| // SPDX-License-Identifier: GPL-2.0 |
| #define pr_fmt(fmt) "kcov: " fmt |
| |
| #define DISABLE_BRANCH_PROFILING |
| #include <linux/atomic.h> |
| #include <linux/compiler.h> |
| #include <linux/errno.h> |
| #include <linux/export.h> |
| #include <linux/types.h> |
| #include <linux/file.h> |
| #include <linux/fs.h> |
| #include <linux/hashtable.h> |
| #include <linux/init.h> |
| #include <linux/jiffies.h> |
| #include <linux/kmsan-checks.h> |
| #include <linux/mm.h> |
| #include <linux/preempt.h> |
| #include <linux/printk.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/vmalloc.h> |
| #include <linux/debugfs.h> |
| #include <linux/uaccess.h> |
| #include <linux/kcov.h> |
| #include <linux/refcount.h> |
| #include <linux/log2.h> |
| #include <asm/setup.h> |
| |
| #define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__) |
| |
| /* Number of 64-bit words written per one comparison: */ |
| #define KCOV_WORDS_PER_CMP 4 |
| |
| /* |
| * kcov descriptor (one per opened debugfs file). |
| * State transitions of the descriptor: |
| * - initial state after open() |
| * - then there must be a single ioctl(KCOV_INIT_TRACE) call |
| * - then, mmap() call (several calls are allowed but not useful) |
| * - then, ioctl(KCOV_ENABLE, arg), where arg is |
| * KCOV_TRACE_PC - to trace only the PCs |
| * or |
| * KCOV_TRACE_CMP - to trace only the comparison operands |
| * - then, ioctl(KCOV_DISABLE) to disable the task. |
| * Enabling/disabling ioctls can be repeated (only one task a time allowed). |
| */ |
| struct kcov { |
| /* |
| * Reference counter. We keep one for: |
| * - opened file descriptor |
| * - task with enabled coverage (we can't unwire it from another task) |
| * - each code section for remote coverage collection |
| */ |
| refcount_t refcount; |
| /* The lock protects mode, size, area and t. */ |
| spinlock_t lock; |
| enum kcov_mode mode; |
| /* Size of arena (in long's). */ |
| unsigned int size; |
| /* Coverage buffer shared with user space. */ |
| void *area; |
| /* Task for which we collect coverage, or NULL. */ |
| struct task_struct *t; |
| /* Collecting coverage from remote (background) threads. */ |
| bool remote; |
| /* Size of remote area (in long's). */ |
| unsigned int remote_size; |
| /* |
| * Sequence is incremented each time kcov is reenabled, used by |
| * kcov_remote_stop(), see the comment there. |
| */ |
| int sequence; |
| }; |
| |
| struct kcov_remote_area { |
| struct list_head list; |
| unsigned int size; |
| }; |
| |
| struct kcov_remote { |
| u64 handle; |
| struct kcov *kcov; |
| struct hlist_node hnode; |
| }; |
| |
| static DEFINE_SPINLOCK(kcov_remote_lock); |
| static DEFINE_HASHTABLE(kcov_remote_map, 4); |
| static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas); |
| |
| struct kcov_percpu_data { |
| void *irq_area; |
| local_lock_t lock; |
| |
| unsigned int saved_mode; |
| unsigned int saved_size; |
| void *saved_area; |
| struct kcov *saved_kcov; |
| int saved_sequence; |
| }; |
| |
| static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = { |
| .lock = INIT_LOCAL_LOCK(lock), |
| }; |
| |
| /* Must be called with kcov_remote_lock locked. */ |
| static struct kcov_remote *kcov_remote_find(u64 handle) |
| { |
| struct kcov_remote *remote; |
| |
| hash_for_each_possible(kcov_remote_map, remote, hnode, handle) { |
| if (remote->handle == handle) |
| return remote; |
| } |
| return NULL; |
| } |
| |
| /* Must be called with kcov_remote_lock locked. */ |
| static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle) |
| { |
| struct kcov_remote *remote; |
| |
| if (kcov_remote_find(handle)) |
| return ERR_PTR(-EEXIST); |
| remote = kmalloc(sizeof(*remote), GFP_ATOMIC); |
| if (!remote) |
| return ERR_PTR(-ENOMEM); |
| remote->handle = handle; |
| remote->kcov = kcov; |
| hash_add(kcov_remote_map, &remote->hnode, handle); |
| return remote; |
| } |
| |
| /* Must be called with kcov_remote_lock locked. */ |
| static struct kcov_remote_area *kcov_remote_area_get(unsigned int size) |
| { |
| struct kcov_remote_area *area; |
| struct list_head *pos; |
| |
| list_for_each(pos, &kcov_remote_areas) { |
| area = list_entry(pos, struct kcov_remote_area, list); |
| if (area->size == size) { |
