| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Contiguous Memory Allocator |
| * |
| * Copyright (c) 2010-2011 by Samsung Electronics. |
| * Copyright IBM Corporation, 2013 |
| * Copyright LG Electronics Inc., 2014 |
| * Written by: |
| * Marek Szyprowski <m.szyprowski@samsung.com> |
| * Michal Nazarewicz <mina86@mina86.com> |
| * Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> |
| * Joonsoo Kim <iamjoonsoo.kim@lge.com> |
| */ |
| |
| #define pr_fmt(fmt) "cma: " fmt |
| |
| #define CREATE_TRACE_POINTS |
| |
| #include <linux/memblock.h> |
| #include <linux/err.h> |
| #include <linux/list.h> |
| #include <linux/mm.h> |
| #include <linux/sizes.h> |
| #include <linux/slab.h> |
| #include <linux/log2.h> |
| #include <linux/cma.h> |
| #include <linux/highmem.h> |
| #include <linux/io.h> |
| #include <linux/kmemleak.h> |
| #include <trace/events/cma.h> |
| |
| #include "internal.h" |
| #include "cma.h" |
| |
| struct cma cma_areas[MAX_CMA_AREAS]; |
| unsigned int cma_area_count; |
| |
| static int __init __cma_declare_contiguous_nid(phys_addr_t *basep, |
| phys_addr_t size, phys_addr_t limit, |
| phys_addr_t alignment, unsigned int order_per_bit, |
| bool fixed, const char *name, struct cma **res_cma, |
| int nid); |
| |
| phys_addr_t cma_get_base(const struct cma *cma) |
| { |
| WARN_ON_ONCE(cma->nranges != 1); |
| return PFN_PHYS(cma->ranges[0].base_pfn); |
| } |
| |
| unsigned long cma_get_size(const struct cma *cma) |
| { |
| return cma->count << PAGE_SHIFT; |
| } |
| |
| const char *cma_get_name(const struct cma *cma) |
| { |
| return cma->name; |
| } |
| |
| static unsigned long cma_bitmap_aligned_mask(const struct cma *cma, |
| unsigned int align_order) |
| { |
| if (align_order <= cma->order_per_bit) |
| return 0; |
| return (1UL << (align_order - cma->order_per_bit)) - 1; |
| } |
| |
| /* |
| * Find the offset of the base PFN from the specified align_order. |
| * The value returned is represented in order_per_bits. |
| */ |
| static unsigned long cma_bitmap_aligned_offset(const struct cma *cma, |
| const struct cma_memrange *cmr, |
| unsigned int align_order) |
| { |
| return (cmr->base_pfn & ((1UL << align_order) - 1)) |
| >> cma->order_per_bit; |
| } |
| |
| static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma, |
| unsigned long pages) |
| { |
| return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit; |
| } |
| |
| static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr, |
| unsigned long pfn, unsigned long count) |
| { |
| unsigned long bitmap_no, bitmap_count; |
| unsigned long flags; |
| |
| bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit; |
| bitmap_count = cma_bitmap_pages_to_bits(cma, count); |
| |
| spin_lock_irqsave(&cma->lock, flags); |
| bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count); |
| cma->available_count += count; |
| spin_unlock_irqrestore(&cma->lock, flags); |
| } |
| |
| /* |
| * Check if a CMA area contains no ranges that intersect with |
| * multiple zones. Store the result in the flags in case |
| * this gets called more than once. |
| */ |
| bool cma_validate_zones(struct cma *cma) |
| { |
| int r; |
| unsigned long base_pfn; |
| struct cma_memrange *cmr; |
| bool valid_bit_set; |
| |
| /* |
| * If already validated, return result of previous check. |
| * Either the valid or invalid bit will be set if this |
| * check has already been done. If neither is set, the |
| * check has not been performed yet. |
| */ |
| valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags); |
| if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags)) |
| return valid_bit_set; |
| |
| for (r = 0; r < cma->nranges; r++) { |
| cmr = &cma->ranges[r]; |
| base_pfn = cmr->base_pfn; |
| |
| /* |
| * alloc_contig_range() requires the pfn range specified |
| * to be in the same zone. Simplify by forcing the entire |
| * CMA resv range to be in the same zone. |
| */ |
| WARN_ON_ONCE(!pfn_valid(base_pfn)); |
