| // SPDX-License-Identifier: BSD-3-Clause |
| /* |
| * Copyright (c) 2020, MIPI Alliance, Inc. |
| * |
| * Author: Nicolas Pitre <npitre@baylibre.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/device.h> |
| #include <linux/errno.h> |
| #include <linux/i3c/master.h> |
| #include <linux/io.h> |
| |
| #include "hci.h" |
| #include "cmd.h" |
| #include "ibi.h" |
| |
| |
| /* |
| * PIO Access Area |
| */ |
| |
| #define pio_reg_read(r) readl(hci->PIO_regs + (PIO_##r)) |
| #define pio_reg_write(r, v) writel(v, hci->PIO_regs + (PIO_##r)) |
| |
| #define PIO_COMMAND_QUEUE_PORT 0x00 |
| #define PIO_RESPONSE_QUEUE_PORT 0x04 |
| #define PIO_XFER_DATA_PORT 0x08 |
| #define PIO_IBI_PORT 0x0c |
| |
| #define PIO_QUEUE_THLD_CTRL 0x10 |
| #define QUEUE_IBI_STATUS_THLD GENMASK(31, 24) |
| #define QUEUE_IBI_DATA_THLD GENMASK(23, 16) |
| #define QUEUE_RESP_BUF_THLD GENMASK(15, 8) |
| #define QUEUE_CMD_EMPTY_BUF_THLD GENMASK(7, 0) |
| |
| #define PIO_DATA_BUFFER_THLD_CTRL 0x14 |
| #define DATA_RX_START_THLD GENMASK(26, 24) |
| #define DATA_TX_START_THLD GENMASK(18, 16) |
| #define DATA_RX_BUF_THLD GENMASK(10, 8) |
| #define DATA_TX_BUF_THLD GENMASK(2, 0) |
| |
| #define PIO_QUEUE_SIZE 0x18 |
| #define TX_DATA_BUFFER_SIZE GENMASK(31, 24) |
| #define RX_DATA_BUFFER_SIZE GENMASK(23, 16) |
| #define IBI_STATUS_SIZE GENMASK(15, 8) |
| #define CR_QUEUE_SIZE GENMASK(7, 0) |
| |
| #define PIO_INTR_STATUS 0x20 |
| #define PIO_INTR_STATUS_ENABLE 0x24 |
| #define PIO_INTR_SIGNAL_ENABLE 0x28 |
| #define PIO_INTR_FORCE 0x2c |
| #define STAT_TRANSFER_BLOCKED BIT(25) |
| #define STAT_PERR_RESP_UFLOW BIT(24) |
| #define STAT_PERR_CMD_OFLOW BIT(23) |
| #define STAT_PERR_IBI_UFLOW BIT(22) |
| #define STAT_PERR_RX_UFLOW BIT(21) |
| #define STAT_PERR_TX_OFLOW BIT(20) |
| #define STAT_ERR_RESP_QUEUE_FULL BIT(19) |
| #define STAT_WARN_RESP_QUEUE_FULL BIT(18) |
| #define STAT_ERR_IBI_QUEUE_FULL BIT(17) |
| #define STAT_WARN_IBI_QUEUE_FULL BIT(16) |
| #define STAT_ERR_RX_DATA_FULL BIT(15) |
| #define STAT_WARN_RX_DATA_FULL BIT(14) |
| #define STAT_ERR_TX_DATA_EMPTY BIT(13) |
| #define STAT_WARN_TX_DATA_EMPTY BIT(12) |
| #define STAT_TRANSFER_ERR BIT(9) |
| #define STAT_WARN_INS_STOP_MODE BIT(7) |
| #define STAT_TRANSFER_ABORT BIT(5) |
| #define STAT_RESP_READY BIT(4) |
| #define STAT_CMD_QUEUE_READY BIT(3) |
| #define STAT_IBI_STATUS_THLD BIT(2) |
| #define STAT_RX_THLD BIT(1) |
| #define STAT_TX_THLD BIT(0) |
| |
| #define PIO_QUEUE_CUR_STATUS 0x38 |
| #define CUR_IBI_Q_LEVEL GENMASK(28, 20) |
| #define CUR_RESP_Q_LEVEL GENMASK(18, 10) |
| #define CUR_CMD_Q_EMPTY_LEVEL GENMASK(8, 0) |
| |
| #define PIO_DATA_BUFFER_CUR_STATUS 0x3c |
| #define CUR_RX_BUF_LVL GENMASK(26, 16) |
| #define CUR_TX_BUF_LVL GENMASK(10, 0) |
| |
| /* |
| * Handy status bit combinations |
| */ |
| |
| #define STAT_LATENCY_WARNINGS (STAT_WARN_RESP_QUEUE_FULL | \ |
| STAT_WARN_IBI_QUEUE_FULL | \ |
| STAT_WARN_RX_DATA_FULL | \ |
| STAT_WARN_TX_DATA_EMPTY | \ |
| STAT_WARN_INS_STOP_MODE) |
| |
| #define STAT_LATENCY_ERRORS (STAT_ERR_RESP_QUEUE_FULL | \ |
| STAT_ERR_IBI_QUEUE_FULL | \ |
| STAT_ERR_RX_DATA_FULL | \ |
| STAT_ERR_TX_DATA_EMPTY) |
| |
| #define STAT_PROG_ERRORS (STAT_TRANSFER_BLOCKED | \ |
| STAT_PERR_RESP_UFLOW | \ |
| STAT_PERR_CMD_OFLOW | \ |
| STAT_PERR_IBI_UFLOW | \ |
| STAT_PERR_RX_UFLOW | \ |
| STAT_PERR_TX_OFLOW) |
| |
| #define STAT_ALL_ERRORS (STAT_TRANSFER_ABORT | \ |
| STAT_TRANSFER_ERR | \ |
| STAT_LATENCY_ERRORS | \ |
| STAT_PROG_ERRORS) |
| |
| struct hci_pio_dev_ibi_data { |
| struct i3c_generic_ibi_pool *pool; |
| unsigned int max_len; |
| }; |
| |
| struct hci_pio_ibi_data { |
| struct i3c_ibi_slot *slot; |
| void *data_ptr; |
| unsigned int addr; |
| unsigned int seg_len, seg_cnt; |
| unsigned int max_len; |
| bool last_seg; |
| }; |
| |
| struct hci_pio_data { |
| spinlock_t lock; |
| struct hci_xfer *curr_xfer, *xfer_queue; |
| struct hci_xfer *curr_rx, *rx_queue; |
| struct hci_xfer *curr_tx, *tx_queue; |