| list_del(&area->list); |
| return area; |
| } |
| } |
| return NULL; |
| } |
| |
| /* Must be called with kcov_remote_lock locked. */ |
| static void kcov_remote_area_put(struct kcov_remote_area *area, |
| unsigned int size) |
| { |
| INIT_LIST_HEAD(&area->list); |
| area->size = size; |
| list_add(&area->list, &kcov_remote_areas); |
| /* |
| * KMSAN doesn't instrument this file, so it may not know area->list |
| * is initialized. Unpoison it explicitly to avoid reports in |
| * kcov_remote_area_get(). |
| */ |
| kmsan_unpoison_memory(&area->list, sizeof(area->list)); |
| } |
| |
| /* |
| * Unlike in_serving_softirq(), this function returns false when called during |
| * a hardirq or an NMI that happened in the softirq context. |
| */ |
| static __always_inline bool in_softirq_really(void) |
| { |
| return in_serving_softirq() && !in_hardirq() && !in_nmi(); |
| } |
| |
| static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t) |
| { |
| unsigned int mode; |
| |
| /* |
| * We are interested in code coverage as a function of a syscall inputs, |
| * so we ignore code executed in interrupts, unless we are in a remote |
| * coverage collection section in a softirq. |
| */ |
| if (!in_task() && !(in_softirq_really() && t->kcov_softirq)) |
| return false; |
| mode = READ_ONCE(t->kcov_mode); |
| /* |
| * There is some code that runs in interrupts but for which |
| * in_interrupt() returns false (e.g. preempt_schedule_irq()). |
| * READ_ONCE()/barrier() effectively provides load-acquire wrt |
| * interrupts, there are paired barrier()/WRITE_ONCE() in |
| * kcov_start(). |
| */ |
| barrier(); |
| return mode == needed_mode; |
| } |
| |
| static notrace unsigned long canonicalize_ip(unsigned long ip) |
| { |
| #ifdef CONFIG_RANDOMIZE_BASE |
| ip -= kaslr_offset(); |
| #endif |
| return ip; |
| } |
| |
| /* |
| * Entry point from instrumented code. |
| * This is called once per basic-block/edge. |
| */ |
| void notrace __sanitizer_cov_trace_pc(void) |
| { |
| struct task_struct *t; |
| unsigned long *area; |
| unsigned long ip = canonicalize_ip(_RET_IP_); |
| unsigned long pos; |
| |
| t = current; |
| if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t)) |
| return; |
| |
| area = t->kcov_area; |
| /* The first 64-bit word is the number of subsequent PCs. */ |
| pos = READ_ONCE(area[0]) + 1; |
| if (likely(pos < t->kcov_size)) { |
| /* Previously we write pc before updating pos. However, some |
| * early interrupt code could bypass check_kcov_mode() check |
| * and invoke __sanitizer_cov_trace_pc(). If such interrupt is |
| * raised between writing pc and updating pos, the pc could be |
| * overitten by the recursive __sanitizer_cov_trace_pc(). |
| * Update pos before writing pc to avoid such interleaving. |
| */ |
| WRITE_ONCE(area[0], pos); |
| barrier(); |
| area[pos] = ip; |
| } |
| } |
| EXPORT_SYMBOL(__sanitizer_cov_trace_pc); |
| |
| #ifdef CONFIG_KCOV_ENABLE_COMPARISONS |
| static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip) |
| { |
| struct task_struct *t; |
| u64 *area; |
| u64 count, start_index, end_pos, max_pos; |
| |
| t = current; |
| if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t)) |
| return; |
| |
| ip = canonicalize_ip(ip); |
| |
| /* |
| * We write all comparison arguments and types as u64. |
| * The buffer was allocated for t->kcov_size unsigned longs. |
| */ |
| area = (u64 *)t->kcov_area; |
| max_pos = t->kcov_size * sizeof(unsigned long); |
| |
| count = READ_ONCE(area[0]); |
| |
| /* Every record is KCOV_WORDS_PER_CMP 64-bit words. */ |
| start_index = 1 + count * KCOV_WORDS_PER_CMP; |
| end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64); |
| if (likely(end_pos <= max_pos)) { |
| /* See comment in __sanitizer_cov_trace_pc(). */ |
| WRITE_ONCE(area[0], count + 1); |
| barrier(); |
| area[start_index] = type; |
| area[start_index + 1] = arg1; |
| area[start_index + 2] = arg2; |
| area[start_index + 3] = ip; |
| } |
| } |
| |
| void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2) |
| { |
| write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1); |
| |
| void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2) |
| { |
| write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2); |
