| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Sleepable Read-Copy Update mechanism for mutual exclusion. |
| * |
| * Copyright (C) IBM Corporation, 2006 |
| * Copyright (C) Fujitsu, 2012 |
| * |
| * Authors: Paul McKenney <paulmck@linux.ibm.com> |
| * Lai Jiangshan <laijs@cn.fujitsu.com> |
| * |
| * For detailed explanation of Read-Copy Update mechanism see - |
| * Documentation/RCU/ *.txt |
| * |
| */ |
| |
| #define pr_fmt(fmt) "rcu: " fmt |
| |
| #include <linux/export.h> |
| #include <linux/mutex.h> |
| #include <linux/percpu.h> |
| #include <linux/preempt.h> |
| #include <linux/rcupdate_wait.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/srcu.h> |
| |
| #include "rcu.h" |
| #include "rcu_segcblist.h" |
| |
| /* Holdoff in nanoseconds for auto-expediting. */ |
| #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) |
| static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; |
| module_param(exp_holdoff, ulong, 0444); |
| |
| /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ |
| static ulong counter_wrap_check = (ULONG_MAX >> 2); |
| module_param(counter_wrap_check, ulong, 0444); |
| |
| /* |
| * Control conversion to SRCU_SIZE_BIG: |
| * 0: Don't convert at all. |
| * 1: Convert at init_srcu_struct() time. |
| * 2: Convert when rcutorture invokes srcu_torture_stats_print(). |
| * 3: Decide at boot time based on system shape (default). |
| * 0x1x: Convert when excessive contention encountered. |
| */ |
| #define SRCU_SIZING_NONE 0 |
| #define SRCU_SIZING_INIT 1 |
| #define SRCU_SIZING_TORTURE 2 |
| #define SRCU_SIZING_AUTO 3 |
| #define SRCU_SIZING_CONTEND 0x10 |
| #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) |
| #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) |
| #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) |
| #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) |
| #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) |
| static int convert_to_big = SRCU_SIZING_AUTO; |
| module_param(convert_to_big, int, 0444); |
| |
| /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ |
| static int big_cpu_lim __read_mostly = 128; |
| module_param(big_cpu_lim, int, 0444); |
| |
| /* Contention events per jiffy to initiate transition to big. */ |
| static int small_contention_lim __read_mostly = 100; |
| module_param(small_contention_lim, int, 0444); |
| |
| /* Early-boot callback-management, so early that no lock is required! */ |
| static LIST_HEAD(srcu_boot_list); |
| static bool __read_mostly srcu_init_done; |
| |
| static void srcu_invoke_callbacks(struct work_struct *work); |
| static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); |
| static void process_srcu(struct work_struct *work); |
| static void srcu_delay_timer(struct timer_list *t); |
| |
| /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ |
| #define spin_lock_rcu_node(p) \ |
| do { \ |
| spin_lock(&ACCESS_PRIVATE(p, lock)); \ |
| smp_mb__after_unlock_lock(); \ |
| } while (0) |
| |
| #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) |
| |
| #define spin_lock_irq_rcu_node(p) \ |
| do { \ |
| spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ |
| smp_mb__after_unlock_lock(); \ |
| } while (0) |
| |
| #define spin_unlock_irq_rcu_node(p) \ |
| spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) |
| |
| #define spin_lock_irqsave_rcu_node(p, flags) \ |
| do { \ |
| spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ |
| smp_mb__after_unlock_lock(); \ |
| } while (0) |
| |
| #define spin_trylock_irqsave_rcu_node(p, flags) \ |
| ({ \ |
| bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ |
| \ |
| if (___locked) \ |
| smp_mb__after_unlock_lock(); \ |
| ___locked; \ |
| }) |
| |
| #define spin_unlock_irqrestore_rcu_node(p, flags) \ |
| spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ |
| |
| /* |
| * Initialize SRCU per-CPU data. Note that statically allocated |
| * srcu_struct structures might already have srcu_read_lock() and |
| * srcu_read_unlock() running against them. So if the is_static parameter |
| * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. |
| */ |
| static void init_srcu_struct_data(struct srcu_struct *ssp) |
| { |
| int cpu; |
| struct srcu_data *sdp; |
| |
| /* |
| * Initialize the per-CPU srcu_data array, which feeds into the |
| * leaves of the srcu_node tree. |
| */ |
| WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != |
| ARRAY_SIZE(sdp->srcu_unlock_count)); |
| for_each_possible_cpu(cpu) { |
| sdp = per_cpu_ptr(ssp->sda, cpu); |
| spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); |
| rcu_segcblist_init(&sdp->srcu_cblist); |
| sdp->srcu_cblist_invoking = false; |
| sdp->srcu_gp_seq_needed = ssp->srcu_sup->srcu_gp_seq; |
| sdp->srcu_gp_seq_needed_exp = ssp->srcu_sup->srcu_gp_seq; |
| sdp->srcu_barrier_head.next = &sdp->srcu_barrier_head; |
| sdp->mynode = NULL; |
| sdp->cpu = cpu; |
| INIT_WORK(&sdp->work, srcu_invoke_callbacks); |
| timer_setup(&sdp->delay_work, srcu_delay_timer, 0); |
| sdp->ssp = ssp; |
| } |
| } |
| |
| /* Invalid seq state, used during snp node initialization */ |
| #define SRCU_SNP_INIT_SEQ 0x2 |
| |
| /* |
| * Check whether sequence number corresponding to snp node, |
| * is invalid. |
| */ |
| static inline bool srcu_invl_snp_seq(unsigned long s) |
| { |
| return s == SRCU_SNP_INIT_SEQ; |
| } |
| |
| /* |
| * Allocated and initialize SRCU combining tree. Returns @true if |
| * allocation succeeded and @false otherwise. |
| */ |
| static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) |
| { |
| int cpu; |
| int i; |
| int level = 0; |
| int levelspread[RCU_NUM_LVLS]; |
| struct srcu_data *sdp; |
| struct srcu_node *snp; |
| struct srcu_node *snp_first; |
| |
| /* Initialize geometry if it has not already been initialized. */ |
| rcu_init_geometry(); |
| ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags); |
| if (!ssp->srcu_sup->node) |
| return false; |
| |
| /* Work out the overall tree geometry. */ |
| ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0]; |
| for (i = 1; i < rcu_num_lvls; i++) |
| ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1]; |
| rcu_init_levelspread(levelspread, num_rcu_lvl); |
| |
| /* Each pass through this loop initializes one srcu_node structure. */ |
| srcu_for_each_node_breadth_first(ssp, snp) { |
| spin_lock_init(&ACCESS_PRIVATE(snp, lock)); |
| WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != |
| ARRAY_SIZE(snp->srcu_data_have_cbs)); |
| for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { |
| snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; |
| snp->srcu_data_have_cbs[i] = 0; |
| } |
| snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; |
| snp->grplo = -1; |
| snp->grphi = -1; |
| if (snp == &ssp->srcu_sup->node[0]) { |
| /* Root node, special case. */ |
| snp->srcu_parent = NULL; |
| continue; |
| } |
| |
| /* Non-root node. */ |
| if (snp == ssp->srcu_sup->level[level + 1]) |
| level++; |
| snp->srcu_parent = ssp->srcu_sup->level[level - 1] + |
| (snp - ssp->srcu_sup->level[level]) / |
| levelspread[level - 1]; |
| } |
| |
| /* |
| * Initialize the per-CPU srcu_data array, which feeds into the |
| * leaves of the srcu_node tree. |
| */ |
| level = rcu_num_lvls - 1; |
| snp_first = ssp->srcu_sup->level[level]; |
| for_each_possible_cpu(cpu) { |
| sdp = per_cpu_ptr(ssp->sda, cpu); |
| sdp->mynode = &snp_first[cpu / levelspread[level]]; |
| for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { |
| if (snp->grplo < 0) |
| snp->grplo = cpu; |
| snp->grphi = cpu; |
| } |
| sdp->grpmask = 1UL << (cpu - sdp->mynode->grplo); |
| } |
| smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); |
| return true; |
| } |
| |
| /* |
| * Initialize non-compile-time initialized fields, including the |
| * associated srcu_node and srcu_data structures. The is_static parameter |
| * tells us that ->sda has already been wired up to srcu_data. |
| */ |
| static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) |
| { |
| if (!is_static) |
| ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL); |
| if (!ssp->srcu_sup) |
| return -ENOMEM; |
| if (!is_static) |
| spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); |
| ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL; |
| ssp->srcu_sup->node = NULL; |
| mutex_init(&ssp->srcu_sup->srcu_cb_mutex); |
| mutex_init(&ssp->srcu_sup->srcu_gp_mutex); |
| ssp->srcu_idx = 0; |
| ssp->srcu_sup->srcu_gp_seq = SRCU_GP_SEQ_INITIAL_VAL; |
| ssp->srcu_sup->srcu_barrier_seq = 0; |
| mutex_init(&ssp->srcu_sup->srcu_barrier_mutex); |
| atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 0); |
| INIT_DELAYED_WORK(&ssp->srcu_sup->work, process_srcu); |
| ssp->srcu_sup->sda_is_static = is_static; |
| if (!is_static) |
| ssp->sda = alloc_percpu(struct srcu_data); |
| if (!ssp->sda) |
| goto err_free_sup; |
| init_srcu_struct_data(ssp); |
| ssp->srcu_sup->srcu_gp_seq_needed_exp = SRCU_GP_SEQ_INITIAL_VAL; |
| ssp->srcu_sup->srcu_last_gp_end = ktime_get_mono_fast_ns(); |
| if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { |
| if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) |
| goto err_free_sda; |
| WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG); |
| } |
| ssp->srcu_sup->srcu_ssp = ssp; |
| smp_store_release(&ssp->srcu_sup->srcu_gp_seq_needed, |
| SRCU_GP_SEQ_INITIAL_VAL); /* Init done. */ |
| return 0; |
| |
| err_free_sda: |
| if (!is_static) { |
| free_percpu(ssp->sda); |
| ssp->sda = NULL; |
| } |
| err_free_sup: |
