| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * mm/userfaultfd.c |
| * |
| * Copyright (C) 2015 Red Hat, Inc. |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/sched/signal.h> |
| #include <linux/pagemap.h> |
| #include <linux/rmap.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/userfaultfd_k.h> |
| #include <linux/mmu_notifier.h> |
| #include <linux/hugetlb.h> |
| #include <linux/shmem_fs.h> |
| #include <asm/tlbflush.h> |
| #include <asm/tlb.h> |
| #include "internal.h" |
| |
| static __always_inline |
| bool validate_dst_vma(struct vm_area_struct *dst_vma, unsigned long dst_end) |
| { |
| /* Make sure that the dst range is fully within dst_vma. */ |
| if (dst_end > dst_vma->vm_end) |
| return false; |
| |
| /* |
| * Check the vma is registered in uffd, this is required to |
| * enforce the VM_MAYWRITE check done at uffd registration |
| * time. |
| */ |
| if (!dst_vma->vm_userfaultfd_ctx.ctx) |
| return false; |
| |
| return true; |
| } |
| |
| static __always_inline |
| struct vm_area_struct *find_vma_and_prepare_anon(struct mm_struct *mm, |
| unsigned long addr) |
| { |
| struct vm_area_struct *vma; |
| |
| mmap_assert_locked(mm); |
| vma = vma_lookup(mm, addr); |
| if (!vma) |
| vma = ERR_PTR(-ENOENT); |
| else if (!(vma->vm_flags & VM_SHARED) && |
| unlikely(anon_vma_prepare(vma))) |
| vma = ERR_PTR(-ENOMEM); |
| |
| return vma; |
| } |
| |
| #ifdef CONFIG_PER_VMA_LOCK |
| /* |
| * uffd_lock_vma() - Lookup and lock vma corresponding to @address. |
| * @mm: mm to search vma in. |
| * @address: address that the vma should contain. |
| * |
| * Should be called without holding mmap_lock. |
| * |
| * Return: A locked vma containing @address, -ENOENT if no vma is found, or |
| * -ENOMEM if anon_vma couldn't be allocated. |
| */ |
| static struct vm_area_struct *uffd_lock_vma(struct mm_struct *mm, |
| unsigned long address) |
| { |
| struct vm_area_struct *vma; |
| |
| vma = lock_vma_under_rcu(mm, address); |
| if (vma) { |
| /* |
| * We know we're going to need to use anon_vma, so check |
| * that early. |
| */ |
| if (!(vma->vm_flags & VM_SHARED) && unlikely(!vma->anon_vma)) |
| vma_end_read(vma); |
| else |
| return vma; |
| } |
| |
| mmap_read_lock(mm); |
| vma = find_vma_and_prepare_anon(mm, address); |
| if (!IS_ERR(vma)) { |
| /* |
| * We cannot use vma_start_read() as it may fail due to |
| * false locked (see comment in vma_start_read()). We |
| * can avoid that by directly locking vm_lock under |
| * mmap_lock, which guarantees that nobody can lock the |
| * vma for write (vma_start_write()) under us. |
| */ |
| down_read(&vma->vm_lock->lock); |
| } |
| |
| mmap_read_unlock(mm); |
| return vma; |
| } |
| |
| static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm, |
| unsigned long dst_start, |
| unsigned long len) |
| { |
| struct vm_area_struct *dst_vma; |
| |
| dst_vma = uffd_lock_vma(dst_mm, dst_start); |
| if (IS_ERR(dst_vma) || validate_dst_vma(dst_vma, dst_start + len)) |
| return dst_vma; |
| |
| vma_end_read(dst_vma); |
| return ERR_PTR(-ENOENT); |
| } |
| |
| static void uffd_mfill_unlock(struct vm_area_struct *vma) |
| { |
| vma_end_read(vma); |
| } |
| |
| #else |
| |
| static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm, |
| unsigned long dst_start, |
| unsigned long len) |
| { |
| struct vm_area_struct *dst_vma; |
| |
| mmap_read_lock(dst_mm); |
| dst_vma = find_vma_and_prepare_anon(dst_mm, dst_start); |
| if (IS_ERR(dst_vma)) |
| goto out_unlock; |
| |
| if (validate_dst_vma(dst_vma, dst_start + len)) |
| return dst_vma; |
| |
| dst_vma = ERR_PTR(-ENOENT); |
| out_unlock: |
| mmap_read_unlock(dst_mm); |
| return dst_vma; |
| } |
| |
| static void uffd_mfill_unlock(struct vm_area_struct *vma) |
| { |
| mmap_read_unlock(vma->vm_mm); |
| } |
| #endif |
| |
| /* Check if dst_addr is outside of file's size. Must be called with ptl held. */ |
| static bool mfill_file_over_size(struct vm_area_struct *dst_vma, |
| unsigned long dst_addr) |
| { |
| struct inode *inode; |
| pgoff_t offset, max_off; |
| |
| if (!dst_vma->vm_file) |
| return false; |
| |
| inode = dst_vma->vm_file->f_inode; |
| offset = linear_page_index(dst_vma, dst_addr); |
| max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
| return offset >= max_off; |
| } |
| |
| /* |
| * Install PTEs, to map dst_addr (within dst_vma) to page. |
| * |
| * This function handles both MCOPY_ATOMIC_NORMAL and _CONTINUE for both shmem |
| * and anon, and for both shared and private VMAs. |
| */ |
| int mfill_atomic_install_pte(pmd_t *dst_pmd, |
| struct vm_area_struct *dst_vma, |
| unsigned long dst_addr, struct page *page, |
| bool newly_allocated, uffd_flags_t flags) |
| { |
| int ret; |
| struct mm_struct *dst_mm = dst_vma->vm_mm; |
| pte_t _dst_pte, *dst_pte; |
| bool writable = dst_vma->vm_flags & VM_WRITE; |
| bool vm_shared = dst_vma->vm_flags & VM_SHARED; |
| spinlock_t *ptl; |
| struct folio *folio = page_folio(page); |
| bool page_in_cache = folio_mapping(folio); |
| |
| _dst_pte = mk_pte(page, dst_vma->vm_page_prot); |
| _dst_pte = pte_mkdirty(_dst_pte); |
| if (page_in_cache && !vm_shared) |
| writable = false; |
| if (writable) |
| _dst_pte = pte_mkwrite(_dst_pte, dst_vma); |
| if (flags & MFILL_ATOMIC_WP) |
| _dst_pte = pte_mkuffd_wp(_dst_pte); |
| |
| ret = -EAGAIN; |
| dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); |
| if (!dst_pte) |
| goto out; |
| |
| if (mfill_file_over_size(dst_vma, dst_addr)) { |
| ret = -EFAULT; |
| goto out_unlock; |
| } |
| |
| ret = -EEXIST; |
| /* |
| * We allow to overwrite a pte marker: consider when both MISSING|WP |
| * registered, we firstly wr-protect a none pte which has no page cache |
| * page backing it, then access the page. |
| */ |
| if (!pte_none_mostly(ptep_get(dst_pte))) |
| goto out_unlock; |
| |
| if (page_in_cache) { |
| /* Usually, cache pages are already added to LRU */ |
| if (newly_allocated) |
| folio_add_lru(folio); |
| folio_add_file_rmap_pte(folio, page, dst_vma); |
| } else { |
| folio_add_new_anon_rmap(folio, dst_vma, dst_addr, RMAP_EXCLUSIVE); |
| folio_add_lru_vma(folio, dst_vma); |
| } |
| |
| /* |
| * Must happen after rmap, as mm_counter() checks mapping (via |
| * PageAnon()), which is set by __page_set_anon_rmap(). |
| */ |
| inc_mm_counter(dst_mm, mm_counter(folio)); |
| |
| set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); |
| |
| /* No need to invalidate - it was non-present before */ |
| update_mmu_cache(dst_vma, dst_addr, dst_pte); |
| ret = 0; |
| out_unlock: |
| pte_unmap_unlock(dst_pte, ptl); |
| out: |
| return ret; |
| } |
| |
| static int mfill_atomic_pte_copy(pmd_t *dst_pmd, |
| struct vm_area_struct *dst_vma, |
| unsigned long dst_addr, |
| unsigned long src_addr, |
| uffd_flags_t flags, |
| struct folio **foliop) |
| { |
| void *kaddr; |
| int ret; |
| struct folio *folio; |
| |
| if (!*foliop) { |
| ret = -ENOMEM; |
| folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, dst_vma, |