| |
| void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2) |
| { |
| write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4); |
| |
| void notrace __sanitizer_cov_trace_cmp8(kcov_u64 arg1, kcov_u64 arg2) |
| { |
| write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8); |
| |
| void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2) |
| { |
| write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2, |
| _RET_IP_); |
| } |
| EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1); |
| |
| void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2) |
| { |
| write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2, |
| _RET_IP_); |
| } |
| EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2); |
| |
| void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2) |
| { |
| write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2, |
| _RET_IP_); |
| } |
| EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4); |
| |
| void notrace __sanitizer_cov_trace_const_cmp8(kcov_u64 arg1, kcov_u64 arg2) |
| { |
| write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2, |
| _RET_IP_); |
| } |
| EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8); |
| |
| void notrace __sanitizer_cov_trace_switch(kcov_u64 val, void *arg) |
| { |
| u64 i; |
| u64 *cases = arg; |
| u64 count = cases[0]; |
| u64 size = cases[1]; |
| u64 type = KCOV_CMP_CONST; |
| |
| switch (size) { |
| case 8: |
| type |= KCOV_CMP_SIZE(0); |
| break; |
| case 16: |
| type |= KCOV_CMP_SIZE(1); |
| break; |
| case 32: |
| type |= KCOV_CMP_SIZE(2); |
| break; |
| case 64: |
| type |= KCOV_CMP_SIZE(3); |
| break; |
| default: |
| return; |
| } |
| for (i = 0; i < count; i++) |
| write_comp_data(type, cases[i + 2], val, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__sanitizer_cov_trace_switch); |
| #endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */ |
| |
| static void kcov_start(struct task_struct *t, struct kcov *kcov, |
| unsigned int size, void *area, enum kcov_mode mode, |
| int sequence) |
| { |
| kcov_debug("t = %px, size = %u, area = %px\n", t, size, area); |
| t->kcov = kcov; |
| /* Cache in task struct for performance. */ |
| t->kcov_size = size; |
| t->kcov_area = area; |
| t->kcov_sequence = sequence; |
| /* See comment in check_kcov_mode(). */ |
| barrier(); |
| WRITE_ONCE(t->kcov_mode, mode); |
| } |
| |
| static void kcov_stop(struct task_struct *t) |
| { |
| WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED); |
| barrier(); |
| t->kcov = NULL; |
| t->kcov_size = 0; |
| t->kcov_area = NULL; |
| } |
| |
| static void kcov_task_reset(struct task_struct *t) |
| { |
| kcov_stop(t); |
| t->kcov_sequence = 0; |
| t->kcov_handle = 0; |
| } |
| |
| void kcov_task_init(struct task_struct *t) |
| { |
| kcov_task_reset(t); |
| t->kcov_handle = current->kcov_handle; |
| } |
| |
| static void kcov_reset(struct kcov *kcov) |
| { |
| kcov->t = NULL; |
| kcov->mode = KCOV_MODE_INIT; |
| kcov->remote = false; |
| kcov->remote_size = 0; |
| kcov->sequence++; |
| } |
| |
| static void kcov_remote_reset(struct kcov *kcov) |
| { |
| int bkt; |
| struct kcov_remote *remote; |
| struct hlist_node *tmp; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&kcov_remote_lock, flags); |
| hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) { |
| if (remote->kcov != kcov) |
| continue; |
| hash_del(&remote->hnode); |
| kfree(remote); |
| } |
| /* Do reset before unlock to prevent races with kcov_remote_start(). */ |
| kcov_reset(kcov); |
| spin_unlock_irqrestore(&kcov_remote_lock, flags); |
| } |
| |
| static void kcov_disable(struct task_struct *t, struct kcov *kcov) |
| { |
| kcov_task_reset(t); |
| if (kcov->remote) |
| kcov_remote_reset(kcov); |
| else |
| kcov_reset(kcov); |
| } |
| |
| static void kcov_get(struct kcov *kcov) |
| { |
| refcount_inc(&kcov->refcount); |
| } |
| |
| static void kcov_put(struct kcov *kcov) |
| { |
| if (refcount_dec_and_test(&kcov->refcount)) { |
| kcov_remote_reset(kcov); |
| vfree(kcov->area); |
| kfree(kcov); |
| } |
| } |
| |
| void kcov_task_exit(struct task_struct *t) |
| { |
| struct kcov *kcov; |
| unsigned long flags; |
| |
| kcov = t->kcov; |
| if (kcov == NULL) |
| return; |
| |
