPLUG |
| #undef pr_fmt |
| #define pr_fmt(fmt) "crash hp: " fmt |
| |
| /* |
| * Different than kexec/kdump loading/unloading/jumping/shrinking which |
| * usually rarely happen, there will be many crash hotplug events notified |
| * during one short period, e.g one memory board is hot added and memory |
| * regions are online. So mutex lock __crash_hotplug_lock is used to |
| * serialize the crash hotplug handling specifically. |
| */ |
| static DEFINE_MUTEX(__crash_hotplug_lock); |
| #define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock) |
| #define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock) |
| |
| /* |
| * This routine utilized when the crash_hotplug sysfs node is read. |
| * It reflects the kernel's ability/permission to update the kdump |
| * image directly. |
| */ |
| int crash_check_hotplug_support(void) |
| { |
| int rc = 0; |
| |
| crash_hotplug_lock(); |
| /* Obtain lock while reading crash information */ |
| if (!kexec_trylock()) { |
| pr_info("kexec_trylock() failed, kdump image may be inaccurate\n"); |
| crash_hotplug_unlock(); |
| return 0; |
| } |
| if (kexec_crash_image) { |
| rc = kexec_crash_image->hotplug_support; |
| } |
| /* Release lock now that update complete */ |
| kexec_unlock(); |
| crash_hotplug_unlock(); |
| |
| return rc; |
| } |
| |
| /* |
| * To accurately reflect hot un/plug changes of CPU and Memory resources |
| * (including onling and offlining of those resources), the relevant |
| * kexec segments must be updated with latest CPU and Memory resources. |
| * |
| * Architectures must ensure two things for all segments that need |
| * updating during hotplug events: |
| * |
| * 1. Segments must be large enough to accommodate a growing number of |
| * resources. |
| * 2. Exclude the segments from SHA verification. |
| * |
| * For example, on most architectures, the elfcorehdr (which is passed |
| * to the crash kernel via the elfcorehdr= parameter) must include the |
| * new list of CPUs and memory. To make changes to the elfcorehdr, it |
| * should be large enough to permit a growing number of CPU and Memory |
| * resources. One can estimate the elfcorehdr memory size based on |
| * NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is |
| * excluded from SHA verification by default if the architecture |
| * supports crash hotplug. |
| */ |
| static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg) |
| { |
| struct kimage *image; |
| |
| crash_hotplug_lock(); |
| /* Obtain lock while changing crash information */ |
| if (!kexec_trylock()) { |
| pr_info("kexec_trylock() failed, kdump image may be inaccurate\n"); |
| crash_hotplug_unlock(); |
| return; |
| } |
| |
| /* Check kdump is not loaded */ |
| if (!kexec_crash_image) |
| goto out; |
| |
| image = kexec_crash_image; |
| |
| /* Check that kexec segments update is permitted */ |
| if (!image->hotplug_support) |
| goto out; |
| |
| if (hp_action == KEXEC_CRASH_HP_ADD_CPU || |
| hp_action == KEXEC_CRASH_HP_REMOVE_CPU) |
| pr_debug("hp_action %u, cpu %u\n", hp_action, cpu); |
| else |
| pr_debug("hp_action %u\n", hp_action); |
| |
| /* |
| * The elfcorehdr_index is set to -1 when the struct kimage |
| * is allocated. Find the segment containing the elfcorehdr, |
| * if not already found. |
| */ |
| if (image->elfcorehdr_index < 0) { |
| unsigned long mem; |
| unsigned char *ptr; |
| unsigned int n; |
| |
| for (n = 0; n < image->nr_segments; n++) { |
| mem = image->segment[n].mem; |
| ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT)); |
| if (ptr) { |
| /* The segment containing elfcorehdr */ |
| if (memcmp(ptr, ELFMAG, SELFMAG) == 0) |
| image->elfcorehdr_index = (int)n; |
| kunmap_local(ptr); |
| } |
| } |
| } |
| |
| if (image->elfcorehdr_index < 0) { |
| pr_err("unable to locate elfcorehdr segment"); |
| goto out; |
| } |
| |
| /* Needed in order for the segments to be updated */ |
| arch_kexec_unprotect_crashkres(); |
| |
| /* Differentiate between normal load and hotplug update */ |
| image->hp_action = hp_action; |
| |
| /* Now invoke arch-specific update handler */ |
| arch_crash_handle_hotplug_event(image, arg); |
| |
| /* No longer handling a hotplug event */ |
| image->hp_action = KEXEC_CRASH_HP_NONE; |
| image->elfcorehdr_updated = true; |
| |
| /* Change back to read-only */ |
| arch_kexec_protect_crashkres(); |
| |
| /* Errors in the callback is not a reason to rollback state */ |
| out: |
| /* Release lock now that update complete */ |
| kexec_unlock(); |
| crash_hotplug_unlock(); |
| } |
| |
| static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg) |
| { |
| switch (val) { |
| case MEM_ONLINE: |
| crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY, |
| KEXEC_CRASH_HP_INVALID_CPU, arg); |
| break; |
| |
| case MEM_OFFLINE: |
| crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY, |
| KEXEC_CRASH_HP_INVALID_CPU, arg); |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block crash_memhp_nb = { |
| .notifier_call = crash_memhp_notifier, |
| .priority = 0 |
| }; |
| |
| static int crash_cpuhp_online(unsigned int cpu) |
| { |
| crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL); |
| return 0; |
| } |
| |
| static int crash_cpuhp_offline(unsigned int cpu) |
| { |
| crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL); |
| return 0; |
| } |
| |
| static int __init crash_hotplug_init(void) |
| { |
| int result = 0; |
| |
| if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) |
| register_memory_notifier(&crash_memhp_nb); |
| |
| if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { |
| result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, |
| "crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline); |
| } |
| |
| return result; |
| } |
| |
| subsys_initcall(crash_hotplug_init); |
| #endif |