| dst_addr, false); |
| if (!folio) |
| goto out; |
| |
| kaddr = kmap_local_folio(folio, 0); |
| /* |
| * The read mmap_lock is held here. Despite the |
| * mmap_lock being read recursive a deadlock is still |
| * possible if a writer has taken a lock. For example: |
| * |
| * process A thread 1 takes read lock on own mmap_lock |
| * process A thread 2 calls mmap, blocks taking write lock |
| * process B thread 1 takes page fault, read lock on own mmap lock |
| * process B thread 2 calls mmap, blocks taking write lock |
| * process A thread 1 blocks taking read lock on process B |
| * process B thread 1 blocks taking read lock on process A |
| * |
| * Disable page faults to prevent potential deadlock |
| * and retry the copy outside the mmap_lock. |
| */ |
| pagefault_disable(); |
| ret = copy_from_user(kaddr, (const void __user *) src_addr, |
| PAGE_SIZE); |
| pagefault_enable(); |
| kunmap_local(kaddr); |
| |
| /* fallback to copy_from_user outside mmap_lock */ |
| if (unlikely(ret)) { |
| ret = -ENOENT; |
| *foliop = folio; |
| /* don't free the page */ |
| goto out; |
| } |
| |
| flush_dcache_folio(folio); |
| } else { |
| folio = *foliop; |
| *foliop = NULL; |
| } |
| |
| /* |
| * The memory barrier inside __folio_mark_uptodate makes sure that |
| * preceding stores to the page contents become visible before |
| * the set_pte_at() write. |
| */ |
| __folio_mark_uptodate(folio); |
| |
| ret = -ENOMEM; |
| if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL)) |
| goto out_release; |
| |
| ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, |
| &folio->page, true, flags); |
| if (ret) |
| goto out_release; |
| out: |
| return ret; |
| out_release: |
| folio_put(folio); |
| goto out; |
| } |
| |
| static int mfill_atomic_pte_zeroed_folio(pmd_t *dst_pmd, |
| struct vm_area_struct *dst_vma, |
| unsigned long dst_addr) |
| { |
| struct folio *folio; |
| int ret = -ENOMEM; |
| |
| folio = vma_alloc_zeroed_movable_folio(dst_vma, dst_addr); |
| if (!folio) |
| return ret; |
| |
| if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL)) |
| goto out_put; |
| |
| /* |
| * The memory barrier inside __folio_mark_uptodate makes sure that |
| * zeroing out the folio become visible before mapping the page |
| * using set_pte_at(). See do_anonymous_page(). |
| */ |
| __folio_mark_uptodate(folio); |
| |
| ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, |
| &folio->page, true, 0); |
| if (ret) |
| goto out_put; |
| |
| return 0; |
| out_put: |
| folio_put(folio); |
| return ret; |
| } |
| |
| static int mfill_atomic_pte_zeropage(pmd_t *dst_pmd, |
| struct vm_area_struct *dst_vma, |
| unsigned long dst_addr) |
| { |
| pte_t _dst_pte, *dst_pte; |
| spinlock_t *ptl; |
| int ret; |
| |
| if (mm_forbids_zeropage(dst_vma->vm_mm)) |
| return mfill_atomic_pte_zeroed_folio(dst_pmd, dst_vma, dst_addr); |
| |
| _dst_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr), |
| dst_vma->vm_page_prot)); |
| ret = -EAGAIN; |
| dst_pte = pte_offset_map_lock(dst_vma->vm_mm, dst_pmd, dst_addr, &ptl); |
| if (!dst_pte) |
| goto out; |
| if (mfill_file_over_size(dst_vma, dst_addr)) { |
| ret = -EFAULT; |
| goto out_unlock; |
| } |
| ret = -EEXIST; |
| if (!pte_none(ptep_get(dst_pte))) |
| goto out_unlock; |
| set_pte_at(dst_vma->vm_mm, dst_addr, dst_pte, _dst_pte); |
| /* No need to invalidate - it was non-present before */ |
| update_mmu_cache(dst_vma, dst_addr, dst_pte); |
| ret = 0; |
| out_unlock: |
| pte_unmap_unlock(dst_pte, ptl); |
| out: |
| return ret; |
| } |
| |
| /* Handles UFFDIO_CONTINUE for all shmem VMAs (shared or private). */ |
| static int mfill_atomic_pte_continue(pmd_t *dst_pmd, |
| struct vm_area_struct *dst_vma, |
| unsigned long dst_addr, |
| uffd_flags_t flags) |
| { |
| struct inode *inode = file_inode(dst_vma->vm_file); |
| pgoff_t pgoff = linear_page_index(dst_vma, dst_addr); |
| struct folio *folio; |
| struct page *page; |
| int ret; |
| |
| ret = shmem_get_folio(inode, pgoff, 0, &folio, SGP_NOALLOC); |
| /* Our caller expects us to return -EFAULT if we failed to find folio */ |
| if (ret == -ENOENT) |
| ret = -EFAULT; |
| if (ret) |
| goto out; |
| if (!folio) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| page = folio_file_page(folio, pgoff); |
| if (PageHWPoison(page)) { |
| ret = -EIO; |
| goto out_release; |
| } |
| |
| ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr, |
| page, false, flags); |
| if (ret) |
| goto out_release; |
| |
| folio_unlock(folio); |
| ret = 0; |
| out: |
| return ret; |
| out_release: |
| folio_unlock(folio); |
| folio_put(folio); |
| goto out; |
| } |
| |
| /* Handles UFFDIO_POISON for all non-hugetlb VMAs. */ |
| static int mfill_atomic_pte_poison(pmd_t *dst_pmd, |
| struct vm_area_struct *dst_vma, |
| unsigned long dst_addr, |
| uffd_flags_t flags) |
| { |
| int ret; |
| struct mm_struct *dst_mm = dst_vma->vm_mm; |
| pte_t _dst_pte, *dst_pte; |
| spinlock_t *ptl; |
| |
| _dst_pte = make_pte_marker(PTE_MARKER_POISONED); |
| ret = -EAGAIN; |
| dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl); |
| if (!dst_pte) |
| goto out; |
| |
| if (mfill_file_over_size(dst_vma, dst_addr)) { |
| ret = -EFAULT; |
| goto out_unlock; |
| } |
| |
| ret = -EEXIST; |
| /* Refuse to overwrite any PTE, even a PTE marker (e.g. UFFD WP). */ |
| if (!pte_none(ptep_get(dst_pte))) |
| goto out_unlock; |
| |
| set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte); |
| |
| /* No need to invalidate - it was non-present before */ |
| update_mmu_cache(dst_vma, dst_addr, dst_pte); |
| ret = 0; |
| out_unlock: |
| pte_unmap_unlock(dst_pte, ptl); |
| out: |
| return ret; |
| } |
| |
| static pmd_t *mm_alloc_pmd(struct mm_struct *mm, unsigned long address) |
| { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| |
| pgd = pgd_offset(mm, address); |
| p4d = p4d_alloc(mm, pgd, address); |
| if (!p4d) |
| return NULL; |
| pud = pud_alloc(mm, p4d, address); |
| if (!pud) |
| return NULL; |
| /* |
| * Note that we didn't run this because the pmd was |
| * missing, the *pmd may be already established and in |
| * turn it may also be a trans_huge_pmd. |
| */ |
| return pmd_alloc(mm, pud, address); |
| } |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| /* |
| * mfill_atomic processing for HUGETLB vmas. Note that this routine is |
| * called with either vma-lock or mmap_lock held, it will release the lock |
| * before returning. |
| */ |
| static __always_inline ssize_t mfill_atomic_hugetlb( |
| struct userfaultfd_ctx *ctx, |
| struct vm_area_struct *dst_vma, |
| unsigned long dst_start, |
| unsigned long src_start, |
| unsigned long len, |
| uffd_flags_t flags) |
| { |
| struct mm_struct *dst_mm = dst_vma->vm_mm; |
| ssize_t err; |
| pte_t *dst_pte; |
| unsigned long src_addr, dst_addr; |
| long copied; |
| struct folio *folio; |
| unsigned long vma_hpagesize; |
| pgoff_t idx; |
| u32 hash; |
| struct address_space *mapping; |
| |
| /* |