| if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) { |
| set_bit(CMA_ZONES_INVALID, &cma->flags); |
| return false; |
| } |
| } |
| |
| set_bit(CMA_ZONES_VALID, &cma->flags); |
| |
| return true; |
| } |
| |
| static void __init cma_activate_area(struct cma *cma) |
| { |
| unsigned long pfn, end_pfn; |
| int allocrange, r; |
| struct cma_memrange *cmr; |
| unsigned long bitmap_count, count; |
| |
| for (allocrange = 0; allocrange < cma->nranges; allocrange++) { |
| cmr = &cma->ranges[allocrange]; |
| cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr), |
| GFP_KERNEL); |
| if (!cmr->bitmap) |
| goto cleanup; |
| } |
| |
| if (!cma_validate_zones(cma)) |
| goto cleanup; |
| |
| for (r = 0; r < cma->nranges; r++) { |
| cmr = &cma->ranges[r]; |
| if (cmr->early_pfn != cmr->base_pfn) { |
| count = cmr->early_pfn - cmr->base_pfn; |
| bitmap_count = cma_bitmap_pages_to_bits(cma, count); |
| bitmap_set(cmr->bitmap, 0, bitmap_count); |
| } |
| |
| for (pfn = cmr->early_pfn; pfn < cmr->base_pfn + cmr->count; |
| pfn += pageblock_nr_pages) |
| init_cma_reserved_pageblock(pfn_to_page(pfn)); |
| } |
| |
| spin_lock_init(&cma->lock); |
| |
| mutex_init(&cma->alloc_mutex); |
| |
| #ifdef CONFIG_CMA_DEBUGFS |
| INIT_HLIST_HEAD(&cma->mem_head); |
| spin_lock_init(&cma->mem_head_lock); |
| #endif |
| set_bit(CMA_ACTIVATED, &cma->flags); |
| |
| return; |
| |
| cleanup: |
| for (r = 0; r < allocrange; r++) |
| bitmap_free(cma->ranges[r].bitmap); |
| |
| /* Expose all pages to the buddy, they are useless for CMA. */ |
| if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) { |
| for (r = 0; r < allocrange; r++) { |
| cmr = &cma->ranges[r]; |
| end_pfn = cmr->base_pfn + cmr->count; |
| for (pfn = cmr->early_pfn; pfn < end_pfn; pfn++) |
| free_reserved_page(pfn_to_page(pfn)); |
| } |
| } |
| totalcma_pages -= cma->count; |
| cma->available_count = cma->count = 0; |
| pr_err("CMA area %s could not be activated\n", cma->name); |
| } |
| |
| static int __init cma_init_reserved_areas(void) |
| { |
| int i; |
| |
| for (i = 0; i < cma_area_count; i++) |
| cma_activate_area(&cma_areas[i]); |
| |
| return 0; |
| } |
| core_initcall(cma_init_reserved_areas); |
| |
| void __init cma_reserve_pages_on_error(struct cma *cma) |
| { |
| set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags); |
| } |
| |
| static int __init cma_new_area(const char *name, phys_addr_t size, |
| unsigned int order_per_bit, |
| struct cma **res_cma) |
| { |
| struct cma *cma; |
| |
| if (cma_area_count == ARRAY_SIZE(cma_areas)) { |
| pr_err("Not enough slots for CMA reserved regions!\n"); |
| return -ENOSPC; |
| } |
| |
| /* |
| * Each reserved area must be initialised later, when more kernel |
| * subsystems (like slab allocator) are available. |
| */ |
| cma = &cma_areas[cma_area_count]; |
| cma_area_count++; |
| |
| if (name) |
| snprintf(cma->name, CMA_MAX_NAME, "%s", name); |
| else |
| snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count); |
| |
| cma->available_count = cma->count = size >> PAGE_SHIFT; |
| cma->order_per_bit = order_per_bit; |
| *res_cma = cma; |
| totalcma_pages += cma->count; |
| |
| return 0; |
| } |
| |
| static void __init cma_drop_area(struct cma *cma) |
| { |
| totalcma_pages -= cma->count; |
| cma_area_count--; |
| } |
| |
| /** |
| * cma_init_reserved_mem() - create custom contiguous area from reserved memory |
| * @base: Base address of the reserved area |
| * @size: Size of the reserved area (in bytes), |
| * @order_per_bit: Order of pages represented by one bit on bitmap. |
| * @name: The name of the area. If this parameter is NULL, the name of |
| * the area will be set to "cmaN", where N is a running counter of |
| * used areas. |
| * @res_cma: Pointer to store the created cma region. |
| * |
| * This function creates custom contiguous area from already reserved memory. |
| */ |
| int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, |
| unsigned int order_per_bit, |
| const char *name, |