| spin_lock_irqsave(&kcov->lock, flags); |
| kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t); |
| /* |
| * For KCOV_ENABLE devices we want to make sure that t->kcov->t == t, |
| * which comes down to: |
| * WARN_ON(!kcov->remote && kcov->t != t); |
| * |
| * For KCOV_REMOTE_ENABLE devices, the exiting task is either: |
| * |
| * 1. A remote task between kcov_remote_start() and kcov_remote_stop(). |
| * In this case we should print a warning right away, since a task |
| * shouldn't be exiting when it's in a kcov coverage collection |
| * section. Here t points to the task that is collecting remote |
| * coverage, and t->kcov->t points to the thread that created the |
| * kcov device. Which means that to detect this case we need to |
| * check that t != t->kcov->t, and this gives us the following: |
| * WARN_ON(kcov->remote && kcov->t != t); |
| * |
| * 2. The task that created kcov exiting without calling KCOV_DISABLE, |
| * and then again we make sure that t->kcov->t == t: |
| * WARN_ON(kcov->remote && kcov->t != t); |
| * |
| * By combining all three checks into one we get: |
| */ |
| if (WARN_ON(kcov->t != t)) { |
| spin_unlock_irqrestore(&kcov->lock, flags); |
| return; |
| } |
| /* Just to not leave dangling references behind. */ |
| kcov_disable(t, kcov); |
| spin_unlock_irqrestore(&kcov->lock, flags); |
| kcov_put(kcov); |
| } |
| |
| static int kcov_mmap(struct file *filep, struct vm_area_struct *vma) |
| { |
| int res = 0; |
| struct kcov *kcov = vma->vm_file->private_data; |
| unsigned long size, off; |
| struct page *page; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&kcov->lock, flags); |
| size = kcov->size * sizeof(unsigned long); |
| if (kcov->area == NULL || vma->vm_pgoff != 0 || |
| vma->vm_end - vma->vm_start != size) { |
| res = -EINVAL; |
| goto exit; |
| } |
| spin_unlock_irqrestore(&kcov->lock, flags); |
| vm_flags_set(vma, VM_DONTEXPAND); |
| for (off = 0; off < size; off += PAGE_SIZE) { |
| page = vmalloc_to_page(kcov->area + off); |
| res = vm_insert_page(vma, vma->vm_start + off, page); |
| if (res) { |
| pr_warn_once("kcov: vm_insert_page() failed\n"); |
| return res; |
| } |
| } |
| return 0; |
| exit: |
| spin_unlock_irqrestore(&kcov->lock, flags); |
| return res; |
| } |
| |
| static int kcov_open(struct inode *inode, struct file *filep) |
| { |
| struct kcov *kcov; |
| |
| kcov = kzalloc(sizeof(*kcov), GFP_KERNEL); |
| if (!kcov) |
| return -ENOMEM; |
| kcov->mode = KCOV_MODE_DISABLED; |
| kcov->sequence = 1; |
| refcount_set(&kcov->refcount, 1); |
| spin_lock_init(&kcov->lock); |
| filep->private_data = kcov; |
| return nonseekable_open(inode, filep); |
| } |
| |
| static int kcov_close(struct inode *inode, struct file *filep) |
| { |
| kcov_put(filep->private_data); |
| return 0; |
| } |
| |
| static int kcov_get_mode(unsigned long arg) |
| { |
| if (arg == KCOV_TRACE_PC) |
| return KCOV_MODE_TRACE_PC; |
| else if (arg == KCOV_TRACE_CMP) |
| #ifdef CONFIG_KCOV_ENABLE_COMPARISONS |
| return KCOV_MODE_TRACE_CMP; |
| #else |
| return -ENOTSUPP; |
| #endif |
| else |
| return -EINVAL; |
| } |
| |
| /* |
| * Fault in a lazily-faulted vmalloc area before it can be used by |
| * __santizer_cov_trace_pc(), to avoid recursion issues if any code on the |
| * vmalloc fault handling path is instrumented. |
| */ |
| static void kcov_fault_in_area(struct kcov *kcov) |
| { |
| unsigned long stride = PAGE_SIZE / sizeof(unsigned long); |
| unsigned long *area = kcov->area; |
| unsigned long offset; |
| |
| for (offset = 0; offset < kcov->size; offset += stride) |
| READ_ONCE(area[offset]); |
| } |
| |
| static inline bool kcov_check_handle(u64 handle, bool common_valid, |
| bool uncommon_valid, bool zero_valid) |
| { |
| if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK)) |
| return false; |
| switch (handle & KCOV_SUBSYSTEM_MASK) { |
| case KCOV_SUBSYSTEM_COMMON: |
| return (handle & KCOV_INSTANCE_MASK) ? |
| common_valid : zero_valid; |
| case KCOV_SUBSYSTEM_USB: |
| return uncommon_valid; |
| default: |
| return false; |
| } |
| return false; |
| } |
| |
| static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd, |
| unsigned long arg) |
| { |
| struct task_struct *t; |
| unsigned long flags, unused; |
