blob: c3ebe3584103b3bb96c295578d185737906f2b50 [file] [log] [blame] [edit]
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* linux/arch/arm/kernel/entry-armv.S
*
* Copyright (C) 1996,1997,1998 Russell King.
* ARM700 fix by Matthew Godbolt (linux-user@willothewisp.demon.co.uk)
* nommu support by Hyok S. Choi (hyok.choi@samsung.com)
*
* Low-level vector interface routines
*
* Note: there is a StrongARM bug in the STMIA rn, {regs}^ instruction
* that causes it to save wrong values... Be aware!
*/
#include <linux/init.h>
#include <asm/assembler.h>
#include <asm/memory.h>
#include <asm/glue-df.h>
#include <asm/glue-pf.h>
#include <asm/vfpmacros.h>
#ifndef CONFIG_GENERIC_IRQ_MULTI_HANDLER
#include <mach/entry-macro.S>
#endif
#include <asm/thread_notify.h>
#include <asm/unwind.h>
#include <asm/unistd.h>
#include <asm/tls.h>
#include <asm/system_info.h>
#include <asm/uaccess-asm.h>
#include "entry-header.S"
#include <asm/entry-macro-multi.S>
#include <asm/probes.h>
/*
* Interrupt handling.
*/
.macro irq_handler
#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
ldr r1, =handle_arch_irq
mov r0, sp
badr lr, 9997f
ldr pc, [r1]
#else
arch_irq_handler_default
#endif
9997:
.endm
.macro pabt_helper
@ PABORT handler takes pt_regs in r2, fault address in r4 and psr in r5
#ifdef MULTI_PABORT
ldr ip, .LCprocfns
mov lr, pc
ldr pc, [ip, #PROCESSOR_PABT_FUNC]
#else
bl CPU_PABORT_HANDLER
#endif
.endm
.macro dabt_helper
@
@ Call the processor-specific abort handler:
@
@ r2 - pt_regs
@ r4 - aborted context pc
@ r5 - aborted context psr
@
@ The abort handler must return the aborted address in r0, and
@ the fault status register in r1. r9 must be preserved.
@
#ifdef MULTI_DABORT
ldr ip, .LCprocfns
mov lr, pc
ldr pc, [ip, #PROCESSOR_DABT_FUNC]
#else
bl CPU_DABORT_HANDLER
#endif
.endm
.section .entry.text,"ax",%progbits
/*
* Invalid mode handlers
*/
.macro inv_entry, reason
sub sp, sp, #PT_REGS_SIZE
ARM( stmib sp, {r1 - lr} )
THUMB( stmia sp, {r0 - r12} )
THUMB( str sp, [sp, #S_SP] )
THUMB( str lr, [sp, #S_LR] )
mov r1, #\reason
.endm
__pabt_invalid:
inv_entry BAD_PREFETCH
b common_invalid
ENDPROC(__pabt_invalid)
__dabt_invalid:
inv_entry BAD_DATA
b common_invalid
ENDPROC(__dabt_invalid)
__irq_invalid:
inv_entry BAD_IRQ
b common_invalid
ENDPROC(__irq_invalid)
__und_invalid:
inv_entry BAD_UNDEFINSTR
@
@ XXX fall through to common_invalid
@
@
@ common_invalid - generic code for failed exception (re-entrant version of handlers)
@
common_invalid:
zero_fp
ldmia r0, {r4 - r6}
add r0, sp, #S_PC @ here for interlock avoidance
mov r7, #-1 @ "" "" "" ""
str r4, [sp] @ save preserved r0
stmia r0, {r5 - r7} @ lr_<exception>,
@ cpsr_<exception>, "old_r0"
mov r0, sp
b bad_mode
ENDPROC(__und_invalid)
/*
* SVC mode handlers
*/
#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
#define SPFIX(code...) code
#else
#define SPFIX(code...)