| * There is no default zero huge page for all huge page sizes as |
| * supported by hugetlb. A PMD_SIZE huge pages may exist as used |
| * by THP. Since we can not reliably insert a zero page, this |
| * feature is not supported. |
| */ |
| if (uffd_flags_mode_is(flags, MFILL_ATOMIC_ZEROPAGE)) { |
| up_read(&ctx->map_changing_lock); |
| uffd_mfill_unlock(dst_vma); |
| return -EINVAL; |
| } |
| |
| src_addr = src_start; |
| dst_addr = dst_start; |
| copied = 0; |
| folio = NULL; |
| vma_hpagesize = vma_kernel_pagesize(dst_vma); |
| |
| /* |
| * Validate alignment based on huge page size |
| */ |
| err = -EINVAL; |
| if (dst_start & (vma_hpagesize - 1) || len & (vma_hpagesize - 1)) |
| goto out_unlock; |
| |
| retry: |
| /* |
| * On routine entry dst_vma is set. If we had to drop mmap_lock and |
| * retry, dst_vma will be set to NULL and we must lookup again. |
| */ |
| if (!dst_vma) { |
| dst_vma = uffd_mfill_lock(dst_mm, dst_start, len); |
| if (IS_ERR(dst_vma)) { |
| err = PTR_ERR(dst_vma); |
| goto out; |
| } |
| |
| err = -ENOENT; |
| if (!is_vm_hugetlb_page(dst_vma)) |
| goto out_unlock_vma; |
| |
| err = -EINVAL; |
| if (vma_hpagesize != vma_kernel_pagesize(dst_vma)) |
| goto out_unlock_vma; |
| |
| /* |
| * If memory mappings are changing because of non-cooperative |
| * operation (e.g. mremap) running in parallel, bail out and |
| * request the user to retry later |
| */ |
| down_read(&ctx->map_changing_lock); |
| err = -EAGAIN; |
| if (atomic_read(&ctx->mmap_changing)) |
| goto out_unlock; |
| } |
| |
| while (src_addr < src_start + len) { |
| BUG_ON(dst_addr >= dst_start + len); |
| |
| /* |
| * Serialize via vma_lock and hugetlb_fault_mutex. |
| * vma_lock ensures the dst_pte remains valid even |
| * in the case of shared pmds. fault mutex prevents |
| * races with other faulting threads. |
| */ |
| idx = linear_page_index(dst_vma, dst_addr); |
| mapping = dst_vma->vm_file->f_mapping; |
| hash = hugetlb_fault_mutex_hash(mapping, idx); |
| mutex_lock(&hugetlb_fault_mutex_table[hash]); |
| hugetlb_vma_lock_read(dst_vma); |
| |
| err = -ENOMEM; |
| dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize); |
| if (!dst_pte) { |
| hugetlb_vma_unlock_read(dst_vma); |
| mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| goto out_unlock; |
| } |
| |
| if (!uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE) && |
| !huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { |
| err = -EEXIST; |
| hugetlb_vma_unlock_read(dst_vma); |
| mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| goto out_unlock; |
| } |
| |
| err = hugetlb_mfill_atomic_pte(dst_pte, dst_vma, dst_addr, |
| src_addr, flags, &folio); |
| |
| hugetlb_vma_unlock_read(dst_vma); |
| mutex_unlock(&hugetlb_fault_mutex_table[hash]); |
| |
| cond_resched(); |
| |
| if (unlikely(err == -ENOENT)) { |
| up_read(&ctx->map_changing_lock); |
| uffd_mfill_unlock(dst_vma); |
| BUG_ON(!folio); |
| |
| err = copy_folio_from_user(folio, |
| (const void __user *)src_addr, true); |
| if (unlikely(err)) { |
| err = -EFAULT; |
| goto out; |
| } |
| |
| dst_vma = NULL; |
| goto retry; |
| } else |
| BUG_ON(folio); |
| |
| if (!err) { |
| dst_addr += vma_hpagesize; |
| src_addr += vma_hpagesize; |
| copied += vma_hpagesize; |
| |
| if (fatal_signal_pending(current)) |
| err = -EINTR; |
| } |
| if (err) |
| break; |
| } |
| |
| out_unlock: |
| up_read(&ctx->map_changing_lock); |
| out_unlock_vma: |
| uffd_mfill_unlock(dst_vma); |
| out: |
| if (folio) |
| folio_put(folio); |
| BUG_ON(copied < 0); |
| BUG_ON(err > 0); |
| BUG_ON(!copied && !err); |
| return copied ? copied : err; |
| } |
| #else /* !CONFIG_HUGETLB_PAGE */ |
| /* fail at build time if gcc attempts to use this */ |
| extern ssize_t mfill_atomic_hugetlb(struct userfaultfd_ctx *ctx, |
| struct vm_area_struct *dst_vma, |
| unsigned long dst_start, |
| unsigned long src_start, |
| unsigned long len, |
| uffd_flags_t flags); |
| #endif /* CONFIG_HUGETLB_PAGE */ |
| |
| static __always_inline ssize_t mfill_atomic_pte(pmd_t *dst_pmd, |
| struct vm_area_struct *dst_vma, |
| unsigned long dst_addr, |
| unsigned long src_addr, |
| uffd_flags_t flags, |
| struct folio **foliop) |
| { |
| ssize_t err; |
| |
| if (uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) { |
| return mfill_atomic_pte_continue(dst_pmd, dst_vma, |
| dst_addr, flags); |
| } else if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { |
| return mfill_atomic_pte_poison(dst_pmd, dst_vma, |
| dst_addr, flags); |
| } |
| |
| /* |
| * The normal page fault path for a shmem will invoke the |
| * fault, fill the hole in the file and COW it right away. The |
| * result generates plain anonymous memory. So when we are |
| * asked to fill an hole in a MAP_PRIVATE shmem mapping, we'll |
| * generate anonymous memory directly without actually filling |
| * the hole. For the MAP_PRIVATE case the robustness check |
| * only happens in the pagetable (to verify it's still none) |
| * and not in the radix tree. |
| */ |
| if (!(dst_vma->vm_flags & VM_SHARED)) { |
| if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) |
| err = mfill_atomic_pte_copy(dst_pmd, dst_vma, |
| dst_addr, src_addr, |
| flags, foliop); |
| else |
| err = mfill_atomic_pte_zeropage(dst_pmd, |
| dst_vma, dst_addr); |
| } else { |
| err = shmem_mfill_atomic_pte(dst_pmd, dst_vma, |
| dst_addr, src_addr, |
| flags, foliop); |
| } |
| |
| return err; |
| } |
| |
| static __always_inline ssize_t mfill_atomic(struct userfaultfd_ctx *ctx, |
| unsigned long dst_start, |
| unsigned long src_start, |
| unsigned long len, |
| uffd_flags_t flags) |
| { |
| struct mm_struct *dst_mm = ctx->mm; |
| struct vm_area_struct *dst_vma; |
| ssize_t err; |
| pmd_t *dst_pmd; |
| unsigned long src_addr, dst_addr; |
| long copied; |
| struct folio *folio; |
| |
| /* |
| * Sanitize the command parameters: |
| */ |
| BUG_ON(dst_start & ~PAGE_MASK); |
| BUG_ON(len & ~PAGE_MASK); |
| |
| /* Does the address range wrap, or is the span zero-sized? */ |
| BUG_ON(src_start + len <= src_start); |
| BUG_ON(dst_start + len <= dst_start); |
| |
| src_addr = src_start; |
| dst_addr = dst_start; |
| copied = 0; |
| folio = NULL; |
| retry: |
| /* |
| * Make sure the vma is not shared, that the dst range is |
| * both valid and fully within a single existing vma. |
| */ |
| dst_vma = uffd_mfill_lock(dst_mm, dst_start, len); |
| if (IS_ERR(dst_vma)) { |
| err = PTR_ERR(dst_vma); |
| goto out; |
| } |
| |
| /* |
| * If memory mappings are changing because of non-cooperative |
| * operation (e.g. mremap) running in parallel, bail out and |
| * request the user to retry later |
| */ |
| down_read(&ctx->map_changing_lock); |
| err = -EAGAIN; |
| if (atomic_read(&ctx->mmap_changing)) |
| goto out_unlock; |
| |
| err = -EINVAL; |
| /* |
| * shmem_zero_setup is invoked in mmap for MAP_ANONYMOUS|MAP_SHARED but |
| * it will overwrite vm_ops, so vma_is_anonymous must return false. |
| */ |