| int mode, i; |
| struct kcov_remote_arg *remote_arg; |
| struct kcov_remote *remote; |
| |
| switch (cmd) { |
| case KCOV_ENABLE: |
| /* |
| * Enable coverage for the current task. |
| * At this point user must have been enabled trace mode, |
| * and mmapped the file. Coverage collection is disabled only |
| * at task exit or voluntary by KCOV_DISABLE. After that it can |
| * be enabled for another task. |
| */ |
| if (kcov->mode != KCOV_MODE_INIT || !kcov->area) |
| return -EINVAL; |
| t = current; |
| if (kcov->t != NULL || t->kcov != NULL) |
| return -EBUSY; |
| mode = kcov_get_mode(arg); |
| if (mode < 0) |
| return mode; |
| kcov_fault_in_area(kcov); |
| kcov->mode = mode; |
| kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode, |
| kcov->sequence); |
| kcov->t = t; |
| /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ |
| kcov_get(kcov); |
| return 0; |
| case KCOV_DISABLE: |
| /* Disable coverage for the current task. */ |
| unused = arg; |
| if (unused != 0 || current->kcov != kcov) |
| return -EINVAL; |
| t = current; |
| if (WARN_ON(kcov->t != t)) |
| return -EINVAL; |
| kcov_disable(t, kcov); |
| kcov_put(kcov); |
| return 0; |
| case KCOV_REMOTE_ENABLE: |
| if (kcov->mode != KCOV_MODE_INIT || !kcov->area) |
| return -EINVAL; |
| t = current; |
| if (kcov->t != NULL || t->kcov != NULL) |
| return -EBUSY; |
| remote_arg = (struct kcov_remote_arg *)arg; |
| mode = kcov_get_mode(remote_arg->trace_mode); |
| if (mode < 0) |
| return mode; |
| if ((unsigned long)remote_arg->area_size > |
| LONG_MAX / sizeof(unsigned long)) |
| return -EINVAL; |
| kcov->mode = mode; |
| t->kcov = kcov; |
| t->kcov_mode = KCOV_MODE_REMOTE; |
| kcov->t = t; |
| kcov->remote = true; |
| kcov->remote_size = remote_arg->area_size; |
| spin_lock_irqsave(&kcov_remote_lock, flags); |
| for (i = 0; i < remote_arg->num_handles; i++) { |
| if (!kcov_check_handle(remote_arg->handles[i], |
| false, true, false)) { |
| spin_unlock_irqrestore(&kcov_remote_lock, |
| flags); |
| kcov_disable(t, kcov); |
| return -EINVAL; |
| } |
| remote = kcov_remote_add(kcov, remote_arg->handles[i]); |
| if (IS_ERR(remote)) { |
| spin_unlock_irqrestore(&kcov_remote_lock, |
| flags); |
| kcov_disable(t, kcov); |
| return PTR_ERR(remote); |
| } |
| } |
| if (remote_arg->common_handle) { |
| if (!kcov_check_handle(remote_arg->common_handle, |
| true, false, false)) { |
| spin_unlock_irqrestore(&kcov_remote_lock, |
| flags); |
| kcov_disable(t, kcov); |
| return -EINVAL; |
| } |
| remote = kcov_remote_add(kcov, |
| remote_arg->common_handle); |
| if (IS_ERR(remote)) { |
| spin_unlock_irqrestore(&kcov_remote_lock, |
| flags); |
| kcov_disable(t, kcov); |
| return PTR_ERR(remote); |
| } |
| t->kcov_handle = remote_arg->common_handle; |
| } |
| spin_unlock_irqrestore(&kcov_remote_lock, flags); |
| /* Put either in kcov_task_exit() or in KCOV_DISABLE. */ |
| kcov_get(kcov); |
| return 0; |
| default: |
| return -ENOTTY; |
| } |
| } |
| |
| static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg) |
| { |
| struct kcov *kcov; |
| int res; |
| struct kcov_remote_arg *remote_arg = NULL; |
| unsigned int remote_num_handles; |
| unsigned long remote_arg_size; |
| unsigned long size, flags; |
| void *area; |
| |
| kcov = filep->private_data; |
| switch (cmd) { |
| case KCOV_INIT_TRACE: |
| /* |
| * Enable kcov in trace mode and setup buffer size. |
| * Must happen before anything else. |
| * |
| * First check the size argument - it must be at least 2 |
| * to hold the current position and one PC. |
| */ |
| size = arg; |
| if (size < 2 || size > INT_MAX / sizeof(unsigned long)) |
| return -EINVAL; |
| area = vmalloc_user(size * sizeof(unsigned long)); |
| if (area == NULL) |
| return -ENOMEM; |
| spin_lock_irqsave(&kcov->lock, flags); |
| if (kcov->mode != KCOV_MODE_DISABLED) { |
| spin_unlock_irqrestore(&kcov->lock, flags); |
| vfree(area); |
| return -EBUSY; |
| } |
| kcov->area = area; |
| kcov->size = size; |
| kcov->mode = KCOV_MODE_INIT; |
| spin_unlock_irqrestore(&kcov->lock, flags); |
| return 0; |
| case KCOV_REMOTE_ENABLE: |
| if (get_user(remote_num_handles, (unsigned __user *)(arg + |
| offsetof(struct kcov_remote_arg, num_handles)))) |
| return -EFAULT; |