#endif
.macro svc_entry, stack_hole=0, trace=1, uaccess=1
UNWIND(.fnstart )
UNWIND(.save {r0 - pc} )
sub sp, sp, #(SVC_REGS_SIZE + \stack_hole - 4)
#ifdef CONFIG_THUMB2_KERNEL
SPFIX( str r0, [sp] ) @ temporarily saved
SPFIX( mov r0, sp )
SPFIX( tst r0, #4 ) @ test original stack alignment
SPFIX( ldr r0, [sp] ) @ restored
#else
SPFIX( tst sp, #4 )
#endif
SPFIX( subeq sp, sp, #4 )
stmia sp, {r1 - r12}
ldmia r0, {r3 - r5}
add r7, sp, #S_SP - 4 @ here for interlock avoidance
mov r6, #-1 @ "" "" "" ""
add r2, sp, #(SVC_REGS_SIZE + \stack_hole - 4)
SPFIX( addeq r2, r2, #4 )
str r3, [sp, #-4]! @ save the "real" r0 copied
@ from the exception stack
mov r3, lr
@
@ We are now ready to fill in the remaining blanks on the stack:
@
@ r2 - sp_svc
@ r3 - lr_svc
@ r4 - lr_<exception>, already fixed up for correct return/restart
@ r5 - spsr_<exception>
@ r6 - orig_r0 (see pt_regs definition in ptrace.h)
@
stmia r7, {r2 - r6}
get_thread_info tsk
uaccess_entry tsk, r0, r1, r2, \uaccess
.if \trace
#ifdef CONFIG_TRACE_IRQFLAGS
bl trace_hardirqs_off
#endif
.endif
.endm
.align 5
__dabt_svc:
svc_entry uaccess=0
mov r2, sp
dabt_helper
THUMB( ldr r5, [sp, #S_PSR] ) @ potentially updated CPSR
svc_exit r5 @ return from exception
UNWIND(.fnend )
ENDPROC(__dabt_svc)
.align 5
__irq_svc:
svc_entry
irq_handler
#ifdef CONFIG_PREEMPTION
ldr r8, [tsk, #TI_PREEMPT] @ get preempt count
ldr r0, [tsk, #TI_FLAGS] @ get flags
teq r8, #0 @ if preempt count != 0
movne r0, #0 @ force flags to 0
tst r0, #_TIF_NEED_RESCHED
blne svc_preempt
#endif
svc_exit r5, irq = 1 @ return from exception
UNWIND(.fnend )
ENDPROC(__irq_svc)
.ltorg
#ifdef CONFIG_PREEMPTION
svc_preempt:
mov r8, lr
1: bl preempt_schedule_irq @ irq en/disable is done inside
ldr r0, [tsk, #TI_FLAGS] @ get new tasks TI_FLAGS
tst r0, #_TIF_NEED_RESCHED
reteq r8 @ go again
b 1b
#endif
__und_fault:
@ Correct the PC such that it is pointing at the instruction
@ which caused the fault. If the faulting instruction was ARM
@ the PC will be pointing at the next instruction, and have to
@ subtract 4. Otherwise, it is Thumb, and the PC will be
@ pointing at the second half of the Thumb instruction. We
@ have to subtract 2.
ldr r2, [r0, #S_PC]
sub r2, r2, r1
str r2, [r0, #S_PC]
b do_undefinstr
ENDPROC(__und_fault)
.align 5
__und_svc:
#ifdef CONFIG_KPROBES
@ If a kprobe is about to simulate a "stmdb sp..." instruction,
@ it obviously needs free stack space which then will belong to
@ the saved context.
svc_entry MAX_STACK_SIZE
#else
svc_entry
#endif
mov r1, #4 @ PC correction to apply
THUMB( tst r5, #PSR_T_BIT ) @ exception taken in Thumb mode?
THUMB( movne r1, #2 ) @ if so, fix up PC correction
mov r0, sp @ struct pt_regs *regs
bl __und_fault
__und_svc_finish:
get_thread_info tsk
ldr r5, [sp, #S_PSR] @ Get SVC cpsr
svc_exit r5 @ return from exception
UNWIND(.fnend )
ENDPROC(__und_svc)
.align 5
__pabt_svc:
svc_entry
mov r2, sp @ regs
pabt_helper
svc_exit r5 @ return from exception
UNWIND(.fnend )
ENDPROC(__pabt_svc)
.align 5
__fiq_svc:
svc_entry trace=0
mov r0, sp @ struct pt_regs *regs
bl handle_fiq_as_nmi
svc_exit_via_fiq
UNWIND(.fnend )
ENDPROC(__fiq_svc)
.align 5
.LCcralign:
.word cr_alignment
#ifdef MULTI_DABORT
.LCprocfns:
.word processor
#endif
.LCfp:
.word fp_enter
/*
* Abort mode handlers
*/
@
@ Taking a FIQ in abort mode is similar to taking a FIQ in SVC mode
@ and reuses the same macros. However in abort mode we must also
@ save/restore lr_abt and spsr_abt to make nested aborts safe.