| struct cma **res_cma) |
| { |
| struct cma *cma; |
| int ret; |
| |
| /* Sanity checks */ |
| if (!size || !memblock_is_region_reserved(base, size)) |
| return -EINVAL; |
| |
| /* |
| * CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which |
| * needs pageblock_order to be initialized. Let's enforce it. |
| */ |
| if (!pageblock_order) { |
| pr_err("pageblock_order not yet initialized. Called during early boot?\n"); |
| return -EINVAL; |
| } |
| |
| /* ensure minimal alignment required by mm core */ |
| if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES)) |
| return -EINVAL; |
| |
| ret = cma_new_area(name, size, order_per_bit, &cma); |
| if (ret != 0) |
| return ret; |
| |
| cma->ranges[0].base_pfn = PFN_DOWN(base); |
| cma->ranges[0].early_pfn = PFN_DOWN(base); |
| cma->ranges[0].count = cma->count; |
| cma->nranges = 1; |
| cma->nid = NUMA_NO_NODE; |
| |
| *res_cma = cma; |
| |
| return 0; |
| } |
| |
| /* |
| * Structure used while walking physical memory ranges and finding out |
| * which one(s) to use for a CMA area. |
| */ |
| struct cma_init_memrange { |
| phys_addr_t base; |
| phys_addr_t size; |
| struct list_head list; |
| }; |
| |
| /* |
| * Work array used during CMA initialization. |
| */ |
| static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata; |
| |
| static bool __init revsizecmp(struct cma_init_memrange *mlp, |
| struct cma_init_memrange *mrp) |
| { |
| return mlp->size > mrp->size; |
| } |
| |
| static bool __init basecmp(struct cma_init_memrange *mlp, |
| struct cma_init_memrange *mrp) |
| { |
| return mlp->base < mrp->base; |
| } |
| |
| /* |
| * Helper function to create sorted lists. |
| */ |
| static void __init list_insert_sorted( |
| struct list_head *ranges, |
| struct cma_init_memrange *mrp, |
| bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh)) |
| { |
| struct list_head *mp; |
| struct cma_init_memrange *mlp; |
| |
| if (list_empty(ranges)) |
| list_add(&mrp->list, ranges); |
| else { |
| list_for_each(mp, ranges) { |
| mlp = list_entry(mp, struct cma_init_memrange, list); |
| if (cmp(mlp, mrp)) |
| break; |
| } |
| __list_add(&mrp->list, mlp->list.prev, &mlp->list); |
| } |
| } |
| |
| /* |
| * Create CMA areas with a total size of @total_size. A normal allocation |
| * for one area is tried first. If that fails, the biggest memblock |
| * ranges above 4G are selected, and allocated bottom up. |
| * |
| * The complexity here is not great, but this function will only be |
| * called during boot, and the lists operated on have fewer than |
| * CMA_MAX_RANGES elements (default value: 8). |
| */ |
| int __init cma_declare_contiguous_multi(phys_addr_t total_size, |
| phys_addr_t align, unsigned int order_per_bit, |
| const char *name, struct cma **res_cma, int nid) |
| { |
| phys_addr_t start = 0, end; |
| phys_addr_t size, sizesum, sizeleft; |
| struct cma_init_memrange *mrp, *mlp, *failed; |
| struct cma_memrange *cmrp; |
| LIST_HEAD(ranges); |
| LIST_HEAD(final_ranges); |
| struct list_head *mp, *next; |
| int ret, nr = 1; |
| u64 i; |
| struct cma *cma; |
| |
| /* |
| * First, try it the normal way, producing just one range. |
| */ |
| ret = __cma_declare_contiguous_nid(&start, total_size, 0, align, |
| order_per_bit, false, name, res_cma, nid); |
| if (ret != -ENOMEM) |
| goto out; |
| |
| /* |
| * Couldn't find one range that fits our needs, so try multiple |
| * ranges. |
| * |
| * No need to do the alignment checks here, the call to |
| * cma_declare_contiguous_nid above would have caught |
| * any issues. With the checks, we know that: |
| * |
| * - @align is a power of 2 |
| * - @align is >= pageblock alignment |
| * - @size is aligned to @align and to @order_per_bit |
| * |
| * So, as long as we create ranges that have a base |
| * aligned to @align, and a size that is aligned to |
| * both @align and @order_to_bit, things will work out. |
| */ |
| nr = 0; |
| sizesum = 0; |
| failed = NULL; |
| |