| struct hci_xfer *curr_resp, *resp_queue; |
| struct hci_pio_ibi_data ibi; |
| unsigned int rx_thresh_size, tx_thresh_size; |
| unsigned int max_ibi_thresh; |
| u32 reg_queue_thresh; |
| u32 enabled_irqs; |
| }; |
| |
| static int hci_pio_init(struct i3c_hci *hci) |
| { |
| struct hci_pio_data *pio; |
| u32 val, size_val, rx_thresh, tx_thresh, ibi_val; |
| |
| pio = kzalloc(sizeof(*pio), GFP_KERNEL); |
| if (!pio) |
| return -ENOMEM; |
| |
| hci->io_data = pio; |
| spin_lock_init(&pio->lock); |
| |
| size_val = pio_reg_read(QUEUE_SIZE); |
| dev_info(&hci->master.dev, "CMD/RESP FIFO = %ld entries\n", |
| FIELD_GET(CR_QUEUE_SIZE, size_val)); |
| dev_info(&hci->master.dev, "IBI FIFO = %ld bytes\n", |
| 4 * FIELD_GET(IBI_STATUS_SIZE, size_val)); |
| dev_info(&hci->master.dev, "RX data FIFO = %d bytes\n", |
| 4 * (2 << FIELD_GET(RX_DATA_BUFFER_SIZE, size_val))); |
| dev_info(&hci->master.dev, "TX data FIFO = %d bytes\n", |
| 4 * (2 << FIELD_GET(TX_DATA_BUFFER_SIZE, size_val))); |
| |
| /* |
| * Let's initialize data thresholds to half of the actual FIFO size. |
| * The start thresholds aren't used (set to 0) as the FIFO is always |
| * serviced before the corresponding command is queued. |
| */ |
| rx_thresh = FIELD_GET(RX_DATA_BUFFER_SIZE, size_val); |
| tx_thresh = FIELD_GET(TX_DATA_BUFFER_SIZE, size_val); |
| if (hci->version_major == 1) { |
| /* those are expressed as 2^[n+1), so just sub 1 if not 0 */ |
| if (rx_thresh) |
| rx_thresh -= 1; |
| if (tx_thresh) |
| tx_thresh -= 1; |
| pio->rx_thresh_size = 2 << rx_thresh; |
| pio->tx_thresh_size = 2 << tx_thresh; |
| } else { |
| /* size is 2^(n+1) and threshold is 2^n i.e. already halved */ |
| pio->rx_thresh_size = 1 << rx_thresh; |
| pio->tx_thresh_size = 1 << tx_thresh; |
| } |
| val = FIELD_PREP(DATA_RX_BUF_THLD, rx_thresh) | |
| FIELD_PREP(DATA_TX_BUF_THLD, tx_thresh); |
| pio_reg_write(DATA_BUFFER_THLD_CTRL, val); |
| |
| /* |
| * Let's raise an interrupt as soon as there is one free cmd slot |
| * or one available response or IBI. For IBI data let's use half the |
| * IBI queue size within allowed bounds. |
| */ |
| ibi_val = FIELD_GET(IBI_STATUS_SIZE, size_val); |
| pio->max_ibi_thresh = clamp_val(ibi_val/2, 1, 63); |
| val = FIELD_PREP(QUEUE_IBI_STATUS_THLD, 1) | |
| FIELD_PREP(QUEUE_IBI_DATA_THLD, pio->max_ibi_thresh) | |
| FIELD_PREP(QUEUE_RESP_BUF_THLD, 1) | |
| FIELD_PREP(QUEUE_CMD_EMPTY_BUF_THLD, 1); |
| pio_reg_write(QUEUE_THLD_CTRL, val); |
| pio->reg_queue_thresh = val; |
| |
| /* Disable all IRQs but allow all status bits */ |
| pio_reg_write(INTR_SIGNAL_ENABLE, 0x0); |
| pio_reg_write(INTR_STATUS_ENABLE, 0xffffffff); |
| |
| /* Always accept error interrupts (will be activated on first xfer) */ |
| pio->enabled_irqs = STAT_ALL_ERRORS; |
| |
| return 0; |
| } |
| |
| static void hci_pio_cleanup(struct i3c_hci *hci) |
| { |
| struct hci_pio_data *pio = hci->io_data; |
| |
| pio_reg_write(INTR_SIGNAL_ENABLE, 0x0); |
| |
| if (pio) { |
| DBG("status = %#x/%#x", |
| pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE)); |
| BUG_ON(pio->curr_xfer); |
| BUG_ON(pio->curr_rx); |
| BUG_ON(pio->curr_tx); |
| BUG_ON(pio->curr_resp); |
| kfree(pio); |
| hci->io_data = NULL; |
| } |
| } |
| |
| static void hci_pio_write_cmd(struct i3c_hci *hci, struct hci_xfer *xfer) |
| { |
| DBG("cmd_desc[%d] = 0x%08x", 0, xfer->cmd_desc[0]); |
| DBG("cmd_desc[%d] = 0x%08x", 1, xfer->cmd_desc[1]); |
| pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[0]); |
| pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[1]); |
| if (hci->cmd == &mipi_i3c_hci_cmd_v2) { |
| DBG("cmd_desc[%d] = 0x%08x", 2, xfer->cmd_desc[2]); |
| DBG("cmd_desc[%d] = 0x%08x", 3, xfer->cmd_desc[3]); |
| pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[2]); |
| pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[3]); |
| } |
| } |
| |
| static bool hci_pio_do_rx(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| struct hci_xfer *xfer = pio->curr_rx; |
| unsigned int nr_words; |