@
.align 5
__fiq_abt:
svc_entry trace=0
ARM( msr cpsr_c, #ABT_MODE | PSR_I_BIT | PSR_F_BIT )
THUMB( mov r0, #ABT_MODE | PSR_I_BIT | PSR_F_BIT )
THUMB( msr cpsr_c, r0 )
mov r1, lr @ Save lr_abt
mrs r2, spsr @ Save spsr_abt, abort is now safe
ARM( msr cpsr_c, #SVC_MODE | PSR_I_BIT | PSR_F_BIT )
THUMB( mov r0, #SVC_MODE | PSR_I_BIT | PSR_F_BIT )
THUMB( msr cpsr_c, r0 )
stmfd sp!, {r1 - r2}
add r0, sp, #8 @ struct pt_regs *regs
bl handle_fiq_as_nmi
ldmfd sp!, {r1 - r2}
ARM( msr cpsr_c, #ABT_MODE | PSR_I_BIT | PSR_F_BIT )
THUMB( mov r0, #ABT_MODE | PSR_I_BIT | PSR_F_BIT )
THUMB( msr cpsr_c, r0 )
mov lr, r1 @ Restore lr_abt, abort is unsafe
msr spsr_cxsf, r2 @ Restore spsr_abt
ARM( msr cpsr_c, #SVC_MODE | PSR_I_BIT | PSR_F_BIT )
THUMB( mov r0, #SVC_MODE | PSR_I_BIT | PSR_F_BIT )
THUMB( msr cpsr_c, r0 )
svc_exit_via_fiq
UNWIND(.fnend )
ENDPROC(__fiq_abt)
/*
* User mode handlers
*
* EABI note: sp_svc is always 64-bit aligned here, so should PT_REGS_SIZE
*/
#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) && (PT_REGS_SIZE & 7)
#error "sizeof(struct pt_regs) must be a multiple of 8"
#endif
.macro usr_entry, trace=1, uaccess=1
UNWIND(.fnstart )
UNWIND(.cantunwind ) @ don't unwind the user space
sub sp, sp, #PT_REGS_SIZE
ARM( stmib sp, {r1 - r12} )
THUMB( stmia sp, {r0 - r12} )
ATRAP( mrc p15, 0, r7, c1, c0, 0)
ATRAP( ldr r8, .LCcralign)
ldmia r0, {r3 - r5}
add r0, sp, #S_PC @ here for interlock avoidance
mov r6, #-1 @ "" "" "" ""
str r3, [sp] @ save the "real" r0 copied
@ from the exception stack
ATRAP( ldr r8, [r8, #0])
@
@ We are now ready to fill in the remaining blanks on the stack:
@
@ r4 - lr_<exception>, already fixed up for correct return/restart
@ r5 - spsr_<exception>
@ r6 - orig_r0 (see pt_regs definition in ptrace.h)
@
@ Also, separately save sp_usr and lr_usr
@
stmia r0, {r4 - r6}
ARM( stmdb r0, {sp, lr}^ )
THUMB( store_user_sp_lr r0, r1, S_SP - S_PC )
.if \uaccess
uaccess_disable ip
.endif
@ Enable the alignment trap while in kernel mode
ATRAP( teq r8, r7)
ATRAP( mcrne p15, 0, r8, c1, c0, 0)
@
@ Clear FP to mark the first stack frame
@
zero_fp
.if \trace
#ifdef CONFIG_TRACE_IRQFLAGS
bl trace_hardirqs_off
#endif
ct_user_exit save = 0
.endif
.endm
.macro kuser_cmpxchg_check
#if !defined(CONFIG_CPU_32v6K) && defined(CONFIG_KUSER_HELPERS)
#ifndef CONFIG_MMU
#warning "NPTL on non MMU needs fixing"
#else
@ Make sure our user space atomic helper is restarted
@ if it was interrupted in a critical region. Here we
@ perform a quick test inline since it should be false
@ 99.9999% of the time. The rest is done out of line.
cmp r4, #TASK_SIZE
blhs kuser_cmpxchg64_fixup
#endif
#endif
.endm
.align 5
__dabt_usr:
usr_entry uaccess=0
kuser_cmpxchg_check
mov r2, sp
dabt_helper
b ret_from_exception
UNWIND(.fnend )
ENDPROC(__dabt_usr)
.align 5
__irq_usr:
usr_entry
kuser_cmpxchg_check
irq_handler
get_thread_info tsk
mov why, #0
b ret_to_user_from_irq
UNWIND(.fnend )
ENDPROC(__irq_usr)
.ltorg
.align 5
__und_usr:
usr_entry uaccess=0
mov r2, r4
mov r3, r5
@ r2 = regs->ARM_pc, which is either 2 or 4 bytes ahead of the
@ faulting instruction depending on Thumb mode.
@ r3 = regs->ARM_cpsr
@
@ The emulation code returns using r9 if it has emulated the
@ instruction, or the more conventional lr if we are to treat
@ this as a real undefined instruction
@
badr r9, ret_from_exception
@ IRQs must be enabled before attempting to read the instruction from
@ user space since that could cause a page/translation fault if the
@ page table was modified by another CPU.
enable_irq
tst r3, #PSR_T_BIT @ Thumb mode?
bne __und_usr_thumb
sub r4, r2, #4 @ ARM instr at LR - 4
1: ldrt r0, [r4]
ARM_BE8(rev r0, r0) @ little endian instruction
uaccess_disable ip
@ r0 = 32-bit ARM instruction which caused the exception
@ r2 = PC value for the following instruction (:= regs->ARM_pc)
@ r4 = PC value for the faulting instruction
@ lr = 32-bit undefined instruction function
badr lr, __und_usr_fault_32
b call_fpe
__und_usr_thumb:
@ Thumb instruction
sub r4, r2, #2 @ First half of thumb instr at LR - 2
#if CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7
/*
* Thumb-2 instruction handling. Note that because pre-v6 and >= v6 platforms
* can never be supported in a single kernel, this code is not applicable at
* all when __LINUX_ARM_ARCH__ < 6. This allows simplifying assumptions to be
* made about .arch directives.