| if (!is_static) { |
| kfree(ssp->srcu_sup); |
| ssp->srcu_sup = NULL; |
| } |
| return -ENOMEM; |
| } |
| |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| |
| int __init_srcu_struct(struct srcu_struct *ssp, const char *name, |
| struct lock_class_key *key) |
| { |
| /* Don't re-initialize a lock while it is held. */ |
| debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); |
| lockdep_init_map(&ssp->dep_map, name, key, 0); |
| return init_srcu_struct_fields(ssp, false); |
| } |
| EXPORT_SYMBOL_GPL(__init_srcu_struct); |
| |
| #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
| |
| /** |
| * init_srcu_struct - initialize a sleep-RCU structure |
| * @ssp: structure to initialize. |
| * |
| * Must invoke this on a given srcu_struct before passing that srcu_struct |
| * to any other function. Each srcu_struct represents a separate domain |
| * of SRCU protection. |
| */ |
| int init_srcu_struct(struct srcu_struct *ssp) |
| { |
| return init_srcu_struct_fields(ssp, false); |
| } |
| EXPORT_SYMBOL_GPL(init_srcu_struct); |
| |
| #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
| |
| /* |
| * Initiate a transition to SRCU_SIZE_BIG with lock held. |
| */ |
| static void __srcu_transition_to_big(struct srcu_struct *ssp) |
| { |
| lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); |
| smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC); |
| } |
| |
| /* |
| * Initiate an idempotent transition to SRCU_SIZE_BIG. |
| */ |
| static void srcu_transition_to_big(struct srcu_struct *ssp) |
| { |
| unsigned long flags; |
| |
| /* Double-checked locking on ->srcu_size-state. */ |
| if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) |
| return; |
| spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); |
| if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) { |
| spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); |
| return; |
| } |
| __srcu_transition_to_big(ssp); |
| spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); |
| } |
| |
| /* |
| * Check to see if the just-encountered contention event justifies |
| * a transition to SRCU_SIZE_BIG. |
| */ |
| static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) |
| { |
| unsigned long j; |
| |
| if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state) |
| return; |
| j = jiffies; |
| if (ssp->srcu_sup->srcu_size_jiffies != j) { |
| ssp->srcu_sup->srcu_size_jiffies = j; |
| ssp->srcu_sup->srcu_n_lock_retries = 0; |
| } |
| if (++ssp->srcu_sup->srcu_n_lock_retries <= small_contention_lim) |
| return; |
| __srcu_transition_to_big(ssp); |
| } |
| |
| /* |
| * Acquire the specified srcu_data structure's ->lock, but check for |
| * excessive contention, which results in initiation of a transition |
| * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module |
| * parameter permits this. |
| */ |
| static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) |
| { |
| struct srcu_struct *ssp = sdp->ssp; |
| |
| if (spin_trylock_irqsave_rcu_node(sdp, *flags)) |
| return; |
| spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); |
| spin_lock_irqsave_check_contention(ssp); |
| spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags); |
| spin_lock_irqsave_rcu_node(sdp, *flags); |
| } |
| |
| /* |
| * Acquire the specified srcu_struct structure's ->lock, but check for |
| * excessive contention, which results in initiation of a transition |
| * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module |
| * parameter permits this. |
| */ |
| static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) |
| { |
| if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags)) |
| return; |
| spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags); |
| spin_lock_irqsave_check_contention(ssp); |
| } |
| |
| /* |
| * First-use initialization of statically allocated srcu_struct |
| * structure. Wiring up the combining tree is more than can be |
| * done with compile-time initialization, so this check is added |
| * to each update-side SRCU primitive. Use ssp->lock, which -is- |
| * compile-time initialized, to resolve races involving multiple |
| * CPUs trying to garner first-use privileges. |
| */ |
| static void check_init_srcu_struct(struct srcu_struct *ssp) |
| { |
| unsigned long flags; |
| |
| /* The smp_load_acquire() pairs with the smp_store_release(). */ |
| if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed))) /*^^^*/ |
| return; /* Already initialized. */ |
| spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags); |
| if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq_needed)) { |
| spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); |
| return; |
| } |
| init_srcu_struct_fields(ssp, true); |
| spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); |
| } |
| |
| /* |
| * Returns approximate total of the readers' ->srcu_lock_count[] values |
| * for the rank of per-CPU counters specified by idx. |
| */ |
| static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) |
| { |
| int cpu; |
| unsigned long sum = 0; |
| |
| for_each_possible_cpu(cpu) { |
| struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); |
| |
| sum += atomic_long_read(&cpuc->srcu_lock_count[idx]); |
| } |
| return sum; |
| } |
| |
| /* |
| * Returns approximate total of the readers' ->srcu_unlock_count[] values |
| * for the rank of per-CPU counters specified by idx. |
| */ |
| static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) |
| { |
| int cpu; |
| unsigned long mask = 0; |
| unsigned long sum = 0; |
| |
| for_each_possible_cpu(cpu) { |
| struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); |
| |
| sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]); |
| if (IS_ENABLED(CONFIG_PROVE_RCU)) |
| mask = mask | READ_ONCE(cpuc->srcu_nmi_safety); |
| } |
| WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)), |
| "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp); |
| return sum; |
| } |
| |
| /* |
| * Return true if the number of pre-existing readers is determined to |
| * be zero. |
| */ |
| static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) |
| { |
| unsigned long unlocks; |
| |
| unlocks = srcu_readers_unlock_idx(ssp, idx); |
| |
| /* |
| * Make sure that a lock is always counted if the corresponding |
| * unlock is counted. Needs to be a smp_mb() as the read side may |
| * contain a read from a variable that is written to before the |
| * synchronize_srcu() in the write side. In this case smp_mb()s |
| * A and B act like the store buffering pattern. |
| * |
| * This smp_mb() also pairs with smp_mb() C to prevent accesses |
| * after the synchronize_srcu() from being executed before the |
| * grace period ends. |
| */ |
| smp_mb(); /* A */ |
| |
| /* |
| * If the locks are the same as the unlocks, then there must have |
| * been no readers on this index at some point in this function. |
| * But there might be more readers, as a task might have read |
| * the current ->srcu_idx but not yet have incremented its CPU's |
| * ->srcu_lock_count[idx] counter. In fact, it is possible |
| * that most of the tasks have been preempted between fetching |
| * ->srcu_idx and incrementing ->srcu_lock_count[idx]. And there |
| * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks |
| * in a system whose address space was fully populated with memory. |
| * Call this quantity Nt. |
| * |
| * So suppose that the updater is preempted at this point in the |
| * code for a long time. That now-preempted updater has already |
| * flipped ->srcu_idx (possibly during the preceding grace period), |
| * done an smp_mb() (again, possibly during the preceding grace |
| * period), and summed up the ->srcu_unlock_count[idx] counters. |
| * How many times can a given one of the aforementioned Nt tasks |
| * increment the old ->srcu_idx value's ->srcu_lock_count[idx] |
| * counter, in the absence of nesting? |
| * |
| * It can clearly do so once, given that it has already fetched |
| * the old value of ->srcu_idx and is just about to use that value |
| * to index its increment of ->srcu_lock_count[idx]. But as soon as |
| * it leaves that SRCU read-side critical section, it will increment |
| * ->srcu_unlock_count[idx], which must follow the updater's above |
| * read from that same value. Thus, as soon the reading task does |
| * an smp_mb() and a later fetch from ->srcu_idx, that task will be |
| * guaranteed to get the new index. Except that the increment of |
| * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the |
| * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock() |
| * is before the smp_mb(). Thus, that task might not see the new |
| * value of ->srcu_idx until the -second- __srcu_read_lock(), |
| * which in turn means that this task might well increment |
| * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice, |
| * not just once. |
| * |
| * However, it is important to note that a given smp_mb() takes |
| * effect not just for the task executing it, but also for any |
| * later task running on that same CPU. |
| * |
| * That is, there can be almost Nt + Nc further increments of |
| * ->srcu_lock_count[idx] for the old index, where Nc is the number |
| * of CPUs. But this is OK because the size of the task_struct |
| * structure limits the value of Nt and current systems limit Nc |
| * to a few thousand. |
| * |
| * OK, but what about nesting? This does impose a limit on |
| * nesting of half of the size of the task_struct structure |