| u32 *p; |
| |
| p = xfer->data; |
| p += (xfer->data_len - xfer->data_left) / 4; |
| |
| while (xfer->data_left >= 4) { |
| /* bail out if FIFO hasn't reached the threshold value yet */ |
| if (!(pio_reg_read(INTR_STATUS) & STAT_RX_THLD)) |
| return false; |
| nr_words = min(xfer->data_left / 4, pio->rx_thresh_size); |
| /* extract data from FIFO */ |
| xfer->data_left -= nr_words * 4; |
| DBG("now %d left %d", nr_words * 4, xfer->data_left); |
| while (nr_words--) |
| *p++ = pio_reg_read(XFER_DATA_PORT); |
| } |
| |
| /* trailing data is retrieved upon response reception */ |
| return !xfer->data_left; |
| } |
| |
| static void hci_pio_do_trailing_rx(struct i3c_hci *hci, |
| struct hci_pio_data *pio, unsigned int count) |
| { |
| struct hci_xfer *xfer = pio->curr_rx; |
| u32 *p; |
| |
| DBG("%d remaining", count); |
| |
| p = xfer->data; |
| p += (xfer->data_len - xfer->data_left) / 4; |
| |
| if (count >= 4) { |
| unsigned int nr_words = count / 4; |
| /* extract data from FIFO */ |
| xfer->data_left -= nr_words * 4; |
| DBG("now %d left %d", nr_words * 4, xfer->data_left); |
| while (nr_words--) |
| *p++ = pio_reg_read(XFER_DATA_PORT); |
| } |
| |
| count &= 3; |
| if (count) { |
| /* |
| * There are trailing bytes in the last word. |
| * Fetch it and extract bytes in an endian independent way. |
| * Unlike the TX case, we must not write memory past the |
| * end of the destination buffer. |
| */ |
| u8 *p_byte = (u8 *)p; |
| u32 data = pio_reg_read(XFER_DATA_PORT); |
| |
| xfer->data_word_before_partial = data; |
| xfer->data_left -= count; |
| data = (__force u32) cpu_to_le32(data); |
| while (count--) { |
| *p_byte++ = data; |
| data >>= 8; |
| } |
| } |
| } |
| |
| static bool hci_pio_do_tx(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| struct hci_xfer *xfer = pio->curr_tx; |
| unsigned int nr_words; |
| u32 *p; |
| |
| p = xfer->data; |
| p += (xfer->data_len - xfer->data_left) / 4; |
| |
| while (xfer->data_left >= 4) { |
| /* bail out if FIFO free space is below set threshold */ |
| if (!(pio_reg_read(INTR_STATUS) & STAT_TX_THLD)) |
| return false; |
| /* we can fill up to that TX threshold */ |
| nr_words = min(xfer->data_left / 4, pio->tx_thresh_size); |
| /* push data into the FIFO */ |
| xfer->data_left -= nr_words * 4; |
| DBG("now %d left %d", nr_words * 4, xfer->data_left); |
| while (nr_words--) |
| pio_reg_write(XFER_DATA_PORT, *p++); |
| } |
| |
| if (xfer->data_left) { |
| /* |
| * There are trailing bytes to send. We can simply load |
| * them from memory as a word which will keep those bytes |
| * in their proper place even on a BE system. This will |
| * also get some bytes past the actual buffer but no one |
| * should care as they won't be sent out. |
| */ |
| if (!(pio_reg_read(INTR_STATUS) & STAT_TX_THLD)) |
| return false; |
| DBG("trailing %d", xfer->data_left); |
| pio_reg_write(XFER_DATA_PORT, *p); |
| xfer->data_left = 0; |
| } |
| |
| return true; |
| } |
| |
| static bool hci_pio_process_rx(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| while (pio->curr_rx && hci_pio_do_rx(hci, pio)) |
| pio->curr_rx = pio->curr_rx->next_data; |
| return !pio->curr_rx; |
| } |
| |
| static bool hci_pio_process_tx(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| while (pio->curr_tx && hci_pio_do_tx(hci, pio)) |
| pio->curr_tx = pio->curr_tx->next_data; |
| return !pio->curr_tx; |
| } |
| |
| static void hci_pio_queue_data(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| struct hci_xfer *xfer = pio->curr_xfer; |
| struct hci_xfer *prev_queue_tail; |
| |
| if (!xfer->data) { |
| xfer->data_len = xfer->data_left = 0; |
| return; |
| } |
| |
| if (xfer->rnw) { |
| prev_queue_tail = pio->rx_queue; |
| pio->rx_queue = xfer; |
| if (pio->curr_rx) { |
| prev_queue_tail->next_data = xfer; |
| } else { |
| pio->curr_rx = xfer; |
| if (!hci_pio_process_rx(hci, pio)) |
| pio->enabled_irqs |= STAT_RX_THLD; |
| } |
| } else { |
| prev_queue_tail = pio->tx_queue; |