*/
#if __LINUX_ARM_ARCH__ < 7
/* If the target CPU may not be Thumb-2-capable, a run-time check is needed: */
#define NEED_CPU_ARCHITECTURE
ldr r5, .LCcpu_architecture
ldr r5, [r5]
cmp r5, #CPU_ARCH_ARMv7
blo __und_usr_fault_16 @ 16bit undefined instruction
/*
* The following code won't get run unless the running CPU really is v7, so
* coding round the lack of ldrht on older arches is pointless. Temporarily
* override the assembler target arch with the minimum required instead:
*/
.arch armv6t2
#endif
2: ldrht r5, [r4]
ARM_BE8(rev16 r5, r5) @ little endian instruction
cmp r5, #0xe800 @ 32bit instruction if xx != 0
blo __und_usr_fault_16_pan @ 16bit undefined instruction
3: ldrht r0, [r2]
ARM_BE8(rev16 r0, r0) @ little endian instruction
uaccess_disable ip
add r2, r2, #2 @ r2 is PC + 2, make it PC + 4
str r2, [sp, #S_PC] @ it's a 2x16bit instr, update
orr r0, r0, r5, lsl #16
badr lr, __und_usr_fault_32
@ r0 = the two 16-bit Thumb instructions which caused the exception
@ r2 = PC value for the following Thumb instruction (:= regs->ARM_pc)
@ r4 = PC value for the first 16-bit Thumb instruction
@ lr = 32bit undefined instruction function
#if __LINUX_ARM_ARCH__ < 7
/* If the target arch was overridden, change it back: */
#ifdef CONFIG_CPU_32v6K
.arch armv6k
#else
.arch armv6
#endif
#endif /* __LINUX_ARM_ARCH__ < 7 */
#else /* !(CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7) */
b __und_usr_fault_16
#endif
UNWIND(.fnend)
ENDPROC(__und_usr)
/*
* The out of line fixup for the ldrt instructions above.
*/
.pushsection .text.fixup, "ax"
.align 2
4: str r4, [sp, #S_PC] @ retry current instruction
ret r9
.popsection
.pushsection __ex_table,"a"
.long 1b, 4b
#if CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7
.long 2b, 4b
.long 3b, 4b
#endif
.popsection
/*
* Check whether the instruction is a co-processor instruction.
* If yes, we need to call the relevant co-processor handler.
*
* Note that we don't do a full check here for the co-processor
* instructions; all instructions with bit 27 set are well
* defined. The only instructions that should fault are the
* co-processor instructions. However, we have to watch out
* for the ARM6/ARM7 SWI bug.
*
* NEON is a special case that has to be handled here. Not all
* NEON instructions are co-processor instructions, so we have
* to make a special case of checking for them. Plus, there's
* five groups of them, so we have a table of mask/opcode pairs
* to check against, and if any match then we branch off into the
* NEON handler code.
*
* Emulators may wish to make use of the following registers:
* r0 = instruction opcode (32-bit ARM or two 16-bit Thumb)
* r2 = PC value to resume execution after successful emulation
* r9 = normal "successful" return address
* r10 = this threads thread_info structure
* lr = unrecognised instruction return address
* IRQs enabled, FIQs enabled.
*/
@
@ Fall-through from Thumb-2 __und_usr
@
#ifdef CONFIG_NEON
get_thread_info r10 @ get current thread
adr r6, .LCneon_thumb_opcodes
b 2f
#endif
call_fpe:
get_thread_info r10 @ get current thread
#ifdef CONFIG_NEON
adr r6, .LCneon_arm_opcodes
2: ldr r5, [r6], #4 @ mask value
ldr r7, [r6], #4 @ opcode bits matching in mask
cmp r5, #0 @ end mask?
beq 1f
and r8, r0, r5
cmp r8, r7 @ NEON instruction?
bne 2b
mov r7, #1
strb r7, [r10, #TI_USED_CP + 10] @ mark CP#10 as used
strb r7, [r10, #TI_USED_CP + 11] @ mark CP#11 as used
b do_vfp @ let VFP handler handle this
1:
#endif
tst r0, #0x08000000 @ only CDP/CPRT/LDC/STC have bit 27
tstne r0, #0x04000000 @ bit 26 set on both ARM and Thumb-2
reteq lr
and r8, r0, #0x00000f00 @ mask out CP number
mov r7, #1
add r6, r10, r8, lsr #8 @ add used_cp[] array offset first
strb r7, [r6, #TI_USED_CP] @ set appropriate used_cp[]
#ifdef CONFIG_IWMMXT
@ Test if we need to give access to iWMMXt coprocessors
ldr r5, [r10, #TI_FLAGS]
rsbs r7, r8, #(1 << 8) @ CP 0 or 1 only