| ret = cma_new_area(name, total_size, order_per_bit, &cma); |
| if (ret != 0) |
| goto out; |
| |
| align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES); |
| /* |
| * Create a list of ranges above 4G, largest range first. |
| */ |
| for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) { |
| if (upper_32_bits(start) == 0) |
| continue; |
| |
| start = ALIGN(start, align); |
| if (start >= end) |
| continue; |
| |
| end = ALIGN_DOWN(end, align); |
| if (end <= start) |
| continue; |
| |
| size = end - start; |
| size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit)); |
| if (!size) |
| continue; |
| sizesum += size; |
| |
| pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end); |
| |
| /* |
| * If we don't yet have used the maximum number of |
| * areas, grab a new one. |
| * |
| * If we can't use anymore, see if this range is not |
| * smaller than the smallest one already recorded. If |
| * not, re-use the smallest element. |
| */ |
| if (nr < CMA_MAX_RANGES) |
| mrp = &memranges[nr++]; |
| else { |
| mrp = list_last_entry(&ranges, |
| struct cma_init_memrange, list); |
| if (size < mrp->size) |
| continue; |
| list_del(&mrp->list); |
| sizesum -= mrp->size; |
| pr_debug("deleted %016llx - %016llx from the list\n", |
| (u64)mrp->base, (u64)mrp->base + size); |
| } |
| mrp->base = start; |
| mrp->size = size; |
| |
| /* |
| * Now do a sorted insert. |
| */ |
| list_insert_sorted(&ranges, mrp, revsizecmp); |
| pr_debug("added %016llx - %016llx to the list\n", |
| (u64)mrp->base, (u64)mrp->base + size); |
| pr_debug("total size now %llu\n", (u64)sizesum); |
| } |
| |
| /* |
| * There is not enough room in the CMA_MAX_RANGES largest |
| * ranges, so bail out. |
| */ |
| if (sizesum < total_size) { |
| cma_drop_area(cma); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * Found ranges that provide enough combined space. |
| * Now, sorted them by address, smallest first, because we |
| * want to mimic a bottom-up memblock allocation. |
| */ |
| sizesum = 0; |
| list_for_each_safe(mp, next, &ranges) { |
| mlp = list_entry(mp, struct cma_init_memrange, list); |
| list_del(mp); |
| list_insert_sorted(&final_ranges, mlp, basecmp); |
| sizesum += mlp->size; |
| if (sizesum >= total_size) |
| break; |
| } |
| |
| /* |
| * Walk the final list, and add a CMA range for |
| * each range, possibly not using the last one fully. |
| */ |
| nr = 0; |
| sizeleft = total_size; |
| list_for_each(mp, &final_ranges) { |
| mlp = list_entry(mp, struct cma_init_memrange, list); |
| size = min(sizeleft, mlp->size); |
| if (memblock_reserve(mlp->base, size)) { |
| /* |
| * Unexpected error. Could go on to |
| * the next one, but just abort to |
| * be safe. |
| */ |
| failed = mlp; |
| break; |
| } |
| |
| pr_debug("created region %d: %016llx - %016llx\n", |
| nr, (u64)mlp->base, (u64)mlp->base + size); |
| cmrp = &cma->ranges[nr++]; |
| cmrp->base_pfn = PHYS_PFN(mlp->base); |
| cmrp->early_pfn = cmrp->base_pfn; |
| cmrp->count = size >> PAGE_SHIFT; |
| |
| sizeleft -= size; |
| if (sizeleft == 0) |
| break; |
| } |
| |
| if (failed) { |
| list_for_each(mp, &final_ranges) { |
| mlp = list_entry(mp, struct cma_init_memrange, list); |
| if (mlp == failed) |
| break; |
| memblock_phys_free(mlp->base, mlp->size); |
| } |
| cma_drop_area(cma); |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| cma->nranges = nr; |
| cma->nid = nid; |
| *res_cma = cma; |
| |
| out: |
| if (ret != 0) |
| pr_err("Failed to reserve %lu MiB\n", |
| (unsigned long)total_size / SZ_1M); |
| else |
| pr_info("Reserved %lu MiB in %d range%s\n", |
| (unsigned long)total_size / SZ_1M, nr, |
| nr > 1 ? "s" : ""); |
| return ret; |
| } |
| |
| /** |
| * cma_declare_contiguous_nid() - reserve custom contiguous area |
| * @base: Base address of the reserved area optional, use 0 for any |
| * @size: Size of the reserved area (in bytes), |
| * @limit: End address of the reserved memory (optional, 0 for any). |