| if (WARN_ON_ONCE(vma_is_anonymous(dst_vma) && |
| dst_vma->vm_flags & VM_SHARED)) |
| goto out_unlock; |
| |
| /* |
| * validate 'mode' now that we know the dst_vma: don't allow |
| * a wrprotect copy if the userfaultfd didn't register as WP. |
| */ |
| if ((flags & MFILL_ATOMIC_WP) && !(dst_vma->vm_flags & VM_UFFD_WP)) |
| goto out_unlock; |
| |
| /* |
| * If this is a HUGETLB vma, pass off to appropriate routine |
| */ |
| if (is_vm_hugetlb_page(dst_vma)) |
| return mfill_atomic_hugetlb(ctx, dst_vma, dst_start, |
| src_start, len, flags); |
| |
| if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma)) |
| goto out_unlock; |
| if (!vma_is_shmem(dst_vma) && |
| uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) |
| goto out_unlock; |
| |
| while (src_addr < src_start + len) { |
| pmd_t dst_pmdval; |
| |
| BUG_ON(dst_addr >= dst_start + len); |
| |
| dst_pmd = mm_alloc_pmd(dst_mm, dst_addr); |
| if (unlikely(!dst_pmd)) { |
| err = -ENOMEM; |
| break; |
| } |
| |
| dst_pmdval = pmdp_get_lockless(dst_pmd); |
| if (unlikely(pmd_none(dst_pmdval)) && |
| unlikely(__pte_alloc(dst_mm, dst_pmd))) { |
| err = -ENOMEM; |
| break; |
| } |
| dst_pmdval = pmdp_get_lockless(dst_pmd); |
| /* |
| * If the dst_pmd is THP don't override it and just be strict. |
| * (This includes the case where the PMD used to be THP and |
| * changed back to none after __pte_alloc().) |
| */ |
| if (unlikely(!pmd_present(dst_pmdval) || pmd_trans_huge(dst_pmdval) || |
| pmd_devmap(dst_pmdval))) { |
| err = -EEXIST; |
| break; |
| } |
| if (unlikely(pmd_bad(dst_pmdval))) { |
| err = -EFAULT; |
| break; |
| } |
| /* |
| * For shmem mappings, khugepaged is allowed to remove page |
| * tables under us; pte_offset_map_lock() will deal with that. |
| */ |
| |
| err = mfill_atomic_pte(dst_pmd, dst_vma, dst_addr, |
| src_addr, flags, &folio); |
| cond_resched(); |
| |
| if (unlikely(err == -ENOENT)) { |
| void *kaddr; |
| |
| up_read(&ctx->map_changing_lock); |
| uffd_mfill_unlock(dst_vma); |
| BUG_ON(!folio); |
| |
| kaddr = kmap_local_folio(folio, 0); |
| err = copy_from_user(kaddr, |
| (const void __user *) src_addr, |
| PAGE_SIZE); |
| kunmap_local(kaddr); |
| if (unlikely(err)) { |
| err = -EFAULT; |
| goto out; |
| } |
| flush_dcache_folio(folio); |
| goto retry; |
| } else |
| BUG_ON(folio); |
| |
| if (!err) { |
| dst_addr += PAGE_SIZE; |
| src_addr += PAGE_SIZE; |
| copied += PAGE_SIZE; |
| |
| if (fatal_signal_pending(current)) |
| err = -EINTR; |
| } |
| if (err) |
| break; |
| } |
| |
| out_unlock: |
| up_read(&ctx->map_changing_lock); |
| uffd_mfill_unlock(dst_vma); |
| out: |
| if (folio) |
| folio_put(folio); |
| BUG_ON(copied < 0); |
| BUG_ON(err > 0); |
| BUG_ON(!copied && !err); |
| return copied ? copied : err; |
| } |
| |
| ssize_t mfill_atomic_copy(struct userfaultfd_ctx *ctx, unsigned long dst_start, |
| unsigned long src_start, unsigned long len, |
| uffd_flags_t flags) |
| { |
| return mfill_atomic(ctx, dst_start, src_start, len, |
| uffd_flags_set_mode(flags, MFILL_ATOMIC_COPY)); |
| } |
| |
| ssize_t mfill_atomic_zeropage(struct userfaultfd_ctx *ctx, |
| unsigned long start, |
| unsigned long len) |
| { |
| return mfill_atomic(ctx, start, 0, len, |
| uffd_flags_set_mode(0, MFILL_ATOMIC_ZEROPAGE)); |
| } |
| |
| ssize_t mfill_atomic_continue(struct userfaultfd_ctx *ctx, unsigned long start, |
| unsigned long len, uffd_flags_t flags) |
| { |
| |
| /* |
| * A caller might reasonably assume that UFFDIO_CONTINUE contains an |
| * smp_wmb() to ensure that any writes to the about-to-be-mapped page by |
| * the thread doing the UFFDIO_CONTINUE are guaranteed to be visible to |
| * subsequent loads from the page through the newly mapped address range. |
| */ |
| smp_wmb(); |
| |
| return mfill_atomic(ctx, start, 0, len, |
| uffd_flags_set_mode(flags, MFILL_ATOMIC_CONTINUE)); |
| } |
| |
| ssize_t mfill_atomic_poison(struct userfaultfd_ctx *ctx, unsigned long start, |
| unsigned long len, uffd_flags_t flags) |
| { |
| return mfill_atomic(ctx, start, 0, len, |
| uffd_flags_set_mode(flags, MFILL_ATOMIC_POISON)); |
| } |
| |
| long uffd_wp_range(struct vm_area_struct *dst_vma, |
| unsigned long start, unsigned long len, bool enable_wp) |
| { |
| unsigned int mm_cp_flags; |
| struct mmu_gather tlb; |
| long ret; |
| |
| VM_WARN_ONCE(start < dst_vma->vm_start || start + len > dst_vma->vm_end, |
| "The address range exceeds VMA boundary.\n"); |
| if (enable_wp) |
| mm_cp_flags = MM_CP_UFFD_WP; |
| else |
| mm_cp_flags = MM_CP_UFFD_WP_RESOLVE; |
| |
| /* |
| * vma->vm_page_prot already reflects that uffd-wp is enabled for this |
| * VMA (see userfaultfd_set_vm_flags()) and that all PTEs are supposed |
| * to be write-protected as default whenever protection changes. |
| * Try upgrading write permissions manually. |
| */ |
| if (!enable_wp && vma_wants_manual_pte_write_upgrade(dst_vma)) |
| mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE; |
| tlb_gather_mmu(&tlb, dst_vma->vm_mm); |
| ret = change_protection(&tlb, dst_vma, start, start + len, mm_cp_flags); |
| tlb_finish_mmu(&tlb); |
| |
| return ret; |
| } |
| |
| int mwriteprotect_range(struct userfaultfd_ctx *ctx, unsigned long start, |
| unsigned long len, bool enable_wp) |
| { |
| struct mm_struct *dst_mm = ctx->mm; |
| unsigned long end = start + len; |
| unsigned long _start, _end; |
| struct vm_area_struct *dst_vma; |
| unsigned long page_mask; |
| long err; |
| VMA_ITERATOR(vmi, dst_mm, start); |
| |
| /* |
| * Sanitize the command parameters: |
| */ |
| BUG_ON(start & ~PAGE_MASK); |
| BUG_ON(len & ~PAGE_MASK); |
| |
| /* Does the address range wrap, or is the span zero-sized? */ |
| BUG_ON(start + len <= start); |
| |
| mmap_read_lock(dst_mm); |
| |
| /* |
| * If memory mappings are changing because of non-cooperative |
| * operation (e.g. mremap) running in parallel, bail out and |
| * request the user to retry later |
| */ |
| down_read(&ctx->map_changing_lock); |
| err = -EAGAIN; |
| if (atomic_read(&ctx->mmap_changing)) |
| goto out_unlock; |
| |
| err = -ENOENT; |
| for_each_vma_range(vmi, dst_vma, end) { |
| |
| if (!userfaultfd_wp(dst_vma)) { |
| err = -ENOENT; |
| break; |
| } |
| |
| if (is_vm_hugetlb_page(dst_vma)) { |
| err = -EINVAL; |
| page_mask = vma_kernel_pagesize(dst_vma) - 1; |
| if ((start & page_mask) || (len & page_mask)) |
| break; |
| } |
| |
| _start = max(dst_vma->vm_start, start); |
| _end = min(dst_vma->vm_end, end); |
| |
| err = uffd_wp_range(dst_vma, _start, _end - _start, enable_wp); |
| |
| /* Return 0 on success, <0 on failures */ |
| if (err < 0) |
| break; |
| err = 0; |
| } |
| out_unlock: |
| up_read(&ctx->map_changing_lock); |
| mmap_read_unlock(dst_mm); |
| return err; |
| } |
| |
| |
| void double_pt_lock(spinlock_t *ptl1, |
| spinlock_t *ptl2) |
| __acquires(ptl1) |
| __acquires(ptl2) |
| { |
| if (ptl1 > ptl2) |
| swap(ptl1, ptl2); |
| /* lock in virtual address order to avoid lock inversion */ |
| spin_lock(ptl1); |