| pio->tx_queue = xfer; |
| if (pio->curr_tx) { |
| prev_queue_tail->next_data = xfer; |
| } else { |
| pio->curr_tx = xfer; |
| if (!hci_pio_process_tx(hci, pio)) |
| pio->enabled_irqs |= STAT_TX_THLD; |
| } |
| } |
| } |
| |
| static void hci_pio_push_to_next_rx(struct i3c_hci *hci, struct hci_xfer *xfer, |
| unsigned int words_to_keep) |
| { |
| u32 *from = xfer->data; |
| u32 from_last; |
| unsigned int received, count; |
| |
| received = (xfer->data_len - xfer->data_left) / 4; |
| if ((xfer->data_len - xfer->data_left) & 3) { |
| from_last = xfer->data_word_before_partial; |
| received += 1; |
| } else { |
| from_last = from[received]; |
| } |
| from += words_to_keep; |
| count = received - words_to_keep; |
| |
| while (count) { |
| unsigned int room, left, chunk, bytes_to_move; |
| u32 last_word; |
| |
| xfer = xfer->next_data; |
| if (!xfer) { |
| dev_err(&hci->master.dev, "pushing RX data to unexistent xfer\n"); |
| return; |
| } |
| |
| room = DIV_ROUND_UP(xfer->data_len, 4); |
| left = DIV_ROUND_UP(xfer->data_left, 4); |
| chunk = min(count, room); |
| if (chunk > left) { |
| hci_pio_push_to_next_rx(hci, xfer, chunk - left); |
| left = chunk; |
| xfer->data_left = left * 4; |
| } |
| |
| bytes_to_move = xfer->data_len - xfer->data_left; |
| if (bytes_to_move & 3) { |
| /* preserve word to become partial */ |
| u32 *p = xfer->data; |
| |
| xfer->data_word_before_partial = p[bytes_to_move / 4]; |
| } |
| memmove(xfer->data + chunk, xfer->data, bytes_to_move); |
| |
| /* treat last word specially because of partial word issues */ |
| chunk -= 1; |
| |
| memcpy(xfer->data, from, chunk * 4); |
| xfer->data_left -= chunk * 4; |
| from += chunk; |
| count -= chunk; |
| |
| last_word = (count == 1) ? from_last : *from++; |
| if (xfer->data_left < 4) { |
| /* |
| * Like in hci_pio_do_trailing_rx(), preserve original |
| * word to be stored partially then store bytes it |
| * in an endian independent way. |
| */ |
| u8 *p_byte = xfer->data; |
| |
| p_byte += chunk * 4; |
| xfer->data_word_before_partial = last_word; |
| last_word = (__force u32) cpu_to_le32(last_word); |
| while (xfer->data_left--) { |
| *p_byte++ = last_word; |
| last_word >>= 8; |
| } |
| } else { |
| u32 *p = xfer->data; |
| |
| p[chunk] = last_word; |
| xfer->data_left -= 4; |
| } |
| count--; |
| } |
| } |
| |
| static void hci_pio_err(struct i3c_hci *hci, struct hci_pio_data *pio, |
| u32 status); |
| |
| static bool hci_pio_process_resp(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| while (pio->curr_resp && |
| (pio_reg_read(INTR_STATUS) & STAT_RESP_READY)) { |
| struct hci_xfer *xfer = pio->curr_resp; |
| u32 resp = pio_reg_read(RESPONSE_QUEUE_PORT); |
| unsigned int tid = RESP_TID(resp); |
| |
| DBG("resp = 0x%08x", resp); |
| if (tid != xfer->cmd_tid) { |
| dev_err(&hci->master.dev, |
| "response tid=%d when expecting %d\n", |
| tid, xfer->cmd_tid); |
| /* let's pretend it is a prog error... any of them */ |
| hci_pio_err(hci, pio, STAT_PROG_ERRORS); |
| return false; |
| } |
| xfer->response = resp; |
| |
| if (pio->curr_rx == xfer) { |
| /* |
| * Response availability implies RX completion. |
| * Retrieve trailing RX data if any. |
| * Note that short reads are possible. |
| */ |
| unsigned int received, expected, to_keep; |
| |
| received = xfer->data_len - xfer->data_left; |
| expected = RESP_DATA_LENGTH(xfer->response); |
| if (expected > received) { |
| hci_pio_do_trailing_rx(hci, pio, |
| expected - received); |
| } else if (received > expected) { |
| /* we consumed data meant for next xfer */ |
| to_keep = DIV_ROUND_UP(expected, 4); |
| hci_pio_push_to_next_rx(hci, xfer, to_keep); |
| } |
| |
| /* then process the RX list pointer */ |
| if (hci_pio_process_rx(hci, pio)) |
| pio->enabled_irqs &= ~STAT_RX_THLD; |
| } |
| |
| /* |
| * We're about to give back ownership of the xfer structure |
| * to the waiting instance. Make sure no reference to it |
| * still exists. |
| */ |
| if (pio->curr_rx == xfer) { |