| * (measured in bytes), which should be sufficient. A late 2022 |
| * TREE01 rcutorture run reported this size to be no less than |
| * 9408 bytes, allowing up to 4704 levels of nesting, which is |
| * comfortably beyond excessive. Especially on 64-bit systems, |
| * which are unlikely to be configured with an address space fully |
| * populated with memory, at least not anytime soon. |
| */ |
| return srcu_readers_lock_idx(ssp, idx) == unlocks; |
| } |
| |
| /** |
| * srcu_readers_active - returns true if there are readers. and false |
| * otherwise |
| * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). |
| * |
| * Note that this is not an atomic primitive, and can therefore suffer |
| * severe errors when invoked on an active srcu_struct. That said, it |
| * can be useful as an error check at cleanup time. |
| */ |
| static bool srcu_readers_active(struct srcu_struct *ssp) |
| { |
| int cpu; |
| unsigned long sum = 0; |
| |
| for_each_possible_cpu(cpu) { |
| struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); |
| |
| sum += atomic_long_read(&cpuc->srcu_lock_count[0]); |
| sum += atomic_long_read(&cpuc->srcu_lock_count[1]); |
| sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]); |
| sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]); |
| } |
| return sum; |
| } |
| |
| /* |
| * We use an adaptive strategy for synchronize_srcu() and especially for |
| * synchronize_srcu_expedited(). We spin for a fixed time period |
| * (defined below, boot time configurable) to allow SRCU readers to exit |
| * their read-side critical sections. If there are still some readers |
| * after one jiffy, we repeatedly block for one jiffy time periods. |
| * The blocking time is increased as the grace-period age increases, |
| * with max blocking time capped at 10 jiffies. |
| */ |
| #define SRCU_DEFAULT_RETRY_CHECK_DELAY 5 |
| |
| static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY; |
| module_param(srcu_retry_check_delay, ulong, 0444); |
| |
| #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. |
| #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. |
| |
| #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO 3UL // Lowmark on default per-GP-phase |
| // no-delay instances. |
| #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI 1000UL // Highmark on default per-GP-phase |
| // no-delay instances. |
| |
| #define SRCU_UL_CLAMP_LO(val, low) ((val) > (low) ? (val) : (low)) |
| #define SRCU_UL_CLAMP_HI(val, high) ((val) < (high) ? (val) : (high)) |
| #define SRCU_UL_CLAMP(val, low, high) SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high)) |
| // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto |
| // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay() |
| // called from process_srcu(). |
| #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED \ |
| (2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY) |
| |
| // Maximum per-GP-phase consecutive no-delay instances. |
| #define SRCU_DEFAULT_MAX_NODELAY_PHASE \ |
| SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED, \ |
| SRCU_DEFAULT_MAX_NODELAY_PHASE_LO, \ |
| SRCU_DEFAULT_MAX_NODELAY_PHASE_HI) |
| |
| static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE; |
| module_param(srcu_max_nodelay_phase, ulong, 0444); |
| |
| // Maximum consecutive no-delay instances. |
| #define SRCU_DEFAULT_MAX_NODELAY (SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ? \ |
| SRCU_DEFAULT_MAX_NODELAY_PHASE : 100) |
| |
| static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY; |
| module_param(srcu_max_nodelay, ulong, 0444); |
| |
| /* |
| * Return grace-period delay, zero if there are expedited grace |
| * periods pending, SRCU_INTERVAL otherwise. |
| */ |
| static unsigned long srcu_get_delay(struct srcu_struct *ssp) |
| { |
| unsigned long gpstart; |
| unsigned long j; |
| unsigned long jbase = SRCU_INTERVAL; |
| struct srcu_usage *sup = ssp->srcu_sup; |
| |
| if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) |
| jbase = 0; |
| if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) { |
| j = jiffies - 1; |
| gpstart = READ_ONCE(sup->srcu_gp_start); |
| if (time_after(j, gpstart)) |
| jbase += j - gpstart; |
| if (!jbase) { |
| ASSERT_EXCLUSIVE_WRITER(sup->srcu_n_exp_nodelay); |
| WRITE_ONCE(sup->srcu_n_exp_nodelay, READ_ONCE(sup->srcu_n_exp_nodelay) + 1); |
| if (READ_ONCE(sup->srcu_n_exp_nodelay) > srcu_max_nodelay_phase) |
| jbase = 1; |
| } |
| } |
| return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; |
| } |
| |
| /** |
| * cleanup_srcu_struct - deconstruct a sleep-RCU structure |
| * @ssp: structure to clean up. |
| * |
| * Must invoke this after you are finished using a given srcu_struct that |
| * was initialized via init_srcu_struct(), else you leak memory. |
| */ |
| void cleanup_srcu_struct(struct srcu_struct *ssp) |
| { |
| int cpu; |
| struct srcu_usage *sup = ssp->srcu_sup; |
| |
| if (WARN_ON(!srcu_get_delay(ssp))) |
| return; /* Just leak it! */ |
| if (WARN_ON(srcu_readers_active(ssp))) |
| return; /* Just leak it! */ |
| flush_delayed_work(&sup->work); |
| for_each_possible_cpu(cpu) { |
| struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); |
| |
| del_timer_sync(&sdp->delay_work); |
| flush_work(&sdp->work); |
| if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) |
| return; /* Forgot srcu_barrier(), so just leak it! */ |
| } |
| if (WARN_ON(rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)) != SRCU_STATE_IDLE) || |
| WARN_ON(rcu_seq_current(&sup->srcu_gp_seq) != sup->srcu_gp_seq_needed) || |
| WARN_ON(srcu_readers_active(ssp))) { |
| pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", |
| __func__, ssp, rcu_seq_state(READ_ONCE(sup->srcu_gp_seq)), |
| rcu_seq_current(&sup->srcu_gp_seq), sup->srcu_gp_seq_needed); |
| return; // Caller forgot to stop doing call_srcu()? |
| // Or caller invoked start_poll_synchronize_srcu() |
| // and then cleanup_srcu_struct() before that grace |
| // period ended? |
| } |
| kfree(sup->node); |
| sup->node = NULL; |
| sup->srcu_size_state = SRCU_SIZE_SMALL; |
| if (!sup->sda_is_static) { |
| free_percpu(ssp->sda); |
| ssp->sda = NULL; |
| kfree(sup); |
| ssp->srcu_sup = NULL; |
| } |
| } |
| EXPORT_SYMBOL_GPL(cleanup_srcu_struct); |
| |
| #ifdef CONFIG_PROVE_RCU |
| /* |
| * Check for consistent NMI safety. |
| */ |
| void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe) |
| { |
| int nmi_safe_mask = 1 << nmi_safe; |
| int old_nmi_safe_mask; |
| struct srcu_data *sdp; |
| |
| /* NMI-unsafe use in NMI is a bad sign */ |
| WARN_ON_ONCE(!nmi_safe && in_nmi()); |
| sdp = raw_cpu_ptr(ssp->sda); |
| old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety); |
| if (!old_nmi_safe_mask) { |
| WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask); |
| return; |
| } |
| WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask); |
| } |
| EXPORT_SYMBOL_GPL(srcu_check_nmi_safety); |
| #endif /* CONFIG_PROVE_RCU */ |
| |
| /* |
| * Counts the new reader in the appropriate per-CPU element of the |
| * srcu_struct. |
| * Returns an index that must be passed to the matching srcu_read_unlock(). |
| */ |
| int __srcu_read_lock(struct srcu_struct *ssp) |
| { |
| int idx; |
| |
| idx = READ_ONCE(ssp->srcu_idx) & 0x1; |
| this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter); |
| smp_mb(); /* B */ /* Avoid leaking the critical section. */ |
| return idx; |
| } |
| EXPORT_SYMBOL_GPL(__srcu_read_lock); |
| |
| /* |
| * Removes the count for the old reader from the appropriate per-CPU |
| * element of the srcu_struct. Note that this may well be a different |
| * CPU than that which was incremented by the corresponding srcu_read_lock(). |
| */ |
| void __srcu_read_unlock(struct srcu_struct *ssp, int idx) |
| { |
| smp_mb(); /* C */ /* Avoid leaking the critical section. */ |
| this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter); |
| } |
| EXPORT_SYMBOL_GPL(__srcu_read_unlock); |
| |
| #ifdef CONFIG_NEED_SRCU_NMI_SAFE |
| |
| /* |
| * Counts the new reader in the appropriate per-CPU element of the |
| * srcu_struct, but in an NMI-safe manner using RMW atomics. |
| * Returns an index that must be passed to the matching srcu_read_unlock(). |
| */ |
| int __srcu_read_lock_nmisafe(struct srcu_struct *ssp) |
| { |
| int idx; |
| struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); |
| |
| idx = READ_ONCE(ssp->srcu_idx) & 0x1; |
| atomic_long_inc(&sdp->srcu_lock_count[idx]); |
| smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */ |
| return idx; |
| } |
| EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe); |
| |
| /* |
| * Removes the count for the old reader from the appropriate per-CPU |
| * element of the srcu_struct. Note that this may well be a different |
| * CPU than that which was incremented by the corresponding srcu_read_lock(). |
| */ |
| void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx) |
| { |
| struct srcu_data *sdp = raw_cpu_ptr(ssp->sda); |
| |
| smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */ |
| atomic_long_inc(&sdp->srcu_unlock_count[idx]); |
| } |
| EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe); |
| |
| #endif // CONFIG_NEED_SRCU_NMI_SAFE |
| |
| /* |
| * Start an SRCU grace period. |
| */ |
| static void srcu_gp_start(struct srcu_struct *ssp) |
| { |
| int state; |
| |
| lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock)); |
| WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)); |
| WRITE_ONCE(ssp->srcu_sup->srcu_gp_start, jiffies); |