| * @alignment: Alignment for the CMA area, should be power of 2 or zero |
| * @order_per_bit: Order of pages represented by one bit on bitmap. |
| * @fixed: hint about where to place the reserved area |
| * @name: The name of the area. See function cma_init_reserved_mem() |
| * @res_cma: Pointer to store the created cma region. |
| * @nid: nid of the free area to find, %NUMA_NO_NODE for any node |
| * |
| * This function reserves memory from early allocator. It should be |
| * called by arch specific code once the early allocator (memblock or bootmem) |
| * has been activated and all other subsystems have already allocated/reserved |
| * memory. This function allows to create custom reserved areas. |
| * |
| * If @fixed is true, reserve contiguous area at exactly @base. If false, |
| * reserve in range from @base to @limit. |
| */ |
| int __init cma_declare_contiguous_nid(phys_addr_t base, |
| phys_addr_t size, phys_addr_t limit, |
| phys_addr_t alignment, unsigned int order_per_bit, |
| bool fixed, const char *name, struct cma **res_cma, |
| int nid) |
| { |
| int ret; |
| |
| ret = __cma_declare_contiguous_nid(&base, size, limit, alignment, |
| order_per_bit, fixed, name, res_cma, nid); |
| if (ret != 0) |
| pr_err("Failed to reserve %ld MiB\n", |
| (unsigned long)size / SZ_1M); |
| else |
| pr_info("Reserved %ld MiB at %pa\n", |
| (unsigned long)size / SZ_1M, &base); |
| |
| return ret; |
| } |
| |
| static int __init __cma_declare_contiguous_nid(phys_addr_t *basep, |
| phys_addr_t size, phys_addr_t limit, |
| phys_addr_t alignment, unsigned int order_per_bit, |
| bool fixed, const char *name, struct cma **res_cma, |
| int nid) |
| { |
| phys_addr_t memblock_end = memblock_end_of_DRAM(); |
| phys_addr_t highmem_start, base = *basep; |
| int ret; |
| |
| /* |
| * We can't use __pa(high_memory) directly, since high_memory |
| * isn't a valid direct map VA, and DEBUG_VIRTUAL will (validly) |
| * complain. Find the boundary by adding one to the last valid |
| * address. |
| */ |
| highmem_start = __pa(high_memory - 1) + 1; |
| pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n", |
| __func__, &size, &base, &limit, &alignment); |
| |
| if (cma_area_count == ARRAY_SIZE(cma_areas)) { |
| pr_err("Not enough slots for CMA reserved regions!\n"); |
| return -ENOSPC; |
| } |
| |
| if (!size) |
| return -EINVAL; |
| |
| if (alignment && !is_power_of_2(alignment)) |
| return -EINVAL; |
| |
| if (!IS_ENABLED(CONFIG_NUMA)) |
| nid = NUMA_NO_NODE; |
| |
| /* Sanitise input arguments. */ |
| alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES); |
| if (fixed && base & (alignment - 1)) { |
| pr_err("Region at %pa must be aligned to %pa bytes\n", |
| &base, &alignment); |
| return -EINVAL; |
| } |
| base = ALIGN(base, alignment); |
| size = ALIGN(size, alignment); |
| limit &= ~(alignment - 1); |
| |
| if (!base) |
| fixed = false; |
| |
| /* size should be aligned with order_per_bit */ |
| if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit)) |
| return -EINVAL; |
| |
| /* |
| * If allocating at a fixed base the request region must not cross the |
| * low/high memory boundary. |
| */ |
| if (fixed && base < highmem_start && base + size > highmem_start) { |
| pr_err("Region at %pa defined on low/high memory boundary (%pa)\n", |
| &base, &highmem_start); |
| return -EINVAL; |
| } |
| |
| /* |
| * If the limit is unspecified or above the memblock end, its effective |
| * value will be the memblock end. Set it explicitly to simplify further |
| * checks. |
| */ |
| if (limit == 0 || limit > memblock_end) |
| limit = memblock_end; |
| |
| if (base + size > limit) { |
| pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n", |
| &size, &base, &limit); |
| return -EINVAL; |
| } |
| |
| /* Reserve memory */ |
| if (fixed) { |
| if (memblock_is_region_reserved(base, size) || |
| memblock_reserve(base, size) < 0) { |
| return -EBUSY; |
| } |
| } else { |
| phys_addr_t addr = 0; |
| |
| /* |