| DBG("short RX ?"); |
| pio->curr_rx = pio->curr_rx->next_data; |
| } else if (pio->curr_tx == xfer) { |
| DBG("short TX ?"); |
| pio->curr_tx = pio->curr_tx->next_data; |
| } else if (xfer->data_left) { |
| DBG("PIO xfer count = %d after response", |
| xfer->data_left); |
| } |
| |
| pio->curr_resp = xfer->next_resp; |
| if (xfer->completion) |
| complete(xfer->completion); |
| } |
| return !pio->curr_resp; |
| } |
| |
| static void hci_pio_queue_resp(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| struct hci_xfer *xfer = pio->curr_xfer; |
| struct hci_xfer *prev_queue_tail; |
| |
| if (!(xfer->cmd_desc[0] & CMD_0_ROC)) |
| return; |
| |
| prev_queue_tail = pio->resp_queue; |
| pio->resp_queue = xfer; |
| if (pio->curr_resp) { |
| prev_queue_tail->next_resp = xfer; |
| } else { |
| pio->curr_resp = xfer; |
| if (!hci_pio_process_resp(hci, pio)) |
| pio->enabled_irqs |= STAT_RESP_READY; |
| } |
| } |
| |
| static bool hci_pio_process_cmd(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| while (pio->curr_xfer && |
| (pio_reg_read(INTR_STATUS) & STAT_CMD_QUEUE_READY)) { |
| /* |
| * Always process the data FIFO before sending the command |
| * so needed TX data or RX space is available upfront. |
| */ |
| hci_pio_queue_data(hci, pio); |
| /* |
| * Then queue our response request. This will also process |
| * the response FIFO in case it got suddenly filled up |
| * with results from previous commands. |
| */ |
| hci_pio_queue_resp(hci, pio); |
| /* |
| * Finally send the command. |
| */ |
| hci_pio_write_cmd(hci, pio->curr_xfer); |
| /* |
| * And move on. |
| */ |
| pio->curr_xfer = pio->curr_xfer->next_xfer; |
| } |
| return !pio->curr_xfer; |
| } |
| |
| static int hci_pio_queue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer, int n) |
| { |
| struct hci_pio_data *pio = hci->io_data; |
| struct hci_xfer *prev_queue_tail; |
| int i; |
| |
| DBG("n = %d", n); |
| |
| /* link xfer instances together and initialize data count */ |
| for (i = 0; i < n; i++) { |
| xfer[i].next_xfer = (i + 1 < n) ? &xfer[i + 1] : NULL; |
| xfer[i].next_data = NULL; |
| xfer[i].next_resp = NULL; |
| xfer[i].data_left = xfer[i].data_len; |
| } |
| |
| spin_lock_irq(&pio->lock); |
| prev_queue_tail = pio->xfer_queue; |
| pio->xfer_queue = &xfer[n - 1]; |
| if (pio->curr_xfer) { |
| prev_queue_tail->next_xfer = xfer; |
| } else { |
| pio->curr_xfer = xfer; |
| if (!hci_pio_process_cmd(hci, pio)) |
| pio->enabled_irqs |= STAT_CMD_QUEUE_READY; |
| pio_reg_write(INTR_SIGNAL_ENABLE, pio->enabled_irqs); |
| DBG("status = %#x/%#x", |
| pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE)); |
| } |
| spin_unlock_irq(&pio->lock); |
| return 0; |
| } |
| |
| static bool hci_pio_dequeue_xfer_common(struct i3c_hci *hci, |
| struct hci_pio_data *pio, |
| struct hci_xfer *xfer, int n) |
| { |
| struct hci_xfer *p, **p_prev_next; |
| int i; |
| |
| /* |
| * To safely dequeue a transfer request, it must be either entirely |
| * processed, or not yet processed at all. If our request tail is |
| * reachable from either the data or resp list that means the command |
| * was submitted and not yet completed. |
| */ |
| for (p = pio->curr_resp; p; p = p->next_resp) |
| for (i = 0; i < n; i++) |
| if (p == &xfer[i]) |
| goto pio_screwed; |
| for (p = pio->curr_rx; p; p = p->next_data) |
| for (i = 0; i < n; i++) |
| if (p == &xfer[i]) |
| goto pio_screwed; |
| for (p = pio->curr_tx; p; p = p->next_data) |
| for (i = 0; i < n; i++) |
| if (p == &xfer[i]) |
| goto pio_screwed; |
| |
| /* |
| * The command was completed, or wasn't yet submitted. |
| * Unlink it from the que if the later. |
| */ |
| p_prev_next = &pio->curr_xfer; |
| for (p = pio->curr_xfer; p; p = p->next_xfer) { |
| if (p == &xfer[0]) { |
| *p_prev_next = xfer[n - 1].next_xfer; |
| break; |
| } |
| p_prev_next = &p->next_xfer; |
| } |
| |
| /* return true if we actually unqueued something */ |
| return !!p; |
| |
| pio_screwed: |
| /* |