| WRITE_ONCE(ssp->srcu_sup->srcu_n_exp_nodelay, 0); |
| smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ |
| rcu_seq_start(&ssp->srcu_sup->srcu_gp_seq); |
| state = rcu_seq_state(ssp->srcu_sup->srcu_gp_seq); |
| WARN_ON_ONCE(state != SRCU_STATE_SCAN1); |
| } |
| |
| |
| static void srcu_delay_timer(struct timer_list *t) |
| { |
| struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); |
| |
| queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); |
| } |
| |
| static void srcu_queue_delayed_work_on(struct srcu_data *sdp, |
| unsigned long delay) |
| { |
| if (!delay) { |
| queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); |
| return; |
| } |
| |
| timer_reduce(&sdp->delay_work, jiffies + delay); |
| } |
| |
| /* |
| * Schedule callback invocation for the specified srcu_data structure, |
| * if possible, on the corresponding CPU. |
| */ |
| static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) |
| { |
| srcu_queue_delayed_work_on(sdp, delay); |
| } |
| |
| /* |
| * Schedule callback invocation for all srcu_data structures associated |
| * with the specified srcu_node structure that have callbacks for the |
| * just-completed grace period, the one corresponding to idx. If possible, |
| * schedule this invocation on the corresponding CPUs. |
| */ |
| static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, |
| unsigned long mask, unsigned long delay) |
| { |
| int cpu; |
| |
| for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { |
| if (!(mask & (1UL << (cpu - snp->grplo)))) |
| continue; |
| srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); |
| } |
| } |
| |
| /* |
| * Note the end of an SRCU grace period. Initiates callback invocation |
| * and starts a new grace period if needed. |
| * |
| * The ->srcu_cb_mutex acquisition does not protect any data, but |
| * instead prevents more than one grace period from starting while we |
| * are initiating callback invocation. This allows the ->srcu_have_cbs[] |
| * array to have a finite number of elements. |
| */ |
| static void srcu_gp_end(struct srcu_struct *ssp) |
| { |
| unsigned long cbdelay = 1; |
| bool cbs; |
| bool last_lvl; |
| int cpu; |
| unsigned long gpseq; |
| int idx; |
| unsigned long mask; |
| struct srcu_data *sdp; |
| unsigned long sgsne; |
| struct srcu_node *snp; |
| int ss_state; |
| struct srcu_usage *sup = ssp->srcu_sup; |
| |
| /* Prevent more than one additional grace period. */ |
| mutex_lock(&sup->srcu_cb_mutex); |
| |
| /* End the current grace period. */ |
| spin_lock_irq_rcu_node(sup); |
| idx = rcu_seq_state(sup->srcu_gp_seq); |
| WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); |
| if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp))) |
| cbdelay = 0; |
| |
| WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns()); |
| rcu_seq_end(&sup->srcu_gp_seq); |
| gpseq = rcu_seq_current(&sup->srcu_gp_seq); |
| if (ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, gpseq)) |
| WRITE_ONCE(sup->srcu_gp_seq_needed_exp, gpseq); |
| spin_unlock_irq_rcu_node(sup); |
| mutex_unlock(&sup->srcu_gp_mutex); |
| /* A new grace period can start at this point. But only one. */ |
| |
| /* Initiate callback invocation as needed. */ |
| ss_state = smp_load_acquire(&sup->srcu_size_state); |
| if (ss_state < SRCU_SIZE_WAIT_BARRIER) { |
| srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()), |
| cbdelay); |
| } else { |
| idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); |
| srcu_for_each_node_breadth_first(ssp, snp) { |
| spin_lock_irq_rcu_node(snp); |
| cbs = false; |
| last_lvl = snp >= sup->level[rcu_num_lvls - 1]; |
| if (last_lvl) |
| cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; |
| snp->srcu_have_cbs[idx] = gpseq; |
| rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); |
| sgsne = snp->srcu_gp_seq_needed_exp; |
| if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) |
| WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); |
| if (ss_state < SRCU_SIZE_BIG) |
| mask = ~0; |
| else |
| mask = snp->srcu_data_have_cbs[idx]; |
| snp->srcu_data_have_cbs[idx] = 0; |
| spin_unlock_irq_rcu_node(snp); |
| if (cbs) |
| srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); |
| } |
| } |
| |
| /* Occasionally prevent srcu_data counter wrap. */ |
| if (!(gpseq & counter_wrap_check)) |
| for_each_possible_cpu(cpu) { |
| sdp = per_cpu_ptr(ssp->sda, cpu); |
| spin_lock_irq_rcu_node(sdp); |
| if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) |
| sdp->srcu_gp_seq_needed = gpseq; |
| if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) |
| sdp->srcu_gp_seq_needed_exp = gpseq; |
| spin_unlock_irq_rcu_node(sdp); |
| } |
| |
| /* Callback initiation done, allow grace periods after next. */ |
| mutex_unlock(&sup->srcu_cb_mutex); |
| |
| /* Start a new grace period if needed. */ |
| spin_lock_irq_rcu_node(sup); |
| gpseq = rcu_seq_current(&sup->srcu_gp_seq); |
| if (!rcu_seq_state(gpseq) && |
| ULONG_CMP_LT(gpseq, sup->srcu_gp_seq_needed)) { |
| srcu_gp_start(ssp); |
| spin_unlock_irq_rcu_node(sup); |
| srcu_reschedule(ssp, 0); |
| } else { |
| spin_unlock_irq_rcu_node(sup); |
| } |
| |
| /* Transition to big if needed. */ |
| if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { |
| if (ss_state == SRCU_SIZE_ALLOC) |
| init_srcu_struct_nodes(ssp, GFP_KERNEL); |
| else |
| smp_store_release(&sup->srcu_size_state, ss_state + 1); |
| } |
| } |
| |
| /* |
| * Funnel-locking scheme to scalably mediate many concurrent expedited |
| * grace-period requests. This function is invoked for the first known |
| * expedited request for a grace period that has already been requested, |
| * but without expediting. To start a completely new grace period, |
| * whether expedited or not, use srcu_funnel_gp_start() instead. |
| */ |
| static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, |
| unsigned long s) |
| { |
| unsigned long flags; |
| unsigned long sgsne; |
| |
| if (snp) |
| for (; snp != NULL; snp = snp->srcu_parent) { |
| sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); |
| if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, s)) || |
| (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) |
| return; |
| spin_lock_irqsave_rcu_node(snp, flags); |
| sgsne = snp->srcu_gp_seq_needed_exp; |
| if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { |
| spin_unlock_irqrestore_rcu_node(snp, flags); |
| return; |
| } |
| WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); |
| spin_unlock_irqrestore_rcu_node(snp, flags); |
| } |
| spin_lock_irqsave_ssp_contention(ssp, &flags); |
| if (ULONG_CMP_LT(ssp->srcu_sup->srcu_gp_seq_needed_exp, s)) |
| WRITE_ONCE(ssp->srcu_sup->srcu_gp_seq_needed_exp, s); |
| spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags); |
| } |
| |
| /* |
| * Funnel-locking scheme to scalably mediate many concurrent grace-period |
| * requests. The winner has to do the work of actually starting grace |
| * period s. Losers must either ensure that their desired grace-period |
| * number is recorded on at least their leaf srcu_node structure, or they |
| * must take steps to invoke their own callbacks. |
| * |
| * Note that this function also does the work of srcu_funnel_exp_start(), |
| * in some cases by directly invoking it. |
| * |
| * The srcu read lock should be hold around this function. And s is a seq snap |
| * after holding that lock. |
| */ |
| static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, |
| unsigned long s, bool do_norm) |
| { |
| unsigned long flags; |
| int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); |
| unsigned long sgsne; |
| struct srcu_node *snp; |
| struct srcu_node *snp_leaf; |
| unsigned long snp_seq; |
| struct srcu_usage *sup = ssp->srcu_sup; |
| |
| /* Ensure that snp node tree is fully initialized before traversing it */ |
| if (smp_load_acquire(&sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) |
| snp_leaf = NULL; |
| else |
| snp_leaf = sdp->mynode; |
| |
| if (snp_leaf) |
| /* Each pass through the loop does one level of the srcu_node tree. */ |
| for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { |
| if (WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && snp != snp_leaf) |
| return; /* GP already done and CBs recorded. */ |
| spin_lock_irqsave_rcu_node(snp, flags); |
| snp_seq = snp->srcu_have_cbs[idx]; |
| if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { |
| if (snp == snp_leaf && snp_seq == s) |
| snp->srcu_data_have_cbs[idx] |= sdp->grpmask; |
| spin_unlock_irqrestore_rcu_node(snp, flags); |
| if (snp == snp_leaf && snp_seq != s) { |
| srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); |
| return; |
| } |
| if (!do_norm) |
| srcu_funnel_exp_start(ssp, snp, s); |
| return; |
| } |
| snp->srcu_have_cbs[idx] = s; |
| if (snp == snp_leaf) |
| snp->srcu_data_have_cbs[idx] |= sdp->grpmask; |
| sgsne = snp->srcu_gp_seq_needed_exp; |
| if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) |
| WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); |
| spin_unlock_irqrestore_rcu_node(snp, flags); |
| } |
| |
| /* Top of tree, must ensure the grace period will be started. */ |
| spin_lock_irqsave_ssp_contention(ssp, &flags); |
| if (ULONG_CMP_LT(sup->srcu_gp_seq_needed, s)) { |
| /* |
| * Record need for grace period s. Pair with load |
| * acquire setting up for initialization. |
| */ |
| smp_store_release(&sup->srcu_gp_seq_needed, s); /*^^^*/ |
| } |
| if (!do_norm && ULONG_CMP_LT(sup->srcu_gp_seq_needed_exp, s)) |