| if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES) |
| return -EINVAL; |
| remote_arg_size = struct_size(remote_arg, handles, |
| remote_num_handles); |
| remote_arg = memdup_user((void __user *)arg, remote_arg_size); |
| if (IS_ERR(remote_arg)) |
| return PTR_ERR(remote_arg); |
| if (remote_arg->num_handles != remote_num_handles) { |
| kfree(remote_arg); |
| return -EINVAL; |
| } |
| arg = (unsigned long)remote_arg; |
| fallthrough; |
| default: |
| /* |
| * All other commands can be normally executed under a spin lock, so we |
| * obtain and release it here in order to simplify kcov_ioctl_locked(). |
| */ |
| spin_lock_irqsave(&kcov->lock, flags); |
| res = kcov_ioctl_locked(kcov, cmd, arg); |
| spin_unlock_irqrestore(&kcov->lock, flags); |
| kfree(remote_arg); |
| return res; |
| } |
| } |
| |
| static const struct file_operations kcov_fops = { |
| .open = kcov_open, |
| .unlocked_ioctl = kcov_ioctl, |
| .compat_ioctl = kcov_ioctl, |
| .mmap = kcov_mmap, |
| .release = kcov_close, |
| }; |
| |
| /* |
| * kcov_remote_start() and kcov_remote_stop() can be used to annotate a section |
| * of code in a kernel background thread or in a softirq to allow kcov to be |
| * used to collect coverage from that part of code. |
| * |
| * The handle argument of kcov_remote_start() identifies a code section that is |
| * used for coverage collection. A userspace process passes this handle to |
| * KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting |
| * coverage for the code section identified by this handle. |
| * |
| * The usage of these annotations in the kernel code is different depending on |
| * the type of the kernel thread whose code is being annotated. |
| * |
| * For global kernel threads that are spawned in a limited number of instances |
| * (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for |
| * softirqs, each instance must be assigned a unique 4-byte instance id. The |
| * instance id is then combined with a 1-byte subsystem id to get a handle via |
| * kcov_remote_handle(subsystem_id, instance_id). |
| * |
| * For local kernel threads that are spawned from system calls handler when a |
| * user interacts with some kernel interface (e.g. vhost workers), a handle is |
| * passed from a userspace process as the common_handle field of the |
| * kcov_remote_arg struct (note, that the user must generate a handle by using |
| * kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an |
| * arbitrary 4-byte non-zero number as the instance id). This common handle |
| * then gets saved into the task_struct of the process that issued the |
| * KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn |
| * kernel threads, the common handle must be retrieved via kcov_common_handle() |
| * and passed to the spawned threads via custom annotations. Those kernel |
| * threads must in turn be annotated with kcov_remote_start(common_handle) and |
| * kcov_remote_stop(). All of the threads that are spawned by the same process |
| * obtain the same handle, hence the name "common". |
| * |
| * See Documentation/dev-tools/kcov.rst for more details. |
| * |
| * Internally, kcov_remote_start() looks up the kcov device associated with the |
| * provided handle, allocates an area for coverage collection, and saves the |
| * pointers to kcov and area into the current task_struct to allow coverage to |
| * be collected via __sanitizer_cov_trace_pc(). |
| * In turns kcov_remote_stop() clears those pointers from task_struct to stop |
| * collecting coverage and copies all collected coverage into the kcov area. |
| */ |
| |
| static inline bool kcov_mode_enabled(unsigned int mode) |
| { |
| return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED; |
| } |
| |
| static void kcov_remote_softirq_start(struct task_struct *t) |
| { |
| struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); |
| unsigned int mode; |
| |
| mode = READ_ONCE(t->kcov_mode); |
| barrier(); |
| if (kcov_mode_enabled(mode)) { |
| data->saved_mode = mode; |
| data->saved_size = t->kcov_size; |
| data->saved_area = t->kcov_area; |
| data->saved_sequence = t->kcov_sequence; |
| data->saved_kcov = t->kcov; |
| kcov_stop(t); |
| } |
| } |
| |