| * If there is enough memory, try a bottom-up allocation first. |
| * It will place the new cma area close to the start of the node |
| * and guarantee that the compaction is moving pages out of the |
| * cma area and not into it. |
| * Avoid using first 4GB to not interfere with constrained zones |
| * like DMA/DMA32. |
| */ |
| #ifdef CONFIG_PHYS_ADDR_T_64BIT |
| if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) { |
| memblock_set_bottom_up(true); |
| addr = memblock_alloc_range_nid(size, alignment, SZ_4G, |
| limit, nid, true); |
| memblock_set_bottom_up(false); |
| } |
| #endif |
| |
| /* |
| * All pages in the reserved area must come from the same zone. |
| * If the requested region crosses the low/high memory boundary, |
| * try allocating from high memory first and fall back to low |
| * memory in case of failure. |
| */ |
| if (!addr && base < highmem_start && limit > highmem_start) { |
| addr = memblock_alloc_range_nid(size, alignment, |
| highmem_start, limit, nid, true); |
| limit = highmem_start; |
| } |
| |
| if (!addr) { |
| addr = memblock_alloc_range_nid(size, alignment, base, |
| limit, nid, true); |
| if (!addr) |
| return -ENOMEM; |
| } |
| |
| /* |
| * kmemleak scans/reads tracked objects for pointers to other |
| * objects but this address isn't mapped and accessible |
| */ |
| kmemleak_ignore_phys(addr); |
| base = addr; |
| } |
| |
| ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma); |
| if (ret) { |
| memblock_phys_free(base, size); |
| return ret; |
| } |
| |
| (*res_cma)->nid = nid; |
| *basep = base; |
| |
| return 0; |
| } |
| |
| static void cma_debug_show_areas(struct cma *cma) |
| { |
| unsigned long next_zero_bit, next_set_bit, nr_zero; |
| unsigned long start; |
| unsigned long nr_part; |
| unsigned long nbits; |
| int r; |
| struct cma_memrange *cmr; |
| |
| spin_lock_irq(&cma->lock); |
| pr_info("number of available pages: "); |
| for (r = 0; r < cma->nranges; r++) { |
| cmr = &cma->ranges[r]; |
| |
| start = 0; |
| nbits = cma_bitmap_maxno(cma, cmr); |
| |
| pr_info("range %d: ", r); |
| for (;;) { |
| next_zero_bit = find_next_zero_bit(cmr->bitmap, |
| nbits, start); |
| if (next_zero_bit >= nbits) |
| break; |
| next_set_bit = find_next_bit(cmr->bitmap, nbits, |
| next_zero_bit); |
| nr_zero = next_set_bit - next_zero_bit; |
| nr_part = nr_zero << cma->order_per_bit; |
| pr_cont("%s%lu@%lu", start ? "+" : "", nr_part, |
| next_zero_bit); |
| start = next_zero_bit + nr_zero; |
| } |
| pr_info("\n"); |
| } |
| pr_cont("=> %lu free of %lu total pages\n", cma->available_count, |
| cma->count); |
| spin_unlock_irq(&cma->lock); |
| } |
| |
| static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr, |
| unsigned long count, unsigned int align, |
| struct page **pagep, gfp_t gfp) |
| { |
| unsigned long mask, offset; |
| unsigned long pfn = -1; |
| unsigned long start = 0; |
| unsigned long bitmap_maxno, bitmap_no, bitmap_count; |
| int ret = -EBUSY; |
| struct page *page = NULL; |
| |
| mask = cma_bitmap_aligned_mask(cma, align); |
| offset = cma_bitmap_aligned_offset(cma, cmr, align); |
| bitmap_maxno = cma_bitmap_maxno(cma, cmr); |
| bitmap_count = cma_bitmap_pages_to_bits(cma, count); |
| |
| if (bitmap_count > bitmap_maxno) |
| goto out; |
| |
| for (;;) { |
| spin_lock_irq(&cma->lock); |
| /* |
| * If the request is larger than the available number |
| * of pages, stop right away. |
| */ |
| if (count > cma->available_count) { |
| spin_unlock_irq(&cma->lock); |
| break; |
| } |
| bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap, |
| bitmap_maxno, start, bitmap_count, mask, |
| offset); |
| if (bitmap_no >= bitmap_maxno) { |
| spin_unlock_irq(&cma->lock); |
| break; |
| } |
| bitmap_set(cmr->bitmap, bitmap_no, bitmap_count); |
| cma->available_count -= count; |
| /* |
| * It's safe to drop the lock here. We've marked this region for |
| * our exclusive use. If the migration fails we will take the |
| * lock again and unmark it. |