| * Life is tough. We must invalidate the hardware state and |
| * discard everything that is still queued. |
| */ |
| for (p = pio->curr_resp; p; p = p->next_resp) { |
| p->response = FIELD_PREP(RESP_ERR_FIELD, RESP_ERR_HC_TERMINATED); |
| if (p->completion) |
| complete(p->completion); |
| } |
| for (p = pio->curr_xfer; p; p = p->next_xfer) { |
| p->response = FIELD_PREP(RESP_ERR_FIELD, RESP_ERR_HC_TERMINATED); |
| if (p->completion) |
| complete(p->completion); |
| } |
| pio->curr_xfer = pio->curr_rx = pio->curr_tx = pio->curr_resp = NULL; |
| |
| return true; |
| } |
| |
| static bool hci_pio_dequeue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer, int n) |
| { |
| struct hci_pio_data *pio = hci->io_data; |
| int ret; |
| |
| spin_lock_irq(&pio->lock); |
| DBG("n=%d status=%#x/%#x", n, |
| pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE)); |
| DBG("main_status = %#x/%#x", |
| readl(hci->base_regs + 0x20), readl(hci->base_regs + 0x28)); |
| |
| ret = hci_pio_dequeue_xfer_common(hci, pio, xfer, n); |
| spin_unlock_irq(&pio->lock); |
| return ret; |
| } |
| |
| static void hci_pio_err(struct i3c_hci *hci, struct hci_pio_data *pio, |
| u32 status) |
| { |
| /* TODO: this ought to be more sophisticated eventually */ |
| |
| if (pio_reg_read(INTR_STATUS) & STAT_RESP_READY) { |
| /* this may happen when an error is signaled with ROC unset */ |
| u32 resp = pio_reg_read(RESPONSE_QUEUE_PORT); |
| |
| dev_err(&hci->master.dev, |
| "orphan response (%#x) on error\n", resp); |
| } |
| |
| /* dump states on programming errors */ |
| if (status & STAT_PROG_ERRORS) { |
| u32 queue = pio_reg_read(QUEUE_CUR_STATUS); |
| u32 data = pio_reg_read(DATA_BUFFER_CUR_STATUS); |
| |
| dev_err(&hci->master.dev, |
| "prog error %#lx (C/R/I = %ld/%ld/%ld, TX/RX = %ld/%ld)\n", |
| status & STAT_PROG_ERRORS, |
| FIELD_GET(CUR_CMD_Q_EMPTY_LEVEL, queue), |
| FIELD_GET(CUR_RESP_Q_LEVEL, queue), |
| FIELD_GET(CUR_IBI_Q_LEVEL, queue), |
| FIELD_GET(CUR_TX_BUF_LVL, data), |
| FIELD_GET(CUR_RX_BUF_LVL, data)); |
| } |
| |
| /* just bust out everything with pending responses for now */ |
| hci_pio_dequeue_xfer_common(hci, pio, pio->curr_resp, 1); |
| /* ... and half-way TX transfers if any */ |
| if (pio->curr_tx && pio->curr_tx->data_left != pio->curr_tx->data_len) |
| hci_pio_dequeue_xfer_common(hci, pio, pio->curr_tx, 1); |
| /* then reset the hardware */ |
| mipi_i3c_hci_pio_reset(hci); |
| mipi_i3c_hci_resume(hci); |
| |
| DBG("status=%#x/%#x", |
| pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE)); |
| } |
| |
| static void hci_pio_set_ibi_thresh(struct i3c_hci *hci, |
| struct hci_pio_data *pio, |
| unsigned int thresh_val) |
| { |
| u32 regval = pio->reg_queue_thresh; |
| |
| regval &= ~QUEUE_IBI_STATUS_THLD; |
| regval |= FIELD_PREP(QUEUE_IBI_STATUS_THLD, thresh_val); |
| /* write the threshold reg only if it changes */ |
| if (regval != pio->reg_queue_thresh) { |
| pio_reg_write(QUEUE_THLD_CTRL, regval); |
| pio->reg_queue_thresh = regval; |
| DBG("%d", thresh_val); |
| } |
| } |
| |
| static bool hci_pio_get_ibi_segment(struct i3c_hci *hci, |
| struct hci_pio_data *pio) |
| { |
| struct hci_pio_ibi_data *ibi = &pio->ibi; |
| unsigned int nr_words, thresh_val; |
| u32 *p; |
| |
| p = ibi->data_ptr; |
| p += (ibi->seg_len - ibi->seg_cnt) / 4; |
| |
| while ((nr_words = ibi->seg_cnt/4)) { |
| /* determine our IBI queue threshold value */ |
| thresh_val = min(nr_words, pio->max_ibi_thresh); |
| hci_pio_set_ibi_thresh(hci, pio, thresh_val); |
| /* bail out if we don't have that amount of data ready */ |
| if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD)) |
| return false; |
| /* extract the data from the IBI port */ |
| nr_words = thresh_val; |
| ibi->seg_cnt -= nr_words * 4; |
| DBG("now %d left %d", nr_words * 4, ibi->seg_cnt); |
| while (nr_words--) |
| *p++ = pio_reg_read(IBI_PORT); |
| } |
| |
| if (ibi->seg_cnt) { |
| /* |
| * There are trailing bytes in the last word. |