| if (ptl1 != ptl2) |
| spin_lock_nested(ptl2, SINGLE_DEPTH_NESTING); |
| else |
| __acquire(ptl2); |
| } |
| |
| void double_pt_unlock(spinlock_t *ptl1, |
| spinlock_t *ptl2) |
| __releases(ptl1) |
| __releases(ptl2) |
| { |
| spin_unlock(ptl1); |
| if (ptl1 != ptl2) |
| spin_unlock(ptl2); |
| else |
| __release(ptl2); |
| } |
| |
| |
| static int move_present_pte(struct mm_struct *mm, |
| struct vm_area_struct *dst_vma, |
| struct vm_area_struct *src_vma, |
| unsigned long dst_addr, unsigned long src_addr, |
| pte_t *dst_pte, pte_t *src_pte, |
| pte_t orig_dst_pte, pte_t orig_src_pte, |
| spinlock_t *dst_ptl, spinlock_t *src_ptl, |
| struct folio *src_folio) |
| { |
| int err = 0; |
| |
| double_pt_lock(dst_ptl, src_ptl); |
| |
| if (!pte_same(ptep_get(src_pte), orig_src_pte) || |
| !pte_same(ptep_get(dst_pte), orig_dst_pte)) { |
| err = -EAGAIN; |
| goto out; |
| } |
| if (folio_test_large(src_folio) || |
| folio_maybe_dma_pinned(src_folio) || |
| !PageAnonExclusive(&src_folio->page)) { |
| err = -EBUSY; |
| goto out; |
| } |
| |
| orig_src_pte = ptep_clear_flush(src_vma, src_addr, src_pte); |
| /* Folio got pinned from under us. Put it back and fail the move. */ |
| if (folio_maybe_dma_pinned(src_folio)) { |
| set_pte_at(mm, src_addr, src_pte, orig_src_pte); |
| err = -EBUSY; |
| goto out; |
| } |
| |
| folio_move_anon_rmap(src_folio, dst_vma); |
| src_folio->index = linear_page_index(dst_vma, dst_addr); |
| |
| orig_dst_pte = mk_pte(&src_folio->page, dst_vma->vm_page_prot); |
| /* Follow mremap() behavior and treat the entry dirty after the move */ |
| orig_dst_pte = pte_mkwrite(pte_mkdirty(orig_dst_pte), dst_vma); |
| |
| set_pte_at(mm, dst_addr, dst_pte, orig_dst_pte); |
| out: |
| double_pt_unlock(dst_ptl, src_ptl); |
| return err; |
| } |
| |
| static int move_swap_pte(struct mm_struct *mm, |
| unsigned long dst_addr, unsigned long src_addr, |
| pte_t *dst_pte, pte_t *src_pte, |
| pte_t orig_dst_pte, pte_t orig_src_pte, |
| spinlock_t *dst_ptl, spinlock_t *src_ptl) |
| { |
| if (!pte_swp_exclusive(orig_src_pte)) |
| return -EBUSY; |
| |
| double_pt_lock(dst_ptl, src_ptl); |
| |
| if (!pte_same(ptep_get(src_pte), orig_src_pte) || |
| !pte_same(ptep_get(dst_pte), orig_dst_pte)) { |
| double_pt_unlock(dst_ptl, src_ptl); |
| return -EAGAIN; |
| } |
| |
| orig_src_pte = ptep_get_and_clear(mm, src_addr, src_pte); |
| set_pte_at(mm, dst_addr, dst_pte, orig_src_pte); |
| double_pt_unlock(dst_ptl, src_ptl); |
| |
| return 0; |
| } |
| |
| static int move_zeropage_pte(struct mm_struct *mm, |
| struct vm_area_struct *dst_vma, |
| struct vm_area_struct *src_vma, |
| unsigned long dst_addr, unsigned long src_addr, |
| pte_t *dst_pte, pte_t *src_pte, |
| pte_t orig_dst_pte, pte_t orig_src_pte, |
| spinlock_t *dst_ptl, spinlock_t *src_ptl) |
| { |
| pte_t zero_pte; |
| |
| double_pt_lock(dst_ptl, src_ptl); |
| if (!pte_same(ptep_get(src_pte), orig_src_pte) || |
| !pte_same(ptep_get(dst_pte), orig_dst_pte)) { |
| double_pt_unlock(dst_ptl, src_ptl); |
| return -EAGAIN; |
| } |
| |
| zero_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr), |
| dst_vma->vm_page_prot)); |
| ptep_clear_flush(src_vma, src_addr, src_pte); |
| set_pte_at(mm, dst_addr, dst_pte, zero_pte); |
| double_pt_unlock(dst_ptl, src_ptl); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * The mmap_lock for reading is held by the caller. Just move the page |
| * from src_pmd to dst_pmd if possible, and return true if succeeded |
| * in moving the page. |
| */ |
| static int move_pages_pte(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, |
| struct vm_area_struct *dst_vma, |
| struct vm_area_struct *src_vma, |
| unsigned long dst_addr, unsigned long src_addr, |
| __u64 mode) |
| { |
| swp_entry_t entry; |
| pte_t orig_src_pte, orig_dst_pte; |
| pte_t src_folio_pte; |
| spinlock_t *src_ptl, *dst_ptl; |
| pte_t *src_pte = NULL; |
| pte_t *dst_pte = NULL; |
| |
| struct folio *src_folio = NULL; |
| struct anon_vma *src_anon_vma = NULL; |
| struct mmu_notifier_range range; |
| int err = 0; |
| |
| flush_cache_range(src_vma, src_addr, src_addr + PAGE_SIZE); |
| mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, |
| src_addr, src_addr + PAGE_SIZE); |
| mmu_notifier_invalidate_range_start(&range); |
| retry: |
| dst_pte = pte_offset_map_nolock(mm, dst_pmd, dst_addr, &dst_ptl); |
| |
| /* Retry if a huge pmd materialized from under us */ |
| if (unlikely(!dst_pte)) { |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| src_pte = pte_offset_map_nolock(mm, src_pmd, src_addr, &src_ptl); |
| |
| /* |
| * We held the mmap_lock for reading so MADV_DONTNEED |
| * can zap transparent huge pages under us, or the |
| * transparent huge page fault can establish new |
| * transparent huge pages under us. |
| */ |
| if (unlikely(!src_pte)) { |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| /* Sanity checks before the operation */ |
| if (WARN_ON_ONCE(pmd_none(*dst_pmd)) || WARN_ON_ONCE(pmd_none(*src_pmd)) || |
| WARN_ON_ONCE(pmd_trans_huge(*dst_pmd)) || WARN_ON_ONCE(pmd_trans_huge(*src_pmd))) { |
| err = -EINVAL; |
| goto out; |
| } |
| |
| spin_lock(dst_ptl); |
| orig_dst_pte = ptep_get(dst_pte); |
| spin_unlock(dst_ptl); |
| if (!pte_none(orig_dst_pte)) { |
| err = -EEXIST; |
| goto out; |
| } |
| |
| spin_lock(src_ptl); |
| orig_src_pte = ptep_get(src_pte); |
| spin_unlock(src_ptl); |
| if (pte_none(orig_src_pte)) { |
| if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) |
| err = -ENOENT; |
| else /* nothing to do to move a hole */ |
| err = 0; |
| goto out; |
| } |
| |
| /* If PTE changed after we locked the folio them start over */ |
| if (src_folio && unlikely(!pte_same(src_folio_pte, orig_src_pte))) { |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| if (pte_present(orig_src_pte)) { |
| if (is_zero_pfn(pte_pfn(orig_src_pte))) { |
| err = move_zeropage_pte(mm, dst_vma, src_vma, |
| dst_addr, src_addr, dst_pte, src_pte, |
| orig_dst_pte, orig_src_pte, |
| dst_ptl, src_ptl); |
| goto out; |
| } |
| |
| /* |
| * Pin and lock both source folio and anon_vma. Since we are in |
| * RCU read section, we can't block, so on contention have to |
| * unmap the ptes, obtain the lock and retry. |
| */ |
| if (!src_folio) { |
| struct folio *folio; |
| |
| /* |
| * Pin the page while holding the lock to be sure the |
| * page isn't freed under us |
| */ |
| spin_lock(src_ptl); |
| if (!pte_same(orig_src_pte, ptep_get(src_pte))) { |
| spin_unlock(src_ptl); |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| folio = vm_normal_folio(src_vma, src_addr, orig_src_pte); |
| if (!folio || !PageAnonExclusive(&folio->page)) { |
| spin_unlock(src_ptl); |
| err = -EBUSY; |
| goto out; |
| } |
| |
| folio_get(folio); |
| src_folio = folio; |
| src_folio_pte = orig_src_pte; |
| spin_unlock(src_ptl); |
| |
| if (!folio_trylock(src_folio)) { |
| pte_unmap(&orig_src_pte); |
| pte_unmap(&orig_dst_pte); |
| src_pte = dst_pte = NULL; |