movscs r7, r5, lsr #(TIF_USING_IWMMXT + 1)
bcs iwmmxt_task_enable
#endif
ARM( add pc, pc, r8, lsr #6 )
THUMB( lsr r8, r8, #6 )
THUMB( add pc, r8 )
nop
ret.w lr @ CP#0
W(b) do_fpe @ CP#1 (FPE)
W(b) do_fpe @ CP#2 (FPE)
ret.w lr @ CP#3
#ifdef CONFIG_CRUNCH
b crunch_task_enable @ CP#4 (MaverickCrunch)
b crunch_task_enable @ CP#5 (MaverickCrunch)
b crunch_task_enable @ CP#6 (MaverickCrunch)
#else
ret.w lr @ CP#4
ret.w lr @ CP#5
ret.w lr @ CP#6
#endif
ret.w lr @ CP#7
ret.w lr @ CP#8
ret.w lr @ CP#9
#ifdef CONFIG_VFP
W(b) do_vfp @ CP#10 (VFP)
W(b) do_vfp @ CP#11 (VFP)
#else
ret.w lr @ CP#10 (VFP)
ret.w lr @ CP#11 (VFP)
#endif
ret.w lr @ CP#12
ret.w lr @ CP#13
ret.w lr @ CP#14 (Debug)
ret.w lr @ CP#15 (Control)
#ifdef NEED_CPU_ARCHITECTURE
.align 2
.LCcpu_architecture:
.word __cpu_architecture
#endif
#ifdef CONFIG_NEON
.align 6
.LCneon_arm_opcodes:
.word 0xfe000000 @ mask
.word 0xf2000000 @ opcode
.word 0xff100000 @ mask
.word 0xf4000000 @ opcode
.word 0x00000000 @ mask
.word 0x00000000 @ opcode
.LCneon_thumb_opcodes:
.word 0xef000000 @ mask
.word 0xef000000 @ opcode
.word 0xff100000 @ mask
.word 0xf9000000 @ opcode
.word 0x00000000 @ mask
.word 0x00000000 @ opcode
#endif
do_fpe:
ldr r4, .LCfp
add r10, r10, #TI_FPSTATE @ r10 = workspace
ldr pc, [r4] @ Call FP module USR entry point
/*
* The FP module is called with these registers set:
* r0 = instruction
* r2 = PC+4
* r9 = normal "successful" return address
* r10 = FP workspace
* lr = unrecognised FP instruction return address
*/
.pushsection .data
.align 2
ENTRY(fp_enter)
.word no_fp
.popsection
ENTRY(no_fp)
ret lr
ENDPROC(no_fp)
__und_usr_fault_32:
mov r1, #4
b 1f
__und_usr_fault_16_pan:
uaccess_disable ip
__und_usr_fault_16:
mov r1, #2
1: mov r0, sp
badr lr, ret_from_exception
b __und_fault
ENDPROC(__und_usr_fault_32)
ENDPROC(__und_usr_fault_16)
.align 5
__pabt_usr:
usr_entry
mov r2, sp @ regs
pabt_helper
UNWIND(.fnend )
/* fall through */
/*
* This is the return code to user mode for abort handlers
*/
ENTRY(ret_from_exception)
UNWIND(.fnstart )
UNWIND(.cantunwind )
get_thread_info tsk
mov why, #0
b ret_to_user
UNWIND(.fnend )
ENDPROC(__pabt_usr)
ENDPROC(ret_from_exception)
.align 5
__fiq_usr:
usr_entry trace=0
kuser_cmpxchg_check
mov r0, sp @ struct pt_regs *regs
bl handle_fiq_as_nmi
get_thread_info tsk
restore_user_regs fast = 0, offset = 0
UNWIND(.fnend )
ENDPROC(__fiq_usr)
/*
* Register switch for ARMv3 and ARMv4 processors
* r0 = previous task_struct, r1 = previous thread_info, r2 = next thread_info
* previous and next are guaranteed not to be the same.
*/
ENTRY(__switch_to)
UNWIND(.fnstart )
UNWIND(.cantunwind )
add ip, r1, #TI_CPU_SAVE
ARM( stmia ip!, {r4 - sl, fp, sp, lr} ) @ Store most regs on stack
THUMB( stmia ip!, {r4 - sl, fp} ) @ Store most regs on stack
THUMB( str sp, [ip], #4 )
THUMB( str lr, [ip], #4 )
ldr r4, [r2, #TI_TP_VALUE]
ldr r5, [r2, #TI_TP_VALUE + 4]
#ifdef CONFIG_CPU_USE_DOMAINS
mrc p15, 0, r6, c3, c0, 0 @ Get domain register
str r6, [r1, #TI_CPU_DOMAIN] @ Save old domain register
ldr r6, [r2, #TI_CPU_DOMAIN]
#endif
switch_tls r1, r4, r5, r3, r7
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP)
ldr r7, [r2, #TI_TASK]
ldr r8, =__stack_chk_guard
.if (TSK_STACK_CANARY > IMM12_MASK)
add r7, r7, #TSK_STACK_CANARY & ~IMM12_MASK
.endif
ldr r7, [r7, #TSK_STACK_CANARY & IMM12_MASK]
#endif
#ifdef CONFIG_CPU_USE_DOMAINS
mcr p15, 0, r6, c3, c0, 0 @ Set domain register
#endif
mov r5, r0
add r4, r2, #TI_CPU_SAVE
ldr r0, =thread_notify_head
mov r1, #THREAD_NOTIFY_SWITCH
bl atomic_notifier_call_chain
#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP)
str r7, [r8]
#endif
THUMB( mov ip, r4 )
mov r0, r5
ARM( ldmia r4, {r4 - sl, fp, sp, pc} ) @ Load all regs saved previously
THUMB( ldmia ip!, {r4 - sl, fp} ) @ Load all regs saved previously
THUMB( ldr sp, [ip], #4 )
THUMB( ldr pc, [ip] )
UNWIND(.fnend )
ENDPROC(__switch_to)
__INIT
/*
* User helpers.