| * Fetch it and extract bytes in an endian independent way. |
| * Unlike the TX case, we must not write past the end of |
| * the destination buffer. |
| */ |
| u32 data; |
| u8 *p_byte = (u8 *)p; |
| |
| hci_pio_set_ibi_thresh(hci, pio, 1); |
| if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD)) |
| return false; |
| DBG("trailing %d", ibi->seg_cnt); |
| data = pio_reg_read(IBI_PORT); |
| data = (__force u32) cpu_to_le32(data); |
| while (ibi->seg_cnt--) { |
| *p_byte++ = data; |
| data >>= 8; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool hci_pio_prep_new_ibi(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| struct hci_pio_ibi_data *ibi = &pio->ibi; |
| struct i3c_dev_desc *dev; |
| struct i3c_hci_dev_data *dev_data; |
| struct hci_pio_dev_ibi_data *dev_ibi; |
| u32 ibi_status; |
| |
| /* |
| * We have a new IBI. Try to set up its payload retrieval. |
| * When returning true, the IBI data has to be consumed whether |
| * or not we are set up to capture it. If we return true with |
| * ibi->slot == NULL that means the data payload has to be |
| * drained out of the IBI port and dropped. |
| */ |
| |
| ibi_status = pio_reg_read(IBI_PORT); |
| DBG("status = %#x", ibi_status); |
| ibi->addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status); |
| if (ibi_status & IBI_ERROR) { |
| dev_err(&hci->master.dev, "IBI error from %#x\n", ibi->addr); |
| return false; |
| } |
| |
| ibi->last_seg = ibi_status & IBI_LAST_STATUS; |
| ibi->seg_len = FIELD_GET(IBI_DATA_LENGTH, ibi_status); |
| ibi->seg_cnt = ibi->seg_len; |
| |
| dev = i3c_hci_addr_to_dev(hci, ibi->addr); |
| if (!dev) { |
| dev_err(&hci->master.dev, |
| "IBI for unknown device %#x\n", ibi->addr); |
| return true; |
| } |
| |
| dev_data = i3c_dev_get_master_data(dev); |
| dev_ibi = dev_data->ibi_data; |
| ibi->max_len = dev_ibi->max_len; |
| |
| if (ibi->seg_len > ibi->max_len) { |
| dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n", |
| ibi->seg_len, ibi->max_len); |
| return true; |
| } |
| |
| ibi->slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool); |
| if (!ibi->slot) { |
| dev_err(&hci->master.dev, "no free slot for IBI\n"); |
| } else { |
| ibi->slot->len = 0; |
| ibi->data_ptr = ibi->slot->data; |
| } |
| return true; |
| } |
| |
| static void hci_pio_free_ibi_slot(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| struct hci_pio_ibi_data *ibi = &pio->ibi; |
| struct hci_pio_dev_ibi_data *dev_ibi; |
| |
| if (ibi->slot) { |
| dev_ibi = ibi->slot->dev->common.master_priv; |
| i3c_generic_ibi_recycle_slot(dev_ibi->pool, ibi->slot); |
| ibi->slot = NULL; |
| } |
| } |
| |
| static bool hci_pio_process_ibi(struct i3c_hci *hci, struct hci_pio_data *pio) |
| { |
| struct hci_pio_ibi_data *ibi = &pio->ibi; |
| |
| if (!ibi->slot && !ibi->seg_cnt && ibi->last_seg) |
| if (!hci_pio_prep_new_ibi(hci, pio)) |
| return false; |
| |
| for (;;) { |
| u32 ibi_status; |
| unsigned int ibi_addr; |
| |
| if (ibi->slot) { |
| if (!hci_pio_get_ibi_segment(hci, pio)) |
| return false; |
| ibi->slot->len += ibi->seg_len; |
| ibi->data_ptr += ibi->seg_len; |
| if (ibi->last_seg) { |
| /* was the last segment: submit it and leave */ |
| i3c_master_queue_ibi(ibi->slot->dev, ibi->slot); |
| ibi->slot = NULL; |
| hci_pio_set_ibi_thresh(hci, pio, 1); |
| return true; |
| } |
| } else if (ibi->seg_cnt) { |
| /* |
| * No slot but a non-zero count. This is the result |
| * of some error and the payload must be drained. |
| * This normally does not happen therefore no need |
| * to be extra optimized here. |
| */ |
| hci_pio_set_ibi_thresh(hci, pio, 1); |
| do { |
| if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD)) |
| return false; |
| pio_reg_read(IBI_PORT); |
| } while (--ibi->seg_cnt); |
| if (ibi->last_seg) |
| return true; |
| } |
| |
| /* try to move to the next segment right away */ |
| hci_pio_set_ibi_thresh(hci, pio, 1); |
| if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD)) |
| return false; |