| /* now we can block and wait */ |
| folio_lock(src_folio); |
| goto retry; |
| } |
| |
| if (WARN_ON_ONCE(!folio_test_anon(src_folio))) { |
| err = -EBUSY; |
| goto out; |
| } |
| } |
| |
| /* at this point we have src_folio locked */ |
| if (folio_test_large(src_folio)) { |
| /* split_folio() can block */ |
| pte_unmap(&orig_src_pte); |
| pte_unmap(&orig_dst_pte); |
| src_pte = dst_pte = NULL; |
| err = split_folio(src_folio); |
| if (err) |
| goto out; |
| /* have to reacquire the folio after it got split */ |
| folio_unlock(src_folio); |
| folio_put(src_folio); |
| src_folio = NULL; |
| goto retry; |
| } |
| |
| if (!src_anon_vma) { |
| /* |
| * folio_referenced walks the anon_vma chain |
| * without the folio lock. Serialize against it with |
| * the anon_vma lock, the folio lock is not enough. |
| */ |
| src_anon_vma = folio_get_anon_vma(src_folio); |
| if (!src_anon_vma) { |
| /* page was unmapped from under us */ |
| err = -EAGAIN; |
| goto out; |
| } |
| if (!anon_vma_trylock_write(src_anon_vma)) { |
| pte_unmap(&orig_src_pte); |
| pte_unmap(&orig_dst_pte); |
| src_pte = dst_pte = NULL; |
| /* now we can block and wait */ |
| anon_vma_lock_write(src_anon_vma); |
| goto retry; |
| } |
| } |
| |
| err = move_present_pte(mm, dst_vma, src_vma, |
| dst_addr, src_addr, dst_pte, src_pte, |
| orig_dst_pte, orig_src_pte, |
| dst_ptl, src_ptl, src_folio); |
| } else { |
| entry = pte_to_swp_entry(orig_src_pte); |
| if (non_swap_entry(entry)) { |
| if (is_migration_entry(entry)) { |
| pte_unmap(&orig_src_pte); |
| pte_unmap(&orig_dst_pte); |
| src_pte = dst_pte = NULL; |
| migration_entry_wait(mm, src_pmd, src_addr); |
| err = -EAGAIN; |
| } else |
| err = -EFAULT; |
| goto out; |
| } |
| |
| err = move_swap_pte(mm, dst_addr, src_addr, |
| dst_pte, src_pte, |
| orig_dst_pte, orig_src_pte, |
| dst_ptl, src_ptl); |
| } |
| |
| out: |
| if (src_anon_vma) { |
| anon_vma_unlock_write(src_anon_vma); |
| put_anon_vma(src_anon_vma); |
| } |
| if (src_folio) { |
| folio_unlock(src_folio); |
| folio_put(src_folio); |
| } |
| if (dst_pte) |
| pte_unmap(dst_pte); |
| if (src_pte) |
| pte_unmap(src_pte); |
| mmu_notifier_invalidate_range_end(&range); |
| |
| return err; |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| static inline bool move_splits_huge_pmd(unsigned long dst_addr, |
| unsigned long src_addr, |
| unsigned long src_end) |
| { |
| return (src_addr & ~HPAGE_PMD_MASK) || (dst_addr & ~HPAGE_PMD_MASK) || |
| src_end - src_addr < HPAGE_PMD_SIZE; |
| } |
| #else |
| static inline bool move_splits_huge_pmd(unsigned long dst_addr, |
| unsigned long src_addr, |
| unsigned long src_end) |
| { |
| /* This is unreachable anyway, just to avoid warnings when HPAGE_PMD_SIZE==0 */ |
| return false; |
| } |
| #endif |
| |
| static inline bool vma_move_compatible(struct vm_area_struct *vma) |
| { |
| return !(vma->vm_flags & (VM_PFNMAP | VM_IO | VM_HUGETLB | |
| VM_MIXEDMAP | VM_SHADOW_STACK)); |
| } |
| |
| static int validate_move_areas(struct userfaultfd_ctx *ctx, |
| struct vm_area_struct *src_vma, |
| struct vm_area_struct *dst_vma) |
| { |
| /* Only allow moving if both have the same access and protection */ |
| if ((src_vma->vm_flags & VM_ACCESS_FLAGS) != (dst_vma->vm_flags & VM_ACCESS_FLAGS) || |
| pgprot_val(src_vma->vm_page_prot) != pgprot_val(dst_vma->vm_page_prot)) |
| return -EINVAL; |
| |
| /* Only allow moving if both are mlocked or both aren't */ |
| if ((src_vma->vm_flags & VM_LOCKED) != (dst_vma->vm_flags & VM_LOCKED)) |
| return -EINVAL; |
| |
| /* |
| * For now, we keep it simple and only move between writable VMAs. |
| * Access flags are equal, therefore cheching only the source is enough. |
| */ |
| if (!(src_vma->vm_flags & VM_WRITE)) |
| return -EINVAL; |
| |
| /* Check if vma flags indicate content which can be moved */ |
| if (!vma_move_compatible(src_vma) || !vma_move_compatible(dst_vma)) |
| return -EINVAL; |
| |
| /* Ensure dst_vma is registered in uffd we are operating on */ |
| if (!dst_vma->vm_userfaultfd_ctx.ctx || |
| dst_vma->vm_userfaultfd_ctx.ctx != ctx) |
| return -EINVAL; |
| |
| /* Only allow moving across anonymous vmas */ |
| if (!vma_is_anonymous(src_vma) || !vma_is_anonymous(dst_vma)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static __always_inline |
| int find_vmas_mm_locked(struct mm_struct *mm, |
| unsigned long dst_start, |
| unsigned long src_start, |
| struct vm_area_struct **dst_vmap, |
| struct vm_area_struct **src_vmap) |
| { |
| struct vm_area_struct *vma; |
| |
| mmap_assert_locked(mm); |
| vma = find_vma_and_prepare_anon(mm, dst_start); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| *dst_vmap = vma; |
| /* Skip finding src_vma if src_start is in dst_vma */ |
| if (src_start >= vma->vm_start && src_start < vma->vm_end) |
| goto out_success; |
| |
| vma = vma_lookup(mm, src_start); |
| if (!vma) |
| return -ENOENT; |
| out_success: |
| *src_vmap = vma; |
| return 0; |
| } |
| |
| #ifdef CONFIG_PER_VMA_LOCK |
| static int uffd_move_lock(struct mm_struct *mm, |
| unsigned long dst_start, |
| unsigned long src_start, |
| struct vm_area_struct **dst_vmap, |
| struct vm_area_struct **src_vmap) |
| { |
| struct vm_area_struct *vma; |
| int err; |
| |
| vma = uffd_lock_vma(mm, dst_start); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| *dst_vmap = vma; |
| /* |
| * Skip finding src_vma if src_start is in dst_vma. This also ensures |
| * that we don't lock the same vma twice. |
| */ |
| if (src_start >= vma->vm_start && src_start < vma->vm_end) { |
| *src_vmap = vma; |
| return 0; |
| } |
| |
| /* |
| * Using uffd_lock_vma() to get src_vma can lead to following deadlock: |
| * |
| * Thread1 Thread2 |
| * ------- ------- |
| * vma_start_read(dst_vma) |
| * mmap_write_lock(mm) |
| * vma_start_write(src_vma) |
| * vma_start_read(src_vma) |
| * mmap_read_lock(mm) |
| * vma_start_write(dst_vma) |
| */ |
| *src_vmap = lock_vma_under_rcu(mm, src_start); |
| if (likely(*src_vmap)) |
| return 0; |
| |
| /* Undo any locking and retry in mmap_lock critical section */ |
| vma_end_read(*dst_vmap); |
| |
| mmap_read_lock(mm); |
| err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap); |
| if (!err) { |
| /* |
| * See comment in uffd_lock_vma() as to why not using |
| * vma_start_read() here. |
| */ |
| down_read(&(*dst_vmap)->vm_lock->lock); |
| if (*dst_vmap != *src_vmap) |
| down_read_nested(&(*src_vmap)->vm_lock->lock, |
| SINGLE_DEPTH_NESTING); |
| } |
| mmap_read_unlock(mm); |
| return err; |
| } |
| |
| static void uffd_move_unlock(struct vm_area_struct *dst_vma, |
| struct vm_area_struct *src_vma) |
| { |
| vma_end_read(src_vma); |
| if (src_vma != dst_vma) |
| vma_end_read(dst_vma); |
| } |
| |
| #else |
| |
| static int uffd_move_lock(struct mm_struct *mm, |
| unsigned long dst_start, |
| unsigned long src_start, |
| struct vm_area_struct **dst_vmap, |
| struct vm_area_struct **src_vmap) |
| { |
| int err; |
| |
| mmap_read_lock(mm); |