| static void kcov_remote_softirq_stop(struct task_struct *t) |
| { |
| struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data); |
| |
| if (data->saved_kcov) { |
| kcov_start(t, data->saved_kcov, data->saved_size, |
| data->saved_area, data->saved_mode, |
| data->saved_sequence); |
| data->saved_mode = 0; |
| data->saved_size = 0; |
| data->saved_area = NULL; |
| data->saved_sequence = 0; |
| data->saved_kcov = NULL; |
| } |
| } |
| |
| void kcov_remote_start(u64 handle) |
| { |
| struct task_struct *t = current; |
| struct kcov_remote *remote; |
| struct kcov *kcov; |
| unsigned int mode; |
| void *area; |
| unsigned int size; |
| int sequence; |
| unsigned long flags; |
| |
| if (WARN_ON(!kcov_check_handle(handle, true, true, true))) |
| return; |
| if (!in_task() && !in_softirq_really()) |
| return; |
| |
| local_lock_irqsave(&kcov_percpu_data.lock, flags); |
| |
| /* |
| * Check that kcov_remote_start() is not called twice in background |
| * threads nor called by user tasks (with enabled kcov). |
| */ |
| mode = READ_ONCE(t->kcov_mode); |
| if (WARN_ON(in_task() && kcov_mode_enabled(mode))) { |
| local_unlock_irqrestore(&kcov_percpu_data.lock, flags); |
| return; |
| } |
| /* |
| * Check that kcov_remote_start() is not called twice in softirqs. |
| * Note, that kcov_remote_start() can be called from a softirq that |
| * happened while collecting coverage from a background thread. |
| */ |
| if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) { |
| local_unlock_irqrestore(&kcov_percpu_data.lock, flags); |
| return; |
| } |
| |
| spin_lock(&kcov_remote_lock); |
| remote = kcov_remote_find(handle); |
| if (!remote) { |
| spin_unlock(&kcov_remote_lock); |
| local_unlock_irqrestore(&kcov_percpu_data.lock, flags); |
| return; |
| } |
| kcov_debug("handle = %llx, context: %s\n", handle, |
| in_task() ? "task" : "softirq"); |
| kcov = remote->kcov; |
| /* Put in kcov_remote_stop(). */ |
| kcov_get(kcov); |
| /* |
| * Read kcov fields before unlock to prevent races with |
| * KCOV_DISABLE / kcov_remote_reset(). |
| */ |
| mode = kcov->mode; |
| sequence = kcov->sequence; |
| if (in_task()) { |
| size = kcov->remote_size; |
| area = kcov_remote_area_get(size); |
| } else { |
| size = CONFIG_KCOV_IRQ_AREA_SIZE; |
| area = this_cpu_ptr(&kcov_percpu_data)->irq_area; |
| } |
| spin_unlock(&kcov_remote_lock); |
| |
| /* Can only happen when in_task(). */ |
| if (!area) { |
| local_unlock_irqrestore(&kcov_percpu_data.lock, flags); |
| area = vmalloc(size * sizeof(unsigned long)); |
| if (!area) { |
| kcov_put(kcov); |
| return; |
| } |
| local_lock_irqsave(&kcov_percpu_data.lock, flags); |
| } |
| |
| /* Reset coverage size. */ |
| *(u64 *)area = 0; |
| |
| if (in_serving_softirq()) { |
| kcov_remote_softirq_start(t); |
| t->kcov_softirq = 1; |
| } |
| kcov_start(t, kcov, size, area, mode, sequence); |
| |
| local_unlock_irqrestore(&kcov_percpu_data.lock, flags); |
| |
| } |
| EXPORT_SYMBOL(kcov_remote_start); |
| |
| static void kcov_move_area(enum kcov_mode mode, void *dst_area, |
| unsigned int dst_area_size, void *src_area) |
| { |
| u64 word_size = sizeof(unsigned long); |
| u64 count_size, entry_size_log; |
| u64 dst_len, src_len; |
| void *dst_entries, *src_entries; |
| u64 dst_occupied, dst_free, bytes_to_move, entries_moved; |
| |
| kcov_debug("%px %u <= %px %lu\n", |
| dst_area, dst_area_size, src_area, *(unsigned long *)src_area); |
| |
| switch (mode) { |
| case KCOV_MODE_TRACE_PC: |
| dst_len = READ_ONCE(*(unsigned long *)dst_area); |
| src_len = *(unsigned long *)src_area; |
| count_size = sizeof(unsigned long); |
| entry_size_log = __ilog2_u64(sizeof(unsigned long)); |
| break; |
| case KCOV_MODE_TRACE_CMP: |
| dst_len = READ_ONCE(*(u64 *)dst_area); |
| src_len = *(u64 *)src_area; |
| count_size = sizeof(u64); |
| BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP)); |
| entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP); |
| break; |
| default: |
| WARN_ON(1); |
| return; |
| } |
| |
| /* As arm can't divide u64 integers use log of entry size. */ |
| if (dst_len > ((dst_area_size * word_size - count_size) >> |
| entry_size_log)) |
| return; |
| dst_occupied = count_size + (dst_len << entry_size_log); |
| dst_free = dst_area_size * word_size - dst_occupied; |