| ibi_status = pio_reg_read(IBI_PORT); |
| ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status); |
| if (ibi->addr != ibi_addr) { |
| /* target address changed before last segment */ |
| dev_err(&hci->master.dev, |
| "unexp IBI address changed from %d to %d\n", |
| ibi->addr, ibi_addr); |
| hci_pio_free_ibi_slot(hci, pio); |
| } |
| ibi->last_seg = ibi_status & IBI_LAST_STATUS; |
| ibi->seg_len = FIELD_GET(IBI_DATA_LENGTH, ibi_status); |
| ibi->seg_cnt = ibi->seg_len; |
| if (ibi->slot && ibi->slot->len + ibi->seg_len > ibi->max_len) { |
| dev_err(&hci->master.dev, |
| "IBI payload too big (%d > %d)\n", |
| ibi->slot->len + ibi->seg_len, ibi->max_len); |
| hci_pio_free_ibi_slot(hci, pio); |
| } |
| } |
| |
| return false; |
| } |
| |
| static int hci_pio_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev, |
| const struct i3c_ibi_setup *req) |
| { |
| struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); |
| struct i3c_generic_ibi_pool *pool; |
| struct hci_pio_dev_ibi_data *dev_ibi; |
| |
| dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL); |
| if (!dev_ibi) |
| return -ENOMEM; |
| pool = i3c_generic_ibi_alloc_pool(dev, req); |
| if (IS_ERR(pool)) { |
| kfree(dev_ibi); |
| return PTR_ERR(pool); |
| } |
| dev_ibi->pool = pool; |
| dev_ibi->max_len = req->max_payload_len; |
| dev_data->ibi_data = dev_ibi; |
| return 0; |
| } |
| |
| static void hci_pio_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev) |
| { |
| struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); |
| struct hci_pio_dev_ibi_data *dev_ibi = dev_data->ibi_data; |
| |
| dev_data->ibi_data = NULL; |
| i3c_generic_ibi_free_pool(dev_ibi->pool); |
| kfree(dev_ibi); |
| } |
| |
| static void hci_pio_recycle_ibi_slot(struct i3c_hci *hci, |
| struct i3c_dev_desc *dev, |
| struct i3c_ibi_slot *slot) |
| { |
| struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev); |
| struct hci_pio_dev_ibi_data *dev_ibi = dev_data->ibi_data; |
| |
| i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot); |
| } |
| |
| static bool hci_pio_irq_handler(struct i3c_hci *hci, unsigned int unused) |
| { |
| struct hci_pio_data *pio = hci->io_data; |
| u32 status; |
| |
| spin_lock(&pio->lock); |
| status = pio_reg_read(INTR_STATUS); |
| DBG("(in) status: %#x/%#x", status, pio->enabled_irqs); |
| status &= pio->enabled_irqs | STAT_LATENCY_WARNINGS; |
| if (!status) { |
| spin_unlock(&pio->lock); |
| return false; |
| } |
| |
| if (status & STAT_IBI_STATUS_THLD) |
| hci_pio_process_ibi(hci, pio); |
| |
| if (status & STAT_RX_THLD) |
| if (hci_pio_process_rx(hci, pio)) |
| pio->enabled_irqs &= ~STAT_RX_THLD; |
| if (status & STAT_TX_THLD) |
| if (hci_pio_process_tx(hci, pio)) |
| pio->enabled_irqs &= ~STAT_TX_THLD; |
| if (status & STAT_RESP_READY) |
| if (hci_pio_process_resp(hci, pio)) |
| pio->enabled_irqs &= ~STAT_RESP_READY; |
| |
| if (unlikely(status & STAT_LATENCY_WARNINGS)) { |
| pio_reg_write(INTR_STATUS, status & STAT_LATENCY_WARNINGS); |
| dev_warn_ratelimited(&hci->master.dev, |
| "encountered warning condition %#lx\n", |
| status & STAT_LATENCY_WARNINGS); |
| } |
| |
| if (unlikely(status & STAT_ALL_ERRORS)) { |
| pio_reg_write(INTR_STATUS, status & STAT_ALL_ERRORS); |
| hci_pio_err(hci, pio, status & STAT_ALL_ERRORS); |
| } |
| |
| if (status & STAT_CMD_QUEUE_READY) |
| if (hci_pio_process_cmd(hci, pio)) |
| pio->enabled_irqs &= ~STAT_CMD_QUEUE_READY; |
| |
| pio_reg_write(INTR_SIGNAL_ENABLE, pio->enabled_irqs); |
| DBG("(out) status: %#x/%#x", |
| pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE)); |
| spin_unlock(&pio->lock); |
| return true; |
| } |
| |
| const struct hci_io_ops mipi_i3c_hci_pio = { |
| .init = hci_pio_init, |
| .cleanup = hci_pio_cleanup, |
| .queue_xfer = hci_pio_queue_xfer, |
| .dequeue_xfer = hci_pio_dequeue_xfer, |
| .irq_handler = hci_pio_irq_handler, |
| .request_ibi = hci_pio_request_ibi, |
| .free_ibi = hci_pio_free_ibi, |
| .recycle_ibi_slot = hci_pio_recycle_ibi_slot, |
| }; |