| WRITE_ONCE(sup->srcu_gp_seq_needed_exp, s); |
| |
| /* If grace period not already in progress, start it. */ |
| if (!WARN_ON_ONCE(rcu_seq_done(&sup->srcu_gp_seq, s)) && |
| rcu_seq_state(sup->srcu_gp_seq) == SRCU_STATE_IDLE) { |
| WARN_ON_ONCE(ULONG_CMP_GE(sup->srcu_gp_seq, sup->srcu_gp_seq_needed)); |
| srcu_gp_start(ssp); |
| |
| // And how can that list_add() in the "else" clause |
| // possibly be safe for concurrent execution? Well, |
| // it isn't. And it does not have to be. After all, it |
| // can only be executed during early boot when there is only |
| // the one boot CPU running with interrupts still disabled. |
| if (likely(srcu_init_done)) |
| queue_delayed_work(rcu_gp_wq, &sup->work, |
| !!srcu_get_delay(ssp)); |
| else if (list_empty(&sup->work.work.entry)) |
| list_add(&sup->work.work.entry, &srcu_boot_list); |
| } |
| spin_unlock_irqrestore_rcu_node(sup, flags); |
| } |
| |
| /* |
| * Wait until all readers counted by array index idx complete, but |
| * loop an additional time if there is an expedited grace period pending. |
| * The caller must ensure that ->srcu_idx is not changed while checking. |
| */ |
| static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) |
| { |
| unsigned long curdelay; |
| |
| curdelay = !srcu_get_delay(ssp); |
| |
| for (;;) { |
| if (srcu_readers_active_idx_check(ssp, idx)) |
| return true; |
| if ((--trycount + curdelay) <= 0) |
| return false; |
| udelay(srcu_retry_check_delay); |
| } |
| } |
| |
| /* |
| * Increment the ->srcu_idx counter so that future SRCU readers will |
| * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows |
| * us to wait for pre-existing readers in a starvation-free manner. |
| */ |
| static void srcu_flip(struct srcu_struct *ssp) |
| { |
| /* |
| * Because the flip of ->srcu_idx is executed only if the |
| * preceding call to srcu_readers_active_idx_check() found that |
| * the ->srcu_unlock_count[] and ->srcu_lock_count[] sums matched |
| * and because that summing uses atomic_long_read(), there is |
| * ordering due to a control dependency between that summing and |
| * the WRITE_ONCE() in this call to srcu_flip(). This ordering |
| * ensures that if this updater saw a given reader's increment from |
| * __srcu_read_lock(), that reader was using a value of ->srcu_idx |
| * from before the previous call to srcu_flip(), which should be |
| * quite rare. This ordering thus helps forward progress because |
| * the grace period could otherwise be delayed by additional |
| * calls to __srcu_read_lock() using that old (soon to be new) |
| * value of ->srcu_idx. |
| * |
| * This sum-equality check and ordering also ensures that if |
| * a given call to __srcu_read_lock() uses the new value of |
| * ->srcu_idx, this updater's earlier scans cannot have seen |
| * that reader's increments, which is all to the good, because |
| * this grace period need not wait on that reader. After all, |
| * if those earlier scans had seen that reader, there would have |
| * been a sum mismatch and this code would not be reached. |
| * |
| * This means that the following smp_mb() is redundant, but |
| * it stays until either (1) Compilers learn about this sort of |
| * control dependency or (2) Some production workload running on |
| * a production system is unduly delayed by this slowpath smp_mb(). |
| */ |
| smp_mb(); /* E */ /* Pairs with B and C. */ |
| |
| WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); // Flip the counter. |
| |
| /* |
| * Ensure that if the updater misses an __srcu_read_unlock() |
| * increment, that task's __srcu_read_lock() following its next |
| * __srcu_read_lock() or __srcu_read_unlock() will see the above |
| * counter update. Note that both this memory barrier and the |
| * one in srcu_readers_active_idx_check() provide the guarantee |
| * for __srcu_read_lock(). |
| */ |
| smp_mb(); /* D */ /* Pairs with C. */ |
| } |
| |
| /* |
| * If SRCU is likely idle, return true, otherwise return false. |
| * |
| * Note that it is OK for several current from-idle requests for a new |
| * grace period from idle to specify expediting because they will all end |
| * up requesting the same grace period anyhow. So no loss. |
| * |
| * Note also that if any CPU (including the current one) is still invoking |
| * callbacks, this function will nevertheless say "idle". This is not |
| * ideal, but the overhead of checking all CPUs' callback lists is even |
| * less ideal, especially on large systems. Furthermore, the wakeup |
| * can happen before the callback is fully removed, so we have no choice |
| * but to accept this type of error. |
| * |
| * This function is also subject to counter-wrap errors, but let's face |
| * it, if this function was preempted for enough time for the counters |
| * to wrap, it really doesn't matter whether or not we expedite the grace |
| * period. The extra overhead of a needlessly expedited grace period is |
| * negligible when amortized over that time period, and the extra latency |
| * of a needlessly non-expedited grace period is similarly negligible. |
| */ |
| static bool srcu_might_be_idle(struct srcu_struct *ssp) |
| { |
| unsigned long curseq; |
| unsigned long flags; |
| struct srcu_data *sdp; |
| unsigned long t; |
| unsigned long tlast; |
| |
| check_init_srcu_struct(ssp); |
| /* If the local srcu_data structure has callbacks, not idle. */ |
| sdp = raw_cpu_ptr(ssp->sda); |
| spin_lock_irqsave_rcu_node(sdp, flags); |
| if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { |
| spin_unlock_irqrestore_rcu_node(sdp, flags); |
| return false; /* Callbacks already present, so not idle. */ |
| } |
| spin_unlock_irqrestore_rcu_node(sdp, flags); |
| |
| /* |
| * No local callbacks, so probabilistically probe global state. |
| * Exact information would require acquiring locks, which would |
| * kill scalability, hence the probabilistic nature of the probe. |
| */ |
| |
| /* First, see if enough time has passed since the last GP. */ |
| t = ktime_get_mono_fast_ns(); |
| tlast = READ_ONCE(ssp->srcu_sup->srcu_last_gp_end); |
| if (exp_holdoff == 0 || |
| time_in_range_open(t, tlast, tlast + exp_holdoff)) |
| return false; /* Too soon after last GP. */ |
| |
| /* Next, check for probable idleness. */ |
| curseq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); |
| smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ |
| if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_sup->srcu_gp_seq_needed))) |
| return false; /* Grace period in progress, so not idle. */ |
| smp_mb(); /* Order ->srcu_gp_seq with prior access. */ |
| if (curseq != rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)) |
| return false; /* GP # changed, so not idle. */ |
| return true; /* With reasonable probability, idle! */ |
| } |
| |
| /* |
| * SRCU callback function to leak a callback. |
| */ |
| static void srcu_leak_callback(struct rcu_head *rhp) |
| { |
| } |
| |
| /* |
| * Start an SRCU grace period, and also queue the callback if non-NULL. |
| */ |
| static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, |
| struct rcu_head *rhp, bool do_norm) |
| { |
| unsigned long flags; |
| int idx; |
| bool needexp = false; |
| bool needgp = false; |
| unsigned long s; |
| struct srcu_data *sdp; |
| struct srcu_node *sdp_mynode; |
| int ss_state; |
| |
| check_init_srcu_struct(ssp); |
| /* |
| * While starting a new grace period, make sure we are in an |
| * SRCU read-side critical section so that the grace-period |
| * sequence number cannot wrap around in the meantime. |
| */ |
| idx = __srcu_read_lock_nmisafe(ssp); |
| ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state); |
| if (ss_state < SRCU_SIZE_WAIT_CALL) |
| sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id()); |
| else |
| sdp = raw_cpu_ptr(ssp->sda); |
| spin_lock_irqsave_sdp_contention(sdp, &flags); |
| if (rhp) |
| rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); |
| /* |
| * It's crucial to capture the snapshot 's' for acceleration before |
| * reading the current gp_seq that is used for advancing. This is |
| * essential because if the acceleration snapshot is taken after a |
| * failed advancement attempt, there's a risk that a grace period may |
| * conclude and a new one may start in the interim. If the snapshot is |
| * captured after this sequence of events, the acceleration snapshot 's' |
| * could be excessively advanced, leading to acceleration failure. |
| * In such a scenario, an 'acceleration leak' can occur, where new |
| * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment. |
| * Also note that encountering advancing failures is a normal |
| * occurrence when the grace period for RCU_WAIT_TAIL is in progress. |
| * |
| * To see this, consider the following events which occur if |
| * rcu_seq_snap() were to be called after advance: |
| * |
| * 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the |
| * RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8). |
| * |
| * 2) The grace period for RCU_WAIT_TAIL is seen as started but not |
| * completed so rcu_seq_current() returns X + SRCU_STATE_SCAN1. |
| * |
| * 3) This value is passed to rcu_segcblist_advance() which can't move |
| * any segment forward and fails. |
| * |
| * 4) srcu_gp_start_if_needed() still proceeds with callback acceleration. |
| * But then the call to rcu_seq_snap() observes the grace period for the |
| * RCU_WAIT_TAIL segment as completed and the subsequent one for the |