| */ |
| spin_unlock_irq(&cma->lock); |
| |
| pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit); |
| mutex_lock(&cma->alloc_mutex); |
| ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, gfp); |
| mutex_unlock(&cma->alloc_mutex); |
| if (ret == 0) { |
| page = pfn_to_page(pfn); |
| break; |
| } |
| |
| cma_clear_bitmap(cma, cmr, pfn, count); |
| if (ret != -EBUSY) |
| break; |
| |
| pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n", |
| __func__, pfn, pfn_to_page(pfn)); |
| |
| trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn), |
| count, align); |
| /* try again with a bit different memory target */ |
| start = bitmap_no + mask + 1; |
| } |
| out: |
| *pagep = page; |
| return ret; |
| } |
| |
| static struct page *__cma_alloc(struct cma *cma, unsigned long count, |
| unsigned int align, gfp_t gfp) |
| { |
| struct page *page = NULL; |
| int ret = -ENOMEM, r; |
| unsigned long i; |
| const char *name = cma ? cma->name : NULL; |
| |
| trace_cma_alloc_start(name, count, align); |
| |
| if (!cma || !cma->count) |
| return page; |
| |
| pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__, |
| (void *)cma, cma->name, count, align); |
| |
| if (!count) |
| return page; |
| |
| for (r = 0; r < cma->nranges; r++) { |
| page = NULL; |
| |
| ret = cma_range_alloc(cma, &cma->ranges[r], count, align, |
| &page, gfp); |
| if (ret != -EBUSY || page) |
| break; |
| } |
| |
| /* |
| * CMA can allocate multiple page blocks, which results in different |
| * blocks being marked with different tags. Reset the tags to ignore |
| * those page blocks. |
| */ |
| if (page) { |
| for (i = 0; i < count; i++) |
| page_kasan_tag_reset(nth_page(page, i)); |
| } |
| |
| if (ret && !(gfp & __GFP_NOWARN)) { |
| pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n", |
| __func__, cma->name, count, ret); |
| cma_debug_show_areas(cma); |
| } |
| |
| pr_debug("%s(): returned %p\n", __func__, page); |
| trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0, |
| page, count, align, ret); |
| if (page) { |
| count_vm_event(CMA_ALLOC_SUCCESS); |
| cma_sysfs_account_success_pages(cma, count); |
| } else { |
| count_vm_event(CMA_ALLOC_FAIL); |
| cma_sysfs_account_fail_pages(cma, count); |
| } |
| |
| return page; |
| } |
| |
| /** |
| * cma_alloc() - allocate pages from contiguous area |
| * @cma: Contiguous memory region for which the allocation is performed. |
| * @count: Requested number of pages. |
| * @align: Requested alignment of pages (in PAGE_SIZE order). |
| * @no_warn: Avoid printing message about failed allocation |
| * |
| * This function allocates part of contiguous memory on specific |
| * contiguous memory area. |
| */ |
| struct page *cma_alloc(struct cma *cma, unsigned long count, |
| unsigned int align, bool no_warn) |
| { |
| return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0)); |
| } |
| |
| struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp) |
| { |
| struct page *page; |
| |
| if (WARN_ON(!order || !(gfp & __GFP_COMP))) |
| return NULL; |
| |
| page = __cma_alloc(cma, 1 << order, order, gfp); |
| |
| return page ? page_folio(page) : NULL; |
| } |
| |
| bool cma_pages_valid(struct cma *cma, const struct page *pages, |
| unsigned long count) |
| { |
| unsigned long pfn, end; |
| int r; |
| struct cma_memrange *cmr; |
| bool ret; |
| |
| if (!cma || !pages || count > cma->count) |
| return false; |
| |
| pfn = page_to_pfn(pages); |
| ret = false; |
| |
| for (r = 0; r < cma->nranges; r++) { |
| cmr = &cma->ranges[r]; |
| end = cmr->base_pfn + cmr->count; |
| if (pfn >= cmr->base_pfn && pfn < end) { |
| ret = pfn + count <= end; |
| break; |
| } |
| } |
| |
| if (!ret) |
| pr_debug("%s(page %p, count %lu)\n", |
| __func__, (void *)pages, count); |
| |
| return ret; |
| } |
| |
| /** |
| * cma_release() - release allocated pages |
| * @cma: Contiguous memory region for which the allocation is performed. |
| * @pages: Allocated pages. |