*
* Each segment is 32-byte aligned and will be moved to the top of the high
* vector page. New segments (if ever needed) must be added in front of
* existing ones. This mechanism should be used only for things that are
* really small and justified, and not be abused freely.
*
* See Documentation/arm/kernel_user_helpers.rst for formal definitions.
*/
THUMB( .arm )
.macro usr_ret, reg
#ifdef CONFIG_ARM_THUMB
bx \reg
#else
ret \reg
#endif
.endm
.macro kuser_pad, sym, size
.if (. - \sym) & 3
.rept 4 - (. - \sym) & 3
.byte 0
.endr
.endif
.rept (\size - (. - \sym)) / 4
.word 0xe7fddef1
.endr
.endm
#ifdef CONFIG_KUSER_HELPERS
.align 5
.globl __kuser_helper_start
__kuser_helper_start:
/*
* Due to the length of some sequences, __kuser_cmpxchg64 spans 2 regular
* kuser "slots", therefore 0xffff0f80 is not used as a valid entry point.
*/
__kuser_cmpxchg64: @ 0xffff0f60
#if defined(CONFIG_CPU_32v6K)
stmfd sp!, {r4, r5, r6, r7}
ldrd r4, r5, [r0] @ load old val
ldrd r6, r7, [r1] @ load new val
smp_dmb arm
1: ldrexd r0, r1, [r2] @ load current val
eors r3, r0, r4 @ compare with oldval (1)
eorseq r3, r1, r5 @ compare with oldval (2)
strexdeq r3, r6, r7, [r2] @ store newval if eq
teqeq r3, #1 @ success?
beq 1b @ if no then retry
smp_dmb arm
rsbs r0, r3, #0 @ set returned val and C flag
ldmfd sp!, {r4, r5, r6, r7}
usr_ret lr
#elif !defined(CONFIG_SMP)
#ifdef CONFIG_MMU
/*
* The only thing that can break atomicity in this cmpxchg64
* implementation is either an IRQ or a data abort exception
* causing another process/thread to be scheduled in the middle of
* the critical sequence. The same strategy as for cmpxchg is used.
*/
stmfd sp!, {r4, r5, r6, lr}
ldmia r0, {r4, r5} @ load old val
ldmia r1, {r6, lr} @ load new val
1: ldmia r2, {r0, r1} @ load current val
eors r3, r0, r4 @ compare with oldval (1)
eorseq r3, r1, r5 @ compare with oldval (2)
2: stmiaeq r2, {r6, lr} @ store newval if eq
rsbs r0, r3, #0 @ set return val and C flag
ldmfd sp!, {r4, r5, r6, pc}
.text
kuser_cmpxchg64_fixup:
@ Called from kuser_cmpxchg_fixup.
@ r4 = address of interrupted insn (must be preserved).
@ sp = saved regs. r7 and r8 are clobbered.
@ 1b = first critical insn, 2b = last critical insn.
@ If r4 >= 1b and r4 <= 2b then saved pc_usr is set to 1b.
mov r7, #0xffff0fff
sub r7, r7, #(0xffff0fff - (0xffff0f60 + (1b - __kuser_cmpxchg64)))
subs r8, r4, r7
rsbscs r8, r8, #(2b - 1b)
strcs r7, [sp, #S_PC]
#if __LINUX_ARM_ARCH__ < 6
bcc kuser_cmpxchg32_fixup
#endif
ret lr
.previous
#else
#warning "NPTL on non MMU needs fixing"
mov r0, #-1
adds r0, r0, #0
usr_ret lr
#endif
#else
#error "incoherent kernel configuration"
#endif
kuser_pad __kuser_cmpxchg64, 64
__kuser_memory_barrier: @ 0xffff0fa0
smp_dmb arm
usr_ret lr
kuser_pad __kuser_memory_barrier, 32
__kuser_cmpxchg: @ 0xffff0fc0
#if __LINUX_ARM_ARCH__ < 6
#ifdef CONFIG_MMU
/*
* The only thing that can break atomicity in this cmpxchg
* implementation is either an IRQ or a data abort exception
* causing another process/thread to be scheduled in the middle
* of the critical sequence. To prevent this, code is added to
* the IRQ and data abort exception handlers to set the pc back
* to the beginning of the critical section if it is found to be
* within that critical section (see kuser_cmpxchg_fixup).
*/
1: ldr r3, [r2] @ load current val
subs r3, r3, r0 @ compare with oldval
2: streq r1, [r2] @ store newval if eq
rsbs r0, r3, #0 @ set return val and C flag
usr_ret lr
.text
kuser_cmpxchg32_fixup:
@ Called from kuser_cmpxchg_check macro.
@ r4 = address of interrupted insn (must be preserved).
@ sp = saved regs. r7 and r8 are clobbered.
@ 1b = first critical insn, 2b = last critical insn.