| err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap); |
| if (err) |
| mmap_read_unlock(mm); |
| return err; |
| } |
| |
| static void uffd_move_unlock(struct vm_area_struct *dst_vma, |
| struct vm_area_struct *src_vma) |
| { |
| mmap_assert_locked(src_vma->vm_mm); |
| mmap_read_unlock(dst_vma->vm_mm); |
| } |
| #endif |
| |
| /** |
| * move_pages - move arbitrary anonymous pages of an existing vma |
| * @ctx: pointer to the userfaultfd context |
| * @dst_start: start of the destination virtual memory range |
| * @src_start: start of the source virtual memory range |
| * @len: length of the virtual memory range |
| * @mode: flags from uffdio_move.mode |
| * |
| * It will either use the mmap_lock in read mode or per-vma locks |
| * |
| * move_pages() remaps arbitrary anonymous pages atomically in zero |
| * copy. It only works on non shared anonymous pages because those can |
| * be relocated without generating non linear anon_vmas in the rmap |
| * code. |
| * |
| * It provides a zero copy mechanism to handle userspace page faults. |
| * The source vma pages should have mapcount == 1, which can be |
| * enforced by using madvise(MADV_DONTFORK) on src vma. |
| * |
| * The thread receiving the page during the userland page fault |
| * will receive the faulting page in the source vma through the network, |
| * storage or any other I/O device (MADV_DONTFORK in the source vma |
| * avoids move_pages() to fail with -EBUSY if the process forks before |
| * move_pages() is called), then it will call move_pages() to map the |
| * page in the faulting address in the destination vma. |
| * |
| * This userfaultfd command works purely via pagetables, so it's the |
| * most efficient way to move physical non shared anonymous pages |
| * across different virtual addresses. Unlike mremap()/mmap()/munmap() |
| * it does not create any new vmas. The mapping in the destination |
| * address is atomic. |
| * |
| * It only works if the vma protection bits are identical from the |
| * source and destination vma. |
| * |
| * It can remap non shared anonymous pages within the same vma too. |
| * |
| * If the source virtual memory range has any unmapped holes, or if |
| * the destination virtual memory range is not a whole unmapped hole, |
| * move_pages() will fail respectively with -ENOENT or -EEXIST. This |
| * provides a very strict behavior to avoid any chance of memory |
| * corruption going unnoticed if there are userland race conditions. |
| * Only one thread should resolve the userland page fault at any given |
| * time for any given faulting address. This means that if two threads |
| * try to both call move_pages() on the same destination address at the |
| * same time, the second thread will get an explicit error from this |
| * command. |
| * |
| * The command retval will return "len" is successful. The command |
| * however can be interrupted by fatal signals or errors. If |
| * interrupted it will return the number of bytes successfully |
| * remapped before the interruption if any, or the negative error if |
| * none. It will never return zero. Either it will return an error or |
| * an amount of bytes successfully moved. If the retval reports a |
| * "short" remap, the move_pages() command should be repeated by |
| * userland with src+retval, dst+reval, len-retval if it wants to know |
| * about the error that interrupted it. |
| * |
| * The UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES flag can be specified to |
| * prevent -ENOENT errors to materialize if there are holes in the |
| * source virtual range that is being remapped. The holes will be |
| * accounted as successfully remapped in the retval of the |
| * command. This is mostly useful to remap hugepage naturally aligned |
| * virtual regions without knowing if there are transparent hugepage |
| * in the regions or not, but preventing the risk of having to split |
| * the hugepmd during the remap. |
| * |
| * If there's any rmap walk that is taking the anon_vma locks without |
| * first obtaining the folio lock (the only current instance is |
| * folio_referenced), they will have to verify if the folio->mapping |
| * has changed after taking the anon_vma lock. If it changed they |
| * should release the lock and retry obtaining a new anon_vma, because |
| * it means the anon_vma was changed by move_pages() before the lock |
| * could be obtained. This is the only additional complexity added to |
| * the rmap code to provide this anonymous page remapping functionality. |
| */ |
| ssize_t move_pages(struct userfaultfd_ctx *ctx, unsigned long dst_start, |
| unsigned long src_start, unsigned long len, __u64 mode) |
| { |
| struct mm_struct *mm = ctx->mm; |
| struct vm_area_struct *src_vma, *dst_vma; |
| unsigned long src_addr, dst_addr; |
| pmd_t *src_pmd, *dst_pmd; |
| long err = -EINVAL; |
| ssize_t moved = 0; |
| |
| /* Sanitize the command parameters. */ |
| if (WARN_ON_ONCE(src_start & ~PAGE_MASK) || |
| WARN_ON_ONCE(dst_start & ~PAGE_MASK) || |
| WARN_ON_ONCE(len & ~PAGE_MASK)) |
| goto out; |
| |
| /* Does the address range wrap, or is the span zero-sized? */ |
| if (WARN_ON_ONCE(src_start + len <= src_start) || |
| WARN_ON_ONCE(dst_start + len <= dst_start)) |
| goto out; |
| |
| err = uffd_move_lock(mm, dst_start, src_start, &dst_vma, &src_vma); |
| if (err) |
| goto out; |
| |
| /* Re-check after taking map_changing_lock */ |
| err = -EAGAIN; |
| down_read(&ctx->map_changing_lock); |
| if (likely(atomic_read(&ctx->mmap_changing))) |
| goto out_unlock; |
| /* |
| * Make sure the vma is not shared, that the src and dst remap |
| * ranges are both valid and fully within a single existing |
| * vma. |
| */ |
| err = -EINVAL; |
| if (src_vma->vm_flags & VM_SHARED) |
| goto out_unlock; |
| if (src_start + len > src_vma->vm_end) |
| goto out_unlock; |
| |
| if (dst_vma->vm_flags & VM_SHARED) |
| goto out_unlock; |
| if (dst_start + len > dst_vma->vm_end) |
| goto out_unlock; |
| |
| err = validate_move_areas(ctx, src_vma, dst_vma); |
| if (err) |
| goto out_unlock; |
| |
| for (src_addr = src_start, dst_addr = dst_start; |
| src_addr < src_start + len;) { |
| spinlock_t *ptl; |
| pmd_t dst_pmdval; |
| unsigned long step_size; |
| |
| /* |
| * Below works because anonymous area would not have a |
| * transparent huge PUD. If file-backed support is added, |
| * that case would need to be handled here. |
| */ |
| src_pmd = mm_find_pmd(mm, src_addr); |
| if (unlikely(!src_pmd)) { |
| if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) { |
| err = -ENOENT; |
| break; |
| } |
| src_pmd = mm_alloc_pmd(mm, src_addr); |
| if (unlikely(!src_pmd)) { |
| err = -ENOMEM; |
| break; |
| } |
| } |
| dst_pmd = mm_alloc_pmd(mm, dst_addr); |
| if (unlikely(!dst_pmd)) { |
| err = -ENOMEM; |
| break; |
| } |
| |
| dst_pmdval = pmdp_get_lockless(dst_pmd); |
| /* |
| * If the dst_pmd is mapped as THP don't override it and just |