| * RCU_NEXT_READY_TAIL segment as started (ie: X + 4 + SRCU_STATE_SCAN1) |
| * so it returns a snapshot of the next grace period, which is X + 12. |
| * |
| * 5) The value of X + 12 is passed to rcu_segcblist_accelerate() but the |
| * freshly enqueued callback in RCU_NEXT_TAIL can't move to |
| * RCU_NEXT_READY_TAIL which already has callbacks for a previous grace |
| * period (gp_num = X + 8). So acceleration fails. |
| */ |
| s = rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); |
| if (rhp) { |
| rcu_segcblist_advance(&sdp->srcu_cblist, |
| rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); |
| /* |
| * Acceleration can never fail because the base current gp_seq |
| * used for acceleration is <= the value of gp_seq used for |
| * advancing. This means that RCU_NEXT_TAIL segment will |
| * always be able to be emptied by the acceleration into the |
| * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments. |
| */ |
| WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s)); |
| } |
| if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { |
| sdp->srcu_gp_seq_needed = s; |
| needgp = true; |
| } |
| if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { |
| sdp->srcu_gp_seq_needed_exp = s; |
| needexp = true; |
| } |
| spin_unlock_irqrestore_rcu_node(sdp, flags); |
| |
| /* Ensure that snp node tree is fully initialized before traversing it */ |
| if (ss_state < SRCU_SIZE_WAIT_BARRIER) |
| sdp_mynode = NULL; |
| else |
| sdp_mynode = sdp->mynode; |
| |
| if (needgp) |
| srcu_funnel_gp_start(ssp, sdp, s, do_norm); |
| else if (needexp) |
| srcu_funnel_exp_start(ssp, sdp_mynode, s); |
| __srcu_read_unlock_nmisafe(ssp, idx); |
| return s; |
| } |
| |
| /* |
| * Enqueue an SRCU callback on the srcu_data structure associated with |
| * the current CPU and the specified srcu_struct structure, initiating |
| * grace-period processing if it is not already running. |
| * |
| * Note that all CPUs must agree that the grace period extended beyond |
| * all pre-existing SRCU read-side critical section. On systems with |
| * more than one CPU, this means that when "func()" is invoked, each CPU |
| * is guaranteed to have executed a full memory barrier since the end of |
| * its last corresponding SRCU read-side critical section whose beginning |
| * preceded the call to call_srcu(). It also means that each CPU executing |
| * an SRCU read-side critical section that continues beyond the start of |
| * "func()" must have executed a memory barrier after the call_srcu() |
| * but before the beginning of that SRCU read-side critical section. |
| * Note that these guarantees include CPUs that are offline, idle, or |
| * executing in user mode, as well as CPUs that are executing in the kernel. |
| * |
| * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the |
| * resulting SRCU callback function "func()", then both CPU A and CPU |
| * B are guaranteed to execute a full memory barrier during the time |
| * interval between the call to call_srcu() and the invocation of "func()". |
| * This guarantee applies even if CPU A and CPU B are the same CPU (but |
| * again only if the system has more than one CPU). |
| * |
| * Of course, these guarantees apply only for invocations of call_srcu(), |
| * srcu_read_lock(), and srcu_read_unlock() that are all passed the same |
| * srcu_struct structure. |
| */ |
| static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, |
| rcu_callback_t func, bool do_norm) |
| { |
| if (debug_rcu_head_queue(rhp)) { |
| /* Probable double call_srcu(), so leak the callback. */ |
| WRITE_ONCE(rhp->func, srcu_leak_callback); |
| WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); |
| return; |
| } |
| rhp->func = func; |
| (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); |
| } |
| |
| /** |
| * call_srcu() - Queue a callback for invocation after an SRCU grace period |
| * @ssp: srcu_struct in queue the callback |
| * @rhp: structure to be used for queueing the SRCU callback. |
| * @func: function to be invoked after the SRCU grace period |
| * |
| * The callback function will be invoked some time after a full SRCU |
| * grace period elapses, in other words after all pre-existing SRCU |
| * read-side critical sections have completed. However, the callback |
| * function might well execute concurrently with other SRCU read-side |
| * critical sections that started after call_srcu() was invoked. SRCU |
| * read-side critical sections are delimited by srcu_read_lock() and |
| * srcu_read_unlock(), and may be nested. |
| * |
| * The callback will be invoked from process context, but must nevertheless |
| * be fast and must not block. |
| */ |
| void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, |
| rcu_callback_t func) |
| { |
| __call_srcu(ssp, rhp, func, true); |
| } |
| EXPORT_SYMBOL_GPL(call_srcu); |
| |
| /* |
| * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). |
| */ |
| static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) |
| { |
| struct rcu_synchronize rcu; |
| |
| srcu_lock_sync(&ssp->dep_map); |
| |
| RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || |
| lock_is_held(&rcu_bh_lock_map) || |
| lock_is_held(&rcu_lock_map) || |
| lock_is_held(&rcu_sched_lock_map), |
| "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); |
| |
| if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) |
| return; |
| might_sleep(); |
| check_init_srcu_struct(ssp); |
| init_completion(&rcu.completion); |
| init_rcu_head_on_stack(&rcu.head); |
| __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); |
| wait_for_completion(&rcu.completion); |
| destroy_rcu_head_on_stack(&rcu.head); |
| |
| /* |
| * Make sure that later code is ordered after the SRCU grace |
| * period. This pairs with the spin_lock_irq_rcu_node() |
| * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed |
| * because the current CPU might have been totally uninvolved with |
| * (and thus unordered against) that grace period. |
| */ |
| smp_mb(); |
| } |
| |
| /** |
| * synchronize_srcu_expedited - Brute-force SRCU grace period |
| * @ssp: srcu_struct with which to synchronize. |
| * |
| * Wait for an SRCU grace period to elapse, but be more aggressive about |
| * spinning rather than blocking when waiting. |
| * |
| * Note that synchronize_srcu_expedited() has the same deadlock and |
| * memory-ordering properties as does synchronize_srcu(). |
| */ |
| void synchronize_srcu_expedited(struct srcu_struct *ssp) |
| { |
| __synchronize_srcu(ssp, rcu_gp_is_normal()); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); |
| |
| /** |
| * synchronize_srcu - wait for prior SRCU read-side critical-section completion |
| * @ssp: srcu_struct with which to synchronize. |
| * |
| * Wait for the count to drain to zero of both indexes. To avoid the |
| * possible starvation of synchronize_srcu(), it waits for the count of |
| * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, |
| * and then flip the srcu_idx and wait for the count of the other index. |
| * |
| * Can block; must be called from process context. |
| * |
| * Note that it is illegal to call synchronize_srcu() from the corresponding |
| * SRCU read-side critical section; doing so will result in deadlock. |
| * However, it is perfectly legal to call synchronize_srcu() on one |
| * srcu_struct from some other srcu_struct's read-side critical section, |
| * as long as the resulting graph of srcu_structs is acyclic. |
| * |
| * There are memory-ordering constraints implied by synchronize_srcu(). |
| * On systems with more than one CPU, when synchronize_srcu() returns, |
| * each CPU is guaranteed to have executed a full memory barrier since |
| * the end of its last corresponding SRCU read-side critical section |
| * whose beginning preceded the call to synchronize_srcu(). In addition, |
| * each CPU having an SRCU read-side critical section that extends beyond |
| * the return from synchronize_srcu() is guaranteed to have executed a |
| * full memory barrier after the beginning of synchronize_srcu() and before |
| * the beginning of that SRCU read-side critical section. Note that these |
| * guarantees include CPUs that are offline, idle, or executing in user mode, |
| * as well as CPUs that are executing in the kernel. |
| * |
| * Furthermore, if CPU A invoked synchronize_srcu(), which returned |
| * to its caller on CPU B, then both CPU A and CPU B are guaranteed |
| * to have executed a full memory barrier during the execution of |
| * synchronize_srcu(). This guarantee applies even if CPU A and CPU B |
| * are the same CPU, but again only if the system has more than one CPU. |
| * |
| * Of course, these memory-ordering guarantees apply only when |
| * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are |
| * passed the same srcu_struct structure. |
| * |
| * Implementation of these memory-ordering guarantees is similar to |
| * that of synchronize_rcu(). |
| * |
| * If SRCU is likely idle, expedite the first request. This semantic |
| * was provided by Classic SRCU, and is relied upon by its users, so TREE |
| * SRCU must also provide it. Note that detecting idleness is heuristic |
| * and subject to both false positives and negatives. |
| */ |
| void synchronize_srcu(struct srcu_struct *ssp) |
| { |
| if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) |
| synchronize_srcu_expedited(ssp); |
| else |
| __synchronize_srcu(ssp, true); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_srcu); |