| bytes_to_move = min(dst_free, src_len << entry_size_log); |
| dst_entries = dst_area + dst_occupied; |
| src_entries = src_area + count_size; |
| memcpy(dst_entries, src_entries, bytes_to_move); |
| entries_moved = bytes_to_move >> entry_size_log; |
| |
| switch (mode) { |
| case KCOV_MODE_TRACE_PC: |
| WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved); |
| break; |
| case KCOV_MODE_TRACE_CMP: |
| WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* See the comment before kcov_remote_start() for usage details. */ |
| void kcov_remote_stop(void) |
| { |
| struct task_struct *t = current; |
| struct kcov *kcov; |
| unsigned int mode; |
| void *area; |
| unsigned int size; |
| int sequence; |
| unsigned long flags; |
| |
| if (!in_task() && !in_softirq_really()) |
| return; |
| |
| local_lock_irqsave(&kcov_percpu_data.lock, flags); |
| |
| mode = READ_ONCE(t->kcov_mode); |
| barrier(); |
| if (!kcov_mode_enabled(mode)) { |
| local_unlock_irqrestore(&kcov_percpu_data.lock, flags); |
| return; |
| } |
| /* |
| * When in softirq, check if the corresponding kcov_remote_start() |
| * actually found the remote handle and started collecting coverage. |
| */ |
| if (in_serving_softirq() && !t->kcov_softirq) { |
| local_unlock_irqrestore(&kcov_percpu_data.lock, flags); |
| return; |
| } |
| /* Make sure that kcov_softirq is only set when in softirq. */ |
| if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) { |
| local_unlock_irqrestore(&kcov_percpu_data.lock, flags); |
| return; |
| } |
| |
| kcov = t->kcov; |
| area = t->kcov_area; |
| size = t->kcov_size; |
| sequence = t->kcov_sequence; |
| |
| kcov_stop(t); |
| if (in_serving_softirq()) { |
| t->kcov_softirq = 0; |
| kcov_remote_softirq_stop(t); |
| } |
| |
| spin_lock(&kcov->lock); |
| /* |
| * KCOV_DISABLE could have been called between kcov_remote_start() |
| * and kcov_remote_stop(), hence the sequence check. |
| */ |
| if (sequence == kcov->sequence && kcov->remote) |
| kcov_move_area(kcov->mode, kcov->area, kcov->size, area); |
| spin_unlock(&kcov->lock); |
| |
| if (in_task()) { |
| spin_lock(&kcov_remote_lock); |
| kcov_remote_area_put(area, size); |
| spin_unlock(&kcov_remote_lock); |
| } |
| |
| local_unlock_irqrestore(&kcov_percpu_data.lock, flags); |
| |
| /* Get in kcov_remote_start(). */ |
| kcov_put(kcov); |
| } |
| EXPORT_SYMBOL(kcov_remote_stop); |
| |
| /* See the comment before kcov_remote_start() for usage details. */ |
| u64 kcov_common_handle(void) |
| { |
| if (!in_task()) |
| return 0; |
| return current->kcov_handle; |
| } |
| EXPORT_SYMBOL(kcov_common_handle); |
| |
| #ifdef CONFIG_KCOV_SELFTEST |
| static void __init selftest(void) |
| { |
| unsigned long start; |
| |
| pr_err("running self test\n"); |
| /* |
| * Test that interrupts don't produce spurious coverage. |
| * The coverage callback filters out interrupt code, but only |
| * after the handler updates preempt count. Some code periodically |
| * leaks out of that section and leads to spurious coverage. |
| * It's hard to call the actual interrupt handler directly, |
| * so we just loop here for a bit waiting for a timer interrupt. |
| * We set kcov_mode to enable tracing, but don't setup the area, |
| * so any attempt to trace will crash. Note: we must not call any |
| * potentially traced functions in this region. |
| */ |
| start = jiffies; |
| current->kcov_mode = KCOV_MODE_TRACE_PC; |
| while ((jiffies - start) * MSEC_PER_SEC / HZ < 300) |
| ; |
| current->kcov_mode = 0; |
| pr_err("done running self test\n"); |
| } |
| #endif |
| |
| static int __init kcov_init(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE * |
| sizeof(unsigned long), cpu_to_node(cpu)); |
| if (!area) |
| return -ENOMEM; |
| per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area; |
| } |
| |
| /* |
| * The kcov debugfs file won't ever get removed and thus, |
| * there is no need to protect it against removal races. The |
| * use of debugfs_create_file_unsafe() is actually safe here. |
| */ |
| debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops); |
| |
| #ifdef CONFIG_KCOV_SELFTEST |
| selftest(); |
| #endif |
| |
| return 0; |
| } |
| |
| device_initcall(kcov_init); |