@ If r4 >= 1b and r4 <= 2b then saved pc_usr is set to 1b.
mov r7, #0xffff0fff
sub r7, r7, #(0xffff0fff - (0xffff0fc0 + (1b - __kuser_cmpxchg)))
subs r8, r4, r7
rsbscs r8, r8, #(2b - 1b)
strcs r7, [sp, #S_PC]
ret lr
.previous
#else
#warning "NPTL on non MMU needs fixing"
mov r0, #-1
adds r0, r0, #0
usr_ret lr
#endif
#else
smp_dmb arm
1: ldrex r3, [r2]
subs r3, r3, r0
strexeq r3, r1, [r2]
teqeq r3, #1
beq 1b
rsbs r0, r3, #0
/* beware -- each __kuser slot must be 8 instructions max */
ALT_SMP(b __kuser_memory_barrier)
ALT_UP(usr_ret lr)
#endif
kuser_pad __kuser_cmpxchg, 32
__kuser_get_tls: @ 0xffff0fe0
ldr r0, [pc, #(16 - 8)] @ read TLS, set in kuser_get_tls_init
usr_ret lr
mrc p15, 0, r0, c13, c0, 3 @ 0xffff0fe8 hardware TLS code
kuser_pad __kuser_get_tls, 16
.rep 3
.word 0 @ 0xffff0ff0 software TLS value, then
.endr @ pad up to __kuser_helper_version
__kuser_helper_version: @ 0xffff0ffc
.word ((__kuser_helper_end - __kuser_helper_start) >> 5)
.globl __kuser_helper_end
__kuser_helper_end:
#endif
THUMB( .thumb )
/*
* Vector stubs.
*
* This code is copied to 0xffff1000 so we can use branches in the
* vectors, rather than ldr's. Note that this code must not exceed
* a page size.
*
* Common stub entry macro:
* Enter in IRQ mode, spsr = SVC/USR CPSR, lr = SVC/USR PC
*
* SP points to a minimal amount of processor-private memory, the address
* of which is copied into r0 for the mode specific abort handler.
*/
.macro vector_stub, name, mode, correction=0
.align 5
vector_\name:
.if \correction
sub lr, lr, #\correction
.endif
@ Save r0, lr_<exception> (parent PC)
stmia sp, {r0, lr} @ save r0, lr
@ Save spsr_<exception> (parent CPSR)
2: mrs lr, spsr
str lr, [sp, #8] @ save spsr
@
@ Prepare for SVC32 mode. IRQs remain disabled.
@
mrs r0, cpsr
eor r0, r0, #(\mode ^ SVC_MODE | PSR_ISETSTATE)
msr spsr_cxsf, r0
@
@ the branch table must immediately follow this code
@
and lr, lr, #0x0f
THUMB( adr r0, 1f )
THUMB( ldr lr, [r0, lr, lsl #2] )
mov r0, sp
ARM( ldr lr, [pc, lr, lsl #2] )
movs pc, lr @ branch to handler in SVC mode
ENDPROC(vector_\name)
#ifdef CONFIG_HARDEN_BRANCH_HISTORY
.subsection 1
.align 5
vector_bhb_loop8_\name:
.if \correction
sub lr, lr, #\correction
.endif
@ Save r0, lr_<exception> (parent PC)
stmia sp, {r0, lr}
@ bhb workaround
mov r0, #8
3: b . + 4
subs r0, r0, #1
bne 3b
dsb
isb
b 2b
ENDPROC(vector_bhb_loop8_\name)
vector_bhb_bpiall_\name:
.if \correction
sub lr, lr, #\correction
.endif
@ Save r0, lr_<exception> (parent PC)
stmia sp, {r0, lr}
@ bhb workaround
mcr p15, 0, r0, c7, c5, 6 @ BPIALL
@ isb not needed due to "movs pc, lr" in the vector stub
@ which gives a "context synchronisation".
b 2b
ENDPROC(vector_bhb_bpiall_\name)
.previous
#endif
.align 2
@ handler addresses follow this label
1:
.endm
.section .stubs, "ax", %progbits
@ This must be the first word
.word vector_swi
#ifdef CONFIG_HARDEN_BRANCH_HISTORY
.word vector_bhb_loop8_swi
.word vector_bhb_bpiall_swi
#endif
vector_rst:
ARM( swi SYS_ERROR0 )
THUMB( svc #0 )
THUMB( nop )
b vector_und
/*
* Interrupt dispatcher
*/
vector_stub irq, IRQ_MODE, 4
.long __irq_usr @ 0 (USR_26 / USR_32)
.long __irq_invalid @ 1 (FIQ_26 / FIQ_32)
.long __irq_invalid @ 2 (IRQ_26 / IRQ_32)
.long __irq_svc @ 3 (SVC_26 / SVC_32)
.long __irq_invalid @ 4
.long __irq_invalid @ 5
.long __irq_invalid @ 6
.long __irq_invalid @ 7
.long __irq_invalid @ 8
.long __irq_invalid @ 9
.long __irq_invalid @ a
.long __irq_invalid @ b
.long __irq_invalid @ c
.long __irq_invalid @ d
.long __irq_invalid @ e
.long __irq_invalid @ f
/*
* Data abort dispatcher
* Enter in ABT mode, spsr = USR CPSR, lr = USR PC
*/
vector_stub dabt, ABT_MODE, 8