| * @count: Number of allocated pages. |
| * |
| * This function releases memory allocated by cma_alloc(). |
| * It returns false when provided pages do not belong to contiguous area and |
| * true otherwise. |
| */ |
| bool cma_release(struct cma *cma, const struct page *pages, |
| unsigned long count) |
| { |
| struct cma_memrange *cmr; |
| unsigned long pfn, end_pfn; |
| int r; |
| |
| pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count); |
| |
| if (!cma_pages_valid(cma, pages, count)) |
| return false; |
| |
| pfn = page_to_pfn(pages); |
| end_pfn = pfn + count; |
| |
| for (r = 0; r < cma->nranges; r++) { |
| cmr = &cma->ranges[r]; |
| if (pfn >= cmr->base_pfn && |
| pfn < (cmr->base_pfn + cmr->count)) { |
| VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count); |
| break; |
| } |
| } |
| |
| if (r == cma->nranges) |
| return false; |
| |
| free_contig_range(pfn, count); |
| cma_clear_bitmap(cma, cmr, pfn, count); |
| cma_sysfs_account_release_pages(cma, count); |
| trace_cma_release(cma->name, pfn, pages, count); |
| |
| return true; |
| } |
| |
| bool cma_free_folio(struct cma *cma, const struct folio *folio) |
| { |
| if (WARN_ON(!folio_test_large(folio))) |
| return false; |
| |
| return cma_release(cma, &folio->page, folio_nr_pages(folio)); |
| } |
| |
| int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data) |
| { |
| int i; |
| |
| for (i = 0; i < cma_area_count; i++) { |
| int ret = it(&cma_areas[i], data); |
| |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end) |
| { |
| int r; |
| struct cma_memrange *cmr; |
| unsigned long rstart, rend; |
| |
| for (r = 0; r < cma->nranges; r++) { |
| cmr = &cma->ranges[r]; |
| |
| rstart = PFN_PHYS(cmr->base_pfn); |
| rend = PFN_PHYS(cmr->base_pfn + cmr->count); |
| if (end < rstart) |
| continue; |
| if (start >= rend) |
| continue; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Very basic function to reserve memory from a CMA area that has not |
| * yet been activated. This is expected to be called early, when the |
| * system is single-threaded, so there is no locking. The alignment |
| * checking is restrictive - only pageblock-aligned areas |
| * (CMA_MIN_ALIGNMENT_BYTES) may be reserved through this function. |
| * This keeps things simple, and is enough for the current use case. |
| * |
| * The CMA bitmaps have not yet been allocated, so just start |
| * reserving from the bottom up, using a PFN to keep track |
| * of what has been reserved. Unreserving is not possible. |
| * |
| * The caller is responsible for initializing the page structures |
| * in the area properly, since this just points to memblock-allocated |
| * memory. The caller should subsequently use init_cma_pageblock to |
| * set the migrate type and CMA stats the pageblocks that were reserved. |
| * |
| * If the CMA area fails to activate later, memory obtained through |
| * this interface is not handed to the page allocator, this is |
| * the responsibility of the caller (e.g. like normal memblock-allocated |
| * memory). |
| */ |
| void __init *cma_reserve_early(struct cma *cma, unsigned long size) |
| { |
| int r; |
| struct cma_memrange *cmr; |
| unsigned long available; |
| void *ret = NULL; |
| |
| if (!cma || !cma->count) |
| return NULL; |
| /* |
| * Can only be called early in init. |
| */ |
| if (test_bit(CMA_ACTIVATED, &cma->flags)) |
| return NULL; |
| |
| if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES)) |
| return NULL; |
| |
| if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit))) |
| return NULL; |
| |
| size >>= PAGE_SHIFT; |
| |
| if (size > cma->available_count) |
| return NULL; |
| |
| for (r = 0; r < cma->nranges; r++) { |
| cmr = &cma->ranges[r]; |
| available = cmr->count - (cmr->early_pfn - cmr->base_pfn); |
| if (size <= available) { |
| ret = phys_to_virt(PFN_PHYS(cmr->early_pfn)); |
| cmr->early_pfn += size; |
| cma->available_count -= size; |
| return ret; |
| } |
| } |
| |
| return ret; |
| } |