| |
| /** |
| * get_state_synchronize_srcu - Provide an end-of-grace-period cookie |
| * @ssp: srcu_struct to provide cookie for. |
| * |
| * This function returns a cookie that can be passed to |
| * poll_state_synchronize_srcu(), which will return true if a full grace |
| * period has elapsed in the meantime. It is the caller's responsibility |
| * to make sure that grace period happens, for example, by invoking |
| * call_srcu() after return from get_state_synchronize_srcu(). |
| */ |
| unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) |
| { |
| // Any prior manipulation of SRCU-protected data must happen |
| // before the load from ->srcu_gp_seq. |
| smp_mb(); |
| return rcu_seq_snap(&ssp->srcu_sup->srcu_gp_seq); |
| } |
| EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); |
| |
| /** |
| * start_poll_synchronize_srcu - Provide cookie and start grace period |
| * @ssp: srcu_struct to provide cookie for. |
| * |
| * This function returns a cookie that can be passed to |
| * poll_state_synchronize_srcu(), which will return true if a full grace |
| * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), |
| * this function also ensures that any needed SRCU grace period will be |
| * started. This convenience does come at a cost in terms of CPU overhead. |
| */ |
| unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) |
| { |
| return srcu_gp_start_if_needed(ssp, NULL, true); |
| } |
| EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); |
| |
| /** |
| * poll_state_synchronize_srcu - Has cookie's grace period ended? |
| * @ssp: srcu_struct to provide cookie for. |
| * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). |
| * |
| * This function takes the cookie that was returned from either |
| * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and |
| * returns @true if an SRCU grace period elapsed since the time that the |
| * cookie was created. |
| * |
| * Because cookies are finite in size, wrapping/overflow is possible. |
| * This is more pronounced on 32-bit systems where cookies are 32 bits, |
| * where in theory wrapping could happen in about 14 hours assuming |
| * 25-microsecond expedited SRCU grace periods. However, a more likely |
| * overflow lower bound is on the order of 24 days in the case of |
| * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit |
| * system requires geologic timespans, as in more than seven million years |
| * even for expedited SRCU grace periods. |
| * |
| * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems |
| * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses |
| * a 16-bit cookie, which rcutorture routinely wraps in a matter of a |
| * few minutes. If this proves to be a problem, this counter will be |
| * expanded to the same size as for Tree SRCU. |
| */ |
| bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) |
| { |
| if (cookie != SRCU_GET_STATE_COMPLETED && |
| !rcu_seq_done(&ssp->srcu_sup->srcu_gp_seq, cookie)) |
| return false; |
| // Ensure that the end of the SRCU grace period happens before |
| // any subsequent code that the caller might execute. |
| smp_mb(); // ^^^ |
| return true; |
| } |
| EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); |
| |
| /* |
| * Callback function for srcu_barrier() use. |
| */ |
| static void srcu_barrier_cb(struct rcu_head *rhp) |
| { |
| struct srcu_data *sdp; |
| struct srcu_struct *ssp; |
| |
| rhp->next = rhp; // Mark the callback as having been invoked. |
| sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); |
| ssp = sdp->ssp; |
| if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) |
| complete(&ssp->srcu_sup->srcu_barrier_completion); |
| } |
| |
| /* |
| * Enqueue an srcu_barrier() callback on the specified srcu_data |
| * structure's ->cblist. but only if that ->cblist already has at least one |
| * callback enqueued. Note that if a CPU already has callbacks enqueue, |
| * it must have already registered the need for a future grace period, |
| * so all we need do is enqueue a callback that will use the same grace |
| * period as the last callback already in the queue. |
| */ |
| static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) |
| { |
| spin_lock_irq_rcu_node(sdp); |
| atomic_inc(&ssp->srcu_sup->srcu_barrier_cpu_cnt); |
| sdp->srcu_barrier_head.func = srcu_barrier_cb; |
| debug_rcu_head_queue(&sdp->srcu_barrier_head); |
| if (!rcu_segcblist_entrain(&sdp->srcu_cblist, |
| &sdp->srcu_barrier_head)) { |
| debug_rcu_head_unqueue(&sdp->srcu_barrier_head); |
| atomic_dec(&ssp->srcu_sup->srcu_barrier_cpu_cnt); |
| } |
| spin_unlock_irq_rcu_node(sdp); |
| } |
| |
| /** |
| * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. |
| * @ssp: srcu_struct on which to wait for in-flight callbacks. |
| */ |
| void srcu_barrier(struct srcu_struct *ssp) |
| { |
| int cpu; |
| int idx; |
| unsigned long s = rcu_seq_snap(&ssp->srcu_sup->srcu_barrier_seq); |
| |
| check_init_srcu_struct(ssp); |
| mutex_lock(&ssp->srcu_sup->srcu_barrier_mutex); |
| if (rcu_seq_done(&ssp->srcu_sup->srcu_barrier_seq, s)) { |
| smp_mb(); /* Force ordering following return. */ |
| mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); |
| return; /* Someone else did our work for us. */ |
| } |
| rcu_seq_start(&ssp->srcu_sup->srcu_barrier_seq); |
| init_completion(&ssp->srcu_sup->srcu_barrier_completion); |
| |
| /* Initial count prevents reaching zero until all CBs are posted. */ |
| atomic_set(&ssp->srcu_sup->srcu_barrier_cpu_cnt, 1); |
| |
| idx = __srcu_read_lock_nmisafe(ssp); |
| if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) |
| srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, get_boot_cpu_id())); |
| else |
| for_each_possible_cpu(cpu) |
| srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); |
| __srcu_read_unlock_nmisafe(ssp, idx); |
| |
| /* Remove the initial count, at which point reaching zero can happen. */ |
| if (atomic_dec_and_test(&ssp->srcu_sup->srcu_barrier_cpu_cnt)) |
| complete(&ssp->srcu_sup->srcu_barrier_completion); |
| wait_for_completion(&ssp->srcu_sup->srcu_barrier_completion); |
| |
| rcu_seq_end(&ssp->srcu_sup->srcu_barrier_seq); |
| mutex_unlock(&ssp->srcu_sup->srcu_barrier_mutex); |
| } |
| EXPORT_SYMBOL_GPL(srcu_barrier); |
| |
| /** |
| * srcu_batches_completed - return batches completed. |
| * @ssp: srcu_struct on which to report batch completion. |
| * |
| * Report the number of batches, correlated with, but not necessarily |
| * precisely the same as, the number of grace periods that have elapsed. |
| */ |
| unsigned long srcu_batches_completed(struct srcu_struct *ssp) |
| { |
| return READ_ONCE(ssp->srcu_idx); |
| } |
| EXPORT_SYMBOL_GPL(srcu_batches_completed); |
| |
| /* |
| * Core SRCU state machine. Push state bits of ->srcu_gp_seq |
| * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has |
| * completed in that state. |
| */ |
| static void srcu_advance_state(struct srcu_struct *ssp) |
| { |
| int idx; |
| |
| mutex_lock(&ssp->srcu_sup->srcu_gp_mutex); |
| |
| /* |
| * Because readers might be delayed for an extended period after |
| * fetching ->srcu_idx for their index, at any point in time there |
| * might well be readers using both idx=0 and idx=1. We therefore |
| * need to wait for readers to clear from both index values before |
| * invoking a callback. |
| * |
| * The load-acquire ensures that we see the accesses performed |
| * by the prior grace period. |
| */ |
| idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq)); /* ^^^ */ |
| if (idx == SRCU_STATE_IDLE) { |
| spin_lock_irq_rcu_node(ssp->srcu_sup); |
| if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { |
| WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)); |
| spin_unlock_irq_rcu_node(ssp->srcu_sup); |
| mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); |
| return; |
| } |
| idx = rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)); |
| if (idx == SRCU_STATE_IDLE) |
| srcu_gp_start(ssp); |
| spin_unlock_irq_rcu_node(ssp->srcu_sup); |
| if (idx != SRCU_STATE_IDLE) { |
| mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); |
| return; /* Someone else started the grace period. */ |
| } |
| } |
| |
| if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN1) { |
| idx = 1 ^ (ssp->srcu_idx & 1); |
| if (!try_check_zero(ssp, idx, 1)) { |
| mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); |
| return; /* readers present, retry later. */ |
| } |
| srcu_flip(ssp); |
| spin_lock_irq_rcu_node(ssp->srcu_sup); |
| rcu_seq_set_state(&ssp->srcu_sup->srcu_gp_seq, SRCU_STATE_SCAN2); |
| ssp->srcu_sup->srcu_n_exp_nodelay = 0; |
| spin_unlock_irq_rcu_node(ssp->srcu_sup); |
| } |
| |
| if (rcu_seq_state(READ_ONCE(ssp->srcu_sup->srcu_gp_seq)) == SRCU_STATE_SCAN2) { |
| |
| /* |
| * SRCU read-side critical sections are normally short, |
| * so check at least twice in quick succession after a flip. |
| */ |
| idx = 1 ^ (ssp->srcu_idx & 1); |
| if (!try_check_zero(ssp, idx, 2)) { |
| mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex); |
| return; /* readers present, retry later. */ |
| } |
| ssp->srcu_sup->srcu_n_exp_nodelay = 0; |
| srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ |
| } |
| } |
| |
| /* |
| * Invoke a limited number of SRCU callbacks that have passed through |
| * their grace period. If there are more to do, SRCU will reschedule |
| * the workqueue. Note that needed memory barriers have been executed |
| * in this task's context by srcu_readers_active_idx_check(). |