.long __dabt_usr @ 0 (USR_26 / USR_32)
.long __dabt_invalid @ 1 (FIQ_26 / FIQ_32)
.long __dabt_invalid @ 2 (IRQ_26 / IRQ_32)
.long __dabt_svc @ 3 (SVC_26 / SVC_32)
.long __dabt_invalid @ 4
.long __dabt_invalid @ 5
.long __dabt_invalid @ 6
.long __dabt_invalid @ 7
.long __dabt_invalid @ 8
.long __dabt_invalid @ 9
.long __dabt_invalid @ a
.long __dabt_invalid @ b
.long __dabt_invalid @ c
.long __dabt_invalid @ d
.long __dabt_invalid @ e
.long __dabt_invalid @ f
/*
* Prefetch abort dispatcher
* Enter in ABT mode, spsr = USR CPSR, lr = USR PC
*/
vector_stub pabt, ABT_MODE, 4
.long __pabt_usr @ 0 (USR_26 / USR_32)
.long __pabt_invalid @ 1 (FIQ_26 / FIQ_32)
.long __pabt_invalid @ 2 (IRQ_26 / IRQ_32)
.long __pabt_svc @ 3 (SVC_26 / SVC_32)
.long __pabt_invalid @ 4
.long __pabt_invalid @ 5
.long __pabt_invalid @ 6
.long __pabt_invalid @ 7
.long __pabt_invalid @ 8
.long __pabt_invalid @ 9
.long __pabt_invalid @ a
.long __pabt_invalid @ b
.long __pabt_invalid @ c
.long __pabt_invalid @ d
.long __pabt_invalid @ e
.long __pabt_invalid @ f
/*
* Undef instr entry dispatcher
* Enter in UND mode, spsr = SVC/USR CPSR, lr = SVC/USR PC
*/
vector_stub und, UND_MODE
.long __und_usr @ 0 (USR_26 / USR_32)
.long __und_invalid @ 1 (FIQ_26 / FIQ_32)
.long __und_invalid @ 2 (IRQ_26 / IRQ_32)
.long __und_svc @ 3 (SVC_26 / SVC_32)
.long __und_invalid @ 4
.long __und_invalid @ 5
.long __und_invalid @ 6
.long __und_invalid @ 7
.long __und_invalid @ 8
.long __und_invalid @ 9
.long __und_invalid @ a
.long __und_invalid @ b
.long __und_invalid @ c
.long __und_invalid @ d
.long __und_invalid @ e
.long __und_invalid @ f
.align 5
/*=============================================================================
* Address exception handler
*-----------------------------------------------------------------------------
* These aren't too critical.
* (they're not supposed to happen, and won't happen in 32-bit data mode).
*/
vector_addrexcptn:
b vector_addrexcptn
/*=============================================================================
* FIQ "NMI" handler
*-----------------------------------------------------------------------------
* Handle a FIQ using the SVC stack allowing FIQ act like NMI on x86
* systems. This must be the last vector stub, so lets place it in its own
* subsection.
*/
.subsection 2
vector_stub fiq, FIQ_MODE, 4
.long __fiq_usr @ 0 (USR_26 / USR_32)
.long __fiq_svc @ 1 (FIQ_26 / FIQ_32)
.long __fiq_svc @ 2 (IRQ_26 / IRQ_32)
.long __fiq_svc @ 3 (SVC_26 / SVC_32)
.long __fiq_svc @ 4
.long __fiq_svc @ 5
.long __fiq_svc @ 6
.long __fiq_abt @ 7
.long __fiq_svc @ 8
.long __fiq_svc @ 9
.long __fiq_svc @ a
.long __fiq_svc @ b
.long __fiq_svc @ c
.long __fiq_svc @ d
.long __fiq_svc @ e
.long __fiq_svc @ f
.globl vector_fiq
.section .vectors, "ax", %progbits
.L__vectors_start:
W(b) vector_rst
W(b) vector_und
W(ldr) pc, .L__vectors_start + 0x1000
W(b) vector_pabt
W(b) vector_dabt
W(b) vector_addrexcptn
W(b) vector_irq
W(b) vector_fiq
#ifdef CONFIG_HARDEN_BRANCH_HISTORY
.section .vectors.bhb.loop8, "ax", %progbits
.L__vectors_bhb_loop8_start:
W(b) vector_rst
W(b) vector_bhb_loop8_und
W(ldr) pc, .L__vectors_bhb_loop8_start + 0x1004
W(b) vector_bhb_loop8_pabt
W(b) vector_bhb_loop8_dabt
W(b) vector_addrexcptn
W(b) vector_bhb_loop8_irq
W(b) vector_bhb_loop8_fiq
.section .vectors.bhb.bpiall, "ax", %progbits
.L__vectors_bhb_bpiall_start:
W(b) vector_rst
W(b) vector_bhb_bpiall_und
W(ldr) pc, .L__vectors_bhb_bpiall_start + 0x1008
W(b) vector_bhb_bpiall_pabt
W(b) vector_bhb_bpiall_dabt
W(b) vector_addrexcptn
W(b) vector_bhb_bpiall_irq
W(b) vector_bhb_bpiall_fiq
#endif
.data
.align 2
.globl cr_alignment
cr_alignment:
.space 4