| * be strict. If dst_pmd changes into TPH after this check, the |
| * move_pages_huge_pmd() will detect the change and retry |
| * while move_pages_pte() will detect the change and fail. |
| */ |
| if (unlikely(pmd_trans_huge(dst_pmdval))) { |
| err = -EEXIST; |
| break; |
| } |
| |
| ptl = pmd_trans_huge_lock(src_pmd, src_vma); |
| if (ptl) { |
| if (pmd_devmap(*src_pmd)) { |
| spin_unlock(ptl); |
| err = -ENOENT; |
| break; |
| } |
| |
| /* Check if we can move the pmd without splitting it. */ |
| if (move_splits_huge_pmd(dst_addr, src_addr, src_start + len) || |
| !pmd_none(dst_pmdval)) { |
| struct folio *folio = pmd_folio(*src_pmd); |
| |
| if (!folio || (!is_huge_zero_folio(folio) && |
| !PageAnonExclusive(&folio->page))) { |
| spin_unlock(ptl); |
| err = -EBUSY; |
| break; |
| } |
| |
| spin_unlock(ptl); |
| split_huge_pmd(src_vma, src_pmd, src_addr); |
| /* The folio will be split by move_pages_pte() */ |
| continue; |
| } |
| |
| err = move_pages_huge_pmd(mm, dst_pmd, src_pmd, |
| dst_pmdval, dst_vma, src_vma, |
| dst_addr, src_addr); |
| step_size = HPAGE_PMD_SIZE; |
| } else { |
| if (pmd_none(*src_pmd)) { |
| if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) { |
| err = -ENOENT; |
| break; |
| } |
| if (unlikely(__pte_alloc(mm, src_pmd))) { |
| err = -ENOMEM; |
| break; |
| } |
| } |
| |
| if (unlikely(pte_alloc(mm, dst_pmd))) { |
| err = -ENOMEM; |
| break; |
| } |
| |
| err = move_pages_pte(mm, dst_pmd, src_pmd, |
| dst_vma, src_vma, |
| dst_addr, src_addr, mode); |
| step_size = PAGE_SIZE; |
| } |
| |
| cond_resched(); |
| |
| if (fatal_signal_pending(current)) { |
| /* Do not override an error */ |
| if (!err || err == -EAGAIN) |
| err = -EINTR; |
| break; |
| } |
| |
| if (err) { |
| if (err == -EAGAIN) |
| continue; |
| break; |
| } |
| |
| /* Proceed to the next page */ |
| dst_addr += step_size; |
| src_addr += step_size; |
| moved += step_size; |
| } |
| |
| out_unlock: |
| up_read(&ctx->map_changing_lock); |
| uffd_move_unlock(dst_vma, src_vma); |
| out: |
| VM_WARN_ON(moved < 0); |
| VM_WARN_ON(err > 0); |
| VM_WARN_ON(!moved && !err); |
| return moved ? moved : err; |
| } |
| |
| static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, |
| vm_flags_t flags) |
| { |
| const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; |
| |
| vm_flags_reset(vma, flags); |
| /* |
| * For shared mappings, we want to enable writenotify while |
| * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply |
| * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. |
| */ |
| if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) |
| vma_set_page_prot(vma); |
| } |
| |
| static void userfaultfd_set_ctx(struct vm_area_struct *vma, |
| struct userfaultfd_ctx *ctx, |
| unsigned long flags) |
| { |
| vma_start_write(vma); |
| vma->vm_userfaultfd_ctx = (struct vm_userfaultfd_ctx){ctx}; |
| userfaultfd_set_vm_flags(vma, |
| (vma->vm_flags & ~__VM_UFFD_FLAGS) | flags); |
| } |
| |
| void userfaultfd_reset_ctx(struct vm_area_struct *vma) |
| { |
| userfaultfd_set_ctx(vma, NULL, 0); |
| } |
| |
| struct vm_area_struct *userfaultfd_clear_vma(struct vma_iterator *vmi, |
| struct vm_area_struct *prev, |
| struct vm_area_struct *vma, |
| unsigned long start, |
| unsigned long end) |
| { |
| struct vm_area_struct *ret; |
| |
| /* Reset ptes for the whole vma range if wr-protected */ |
| if (userfaultfd_wp(vma)) |
| uffd_wp_range(vma, start, end - start, false); |
| |
| ret = vma_modify_flags_uffd(vmi, prev, vma, start, end, |
| vma->vm_flags & ~__VM_UFFD_FLAGS, |
| NULL_VM_UFFD_CTX); |
| |
| /* |
| * In the vma_merge() successful mprotect-like case 8: |
| * the next vma was merged into the current one and |
| * the current one has not been updated yet. |
| */ |
| if (!IS_ERR(ret)) |
| userfaultfd_reset_ctx(ret); |
| |
| return ret; |
| } |
| |
| /* Assumes mmap write lock taken, and mm_struct pinned. */ |
| int userfaultfd_register_range(struct userfaultfd_ctx *ctx, |
| struct vm_area_struct *vma, |
| unsigned long vm_flags, |
| unsigned long start, unsigned long end, |
| bool wp_async) |
| { |
| VMA_ITERATOR(vmi, ctx->mm, start); |
| struct vm_area_struct *prev = vma_prev(&vmi); |
| unsigned long vma_end; |
| unsigned long new_flags; |
| |
| if (vma->vm_start < start) |
| prev = vma; |
| |
| for_each_vma_range(vmi, vma, end) { |
| cond_resched(); |
| |
| BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async)); |
| BUG_ON(vma->vm_userfaultfd_ctx.ctx && |
| vma->vm_userfaultfd_ctx.ctx != ctx); |
| WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); |
| |
| /* |
| * Nothing to do: this vma is already registered into this |
| * userfaultfd and with the right tracking mode too. |
| */ |
| if (vma->vm_userfaultfd_ctx.ctx == ctx && |
| (vma->vm_flags & vm_flags) == vm_flags) |
| goto skip; |
| |
| if (vma->vm_start > start) |
| start = vma->vm_start; |
| vma_end = min(end, vma->vm_end); |
| |
| new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; |
| vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end, |
| new_flags, |
| (struct vm_userfaultfd_ctx){ctx}); |
| if (IS_ERR(vma)) |
| return PTR_ERR(vma); |
| |
| /* |
| * In the vma_merge() successful mprotect-like case 8: |
| * the next vma was merged into the current one and |
| * the current one has not been updated yet. |
| */ |
| userfaultfd_set_ctx(vma, ctx, vm_flags); |
| |
| if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) |
| hugetlb_unshare_all_pmds(vma); |
| |
| skip: |
| prev = vma; |
| start = vma->vm_end; |
| } |
| |
| return 0; |
| } |
| |
| void userfaultfd_release_new(struct userfaultfd_ctx *ctx) |
| { |
| struct mm_struct *mm = ctx->mm; |
| struct vm_area_struct *vma; |
| VMA_ITERATOR(vmi, mm, 0); |
| |
| /* the various vma->vm_userfaultfd_ctx still points to it */ |
| mmap_write_lock(mm); |
| for_each_vma(vmi, vma) { |
| if (vma->vm_userfaultfd_ctx.ctx == ctx) |
| userfaultfd_reset_ctx(vma); |
| } |
| mmap_write_unlock(mm); |
| } |
| |
| void userfaultfd_release_all(struct mm_struct *mm, |
| struct userfaultfd_ctx *ctx) |
| { |
| struct vm_area_struct *vma, *prev; |
| VMA_ITERATOR(vmi, mm, 0); |
| |
| if (!mmget_not_zero(mm)) |
| return; |
| |
| /* |
| * Flush page faults out of all CPUs. NOTE: all page faults |
| * must be retried without returning VM_FAULT_SIGBUS if |
| * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx |
| * changes while handle_userfault released the mmap_lock. So |
| * it's critical that released is set to true (above), before |
| * taking the mmap_lock for writing. |
| */ |
| mmap_write_lock(mm); |
| prev = NULL; |
| for_each_vma(vmi, vma) { |
| cond_resched(); |
| BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ |
| !!(vma->vm_flags & __VM_UFFD_FLAGS)); |
| if (vma->vm_userfaultfd_ctx.ctx != ctx) { |
| prev = vma; |
| continue; |
| } |
| |
| vma = userfaultfd_clear_vma(&vmi, prev, vma, |
| vma->vm_start, vma->vm_end); |
| prev = vma; |
| } |
| mmap_write_unlock(mm); |
| mmput(mm); |
| } |