| */ |
| static void srcu_invoke_callbacks(struct work_struct *work) |
| { |
| long len; |
| bool more; |
| struct rcu_cblist ready_cbs; |
| struct rcu_head *rhp; |
| struct srcu_data *sdp; |
| struct srcu_struct *ssp; |
| |
| sdp = container_of(work, struct srcu_data, work); |
| |
| ssp = sdp->ssp; |
| rcu_cblist_init(&ready_cbs); |
| spin_lock_irq_rcu_node(sdp); |
| WARN_ON_ONCE(!rcu_segcblist_segempty(&sdp->srcu_cblist, RCU_NEXT_TAIL)); |
| rcu_segcblist_advance(&sdp->srcu_cblist, |
| rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq)); |
| /* |
| * Although this function is theoretically re-entrant, concurrent |
| * callbacks invocation is disallowed to avoid executing an SRCU barrier |
| * too early. |
| */ |
| if (sdp->srcu_cblist_invoking || |
| !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { |
| spin_unlock_irq_rcu_node(sdp); |
| return; /* Someone else on the job or nothing to do. */ |
| } |
| |
| /* We are on the job! Extract and invoke ready callbacks. */ |
| sdp->srcu_cblist_invoking = true; |
| rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); |
| len = ready_cbs.len; |
| spin_unlock_irq_rcu_node(sdp); |
| rhp = rcu_cblist_dequeue(&ready_cbs); |
| for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { |
| debug_rcu_head_unqueue(rhp); |
| debug_rcu_head_callback(rhp); |
| local_bh_disable(); |
| rhp->func(rhp); |
| local_bh_enable(); |
| } |
| WARN_ON_ONCE(ready_cbs.len); |
| |
| /* |
| * Update counts, accelerate new callbacks, and if needed, |
| * schedule another round of callback invocation. |
| */ |
| spin_lock_irq_rcu_node(sdp); |
| rcu_segcblist_add_len(&sdp->srcu_cblist, -len); |
| sdp->srcu_cblist_invoking = false; |
| more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); |
| spin_unlock_irq_rcu_node(sdp); |
| /* An SRCU barrier or callbacks from previous nesting work pending */ |
| if (more) |
| srcu_schedule_cbs_sdp(sdp, 0); |
| } |
| |
| /* |
| * Finished one round of SRCU grace period. Start another if there are |
| * more SRCU callbacks queued, otherwise put SRCU into not-running state. |
| */ |
| static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) |
| { |
| bool pushgp = true; |
| |
| spin_lock_irq_rcu_node(ssp->srcu_sup); |
| if (ULONG_CMP_GE(ssp->srcu_sup->srcu_gp_seq, ssp->srcu_sup->srcu_gp_seq_needed)) { |
| if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_sup->srcu_gp_seq))) { |
| /* All requests fulfilled, time to go idle. */ |
| pushgp = false; |
| } |
| } else if (!rcu_seq_state(ssp->srcu_sup->srcu_gp_seq)) { |
| /* Outstanding request and no GP. Start one. */ |
| srcu_gp_start(ssp); |
| } |
| spin_unlock_irq_rcu_node(ssp->srcu_sup); |
| |
| if (pushgp) |
| queue_delayed_work(rcu_gp_wq, &ssp->srcu_sup->work, delay); |
| } |
| |
| /* |
| * This is the work-queue function that handles SRCU grace periods. |
| */ |
| static void process_srcu(struct work_struct *work) |
| { |
| unsigned long curdelay; |
| unsigned long j; |
| struct srcu_struct *ssp; |
| struct srcu_usage *sup; |
| |
| sup = container_of(work, struct srcu_usage, work.work); |
| ssp = sup->srcu_ssp; |
| |
| srcu_advance_state(ssp); |
| curdelay = srcu_get_delay(ssp); |
| if (curdelay) { |
| WRITE_ONCE(sup->reschedule_count, 0); |
| } else { |
| j = jiffies; |
| if (READ_ONCE(sup->reschedule_jiffies) == j) { |
| ASSERT_EXCLUSIVE_WRITER(sup->reschedule_count); |
| WRITE_ONCE(sup->reschedule_count, READ_ONCE(sup->reschedule_count) + 1); |
| if (READ_ONCE(sup->reschedule_count) > srcu_max_nodelay) |
| curdelay = 1; |
| } else { |
| WRITE_ONCE(sup->reschedule_count, 1); |
| WRITE_ONCE(sup->reschedule_jiffies, j); |
| } |
| } |
| srcu_reschedule(ssp, curdelay); |
| } |
| |
| void srcutorture_get_gp_data(struct srcu_struct *ssp, int *flags, |
| unsigned long *gp_seq) |
| { |
| *flags = 0; |
| *gp_seq = rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq); |
| } |
| EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); |
| |
| static const char * const srcu_size_state_name[] = { |
| "SRCU_SIZE_SMALL", |
| "SRCU_SIZE_ALLOC", |
| "SRCU_SIZE_WAIT_BARRIER", |
| "SRCU_SIZE_WAIT_CALL", |
| "SRCU_SIZE_WAIT_CBS1", |
| "SRCU_SIZE_WAIT_CBS2", |
| "SRCU_SIZE_WAIT_CBS3", |
| "SRCU_SIZE_WAIT_CBS4", |
| "SRCU_SIZE_BIG", |
| "SRCU_SIZE_???", |
| }; |
| |
| void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) |
| { |
| int cpu; |
| int idx; |
| unsigned long s0 = 0, s1 = 0; |
| int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state); |
| int ss_state_idx = ss_state; |
| |
| idx = ssp->srcu_idx & 0x1; |
| if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) |
| ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; |
| pr_alert("%s%s Tree SRCU g%ld state %d (%s)", |
| tt, tf, rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq), ss_state, |
| srcu_size_state_name[ss_state_idx]); |
| if (!ssp->sda) { |
| // Called after cleanup_srcu_struct(), perhaps. |
| pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); |
| } else { |
| pr_cont(" per-CPU(idx=%d):", idx); |
| for_each_possible_cpu(cpu) { |
| unsigned long l0, l1; |
| unsigned long u0, u1; |
| long c0, c1; |
| struct srcu_data *sdp; |
| |
| sdp = per_cpu_ptr(ssp->sda, cpu); |
| u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx])); |
| u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx])); |
| |
| /* |
| * Make sure that a lock is always counted if the corresponding |
| * unlock is counted. |
| */ |
| smp_rmb(); |
| |
| l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx])); |
| l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx])); |
| |
| c0 = l0 - u0; |
| c1 = l1 - u1; |
| pr_cont(" %d(%ld,%ld %c)", |
| cpu, c0, c1, |
| "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); |
| s0 += c0; |
| s1 += c1; |
| } |
| pr_cont(" T(%ld,%ld)\n", s0, s1); |
| } |
| if (SRCU_SIZING_IS_TORTURE()) |
| srcu_transition_to_big(ssp); |
| } |
| EXPORT_SYMBOL_GPL(srcu_torture_stats_print); |
| |
| static int __init srcu_bootup_announce(void) |
| { |
| pr_info("Hierarchical SRCU implementation.\n"); |
| if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) |
| pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); |
| if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY) |
| pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay); |
| if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY) |
| pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay); |
| pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase); |
| return 0; |
| } |
| early_initcall(srcu_bootup_announce); |
| |
| void __init srcu_init(void) |
| { |
| struct srcu_usage *sup; |
| |
| /* Decide on srcu_struct-size strategy. */ |
| if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { |
| if (nr_cpu_ids >= big_cpu_lim) { |
| convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. |
| pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); |
| } else { |
| convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; |
| pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); |
| } |
| } |
| |
| /* |
| * Once that is set, call_srcu() can follow the normal path and |
| * queue delayed work. This must follow RCU workqueues creation |
| * and timers initialization. |
| */ |
| srcu_init_done = true; |
| while (!list_empty(&srcu_boot_list)) { |
| sup = list_first_entry(&srcu_boot_list, struct srcu_usage, |
| work.work.entry); |
| list_del_init(&sup->work.work.entry); |
| if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && |
| sup->srcu_size_state == SRCU_SIZE_SMALL) |
| sup->srcu_size_state = SRCU_SIZE_ALLOC; |
| queue_work(rcu_gp_wq, &sup->work.work); |
| } |
| } |
| |
| #ifdef CONFIG_MODULES |
| |
| /* Initialize any global-scope srcu_struct structures used by this module. */ |
| static int srcu_module_coming(struct module *mod) |
| { |
| int i; |
| struct srcu_struct *ssp; |
| struct srcu_struct **sspp = mod->srcu_struct_ptrs; |
| |
| for (i = 0; i < mod->num_srcu_structs; i++) { |
| ssp = *(sspp++); |
| ssp->sda = alloc_percpu(struct srcu_data); |
| if (WARN_ON_ONCE(!ssp->sda)) |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| /* Clean up any global-scope srcu_struct structures used by this module. */ |
| static void srcu_module_going(struct module *mod) |
| { |
| int i; |
| struct srcu_struct *ssp; |
| struct srcu_struct **sspp = mod->srcu_struct_ptrs; |
| |
| for (i = 0; i < mod->num_srcu_structs; i++) { |
| ssp = *(sspp++); |
| if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_sup->srcu_gp_seq_needed)) && |
| !WARN_ON_ONCE(!ssp->srcu_sup->sda_is_static)) |
| cleanup_srcu_struct(ssp); |
| if (!WARN_ON(srcu_readers_active(ssp))) |
| free_percpu(ssp->sda); |
| } |
| } |
| |
| /* Handle one module, either coming or going. */ |
| static int srcu_module_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| struct module *mod = data; |
| int ret = 0; |
| |
| switch (val) { |
| case MODULE_STATE_COMING: |
| ret = srcu_module_coming(mod); |
| break; |
| case MODULE_STATE_GOING: |
| srcu_module_going(mod); |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| static struct notifier_block srcu_module_nb = { |
| .notifier_call = srcu_module_notify, |
| .priority = 0, |
| }; |
| |
| static __init int init_srcu_module_notifier(void) |
| { |
| int ret; |
| |
| ret = register_module_notifier(&srcu_module_nb); |
| if (ret) |
| pr_warn("Failed to register srcu module notifier\n"); |
| return ret; |
| } |
| late_initcall(init_srcu_module_notifier); |
| |
| #endif /* #ifdef CONFIG_MODULES */ |