| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012 ARM Ltd. |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kvm.h> |
| #include <linux/kvm_host.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/irqdomain.h> |
| #include <linux/uaccess.h> |
| |
| #include <clocksource/arm_arch_timer.h> |
| #include <asm/arch_timer.h> |
| #include <asm/kvm_emulate.h> |
| #include <asm/kvm_hyp.h> |
| #include <asm/kvm_nested.h> |
| |
| #include <kvm/arm_vgic.h> |
| #include <kvm/arm_arch_timer.h> |
| |
| #include "trace.h" |
| |
| static struct timecounter *timecounter; |
| static unsigned int host_vtimer_irq; |
| static unsigned int host_ptimer_irq; |
| static u32 host_vtimer_irq_flags; |
| static u32 host_ptimer_irq_flags; |
| |
| static DEFINE_STATIC_KEY_FALSE(has_gic_active_state); |
| |
| static const u8 default_ppi[] = { |
| [TIMER_PTIMER] = 30, |
| [TIMER_VTIMER] = 27, |
| [TIMER_HPTIMER] = 26, |
| [TIMER_HVTIMER] = 28, |
| }; |
| |
| static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx); |
| static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, |
| struct arch_timer_context *timer_ctx); |
| static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx); |
| static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, |
| struct arch_timer_context *timer, |
| enum kvm_arch_timer_regs treg, |
| u64 val); |
| static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, |
| struct arch_timer_context *timer, |
| enum kvm_arch_timer_regs treg); |
| static bool kvm_arch_timer_get_input_level(int vintid); |
| |
| static struct irq_ops arch_timer_irq_ops = { |
| .get_input_level = kvm_arch_timer_get_input_level, |
| }; |
| |
| static bool has_cntpoff(void) |
| { |
| return (has_vhe() && cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF)); |
| } |
| |
| static int nr_timers(struct kvm_vcpu *vcpu) |
| { |
| if (!vcpu_has_nv(vcpu)) |
| return NR_KVM_EL0_TIMERS; |
| |
| return NR_KVM_TIMERS; |
| } |
| |
| u32 timer_get_ctl(struct arch_timer_context *ctxt) |
| { |
| struct kvm_vcpu *vcpu = ctxt->vcpu; |
| |
| switch(arch_timer_ctx_index(ctxt)) { |
| case TIMER_VTIMER: |
| return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0); |
| case TIMER_PTIMER: |
| return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0); |
| case TIMER_HVTIMER: |
| return __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2); |
| case TIMER_HPTIMER: |
| return __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2); |
| default: |
| WARN_ON(1); |
| return 0; |
| } |
| } |
| |
| u64 timer_get_cval(struct arch_timer_context *ctxt) |
| { |
| struct kvm_vcpu *vcpu = ctxt->vcpu; |
| |
| switch(arch_timer_ctx_index(ctxt)) { |
| case TIMER_VTIMER: |
| return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0); |
| case TIMER_PTIMER: |
| return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0); |
| case TIMER_HVTIMER: |
| return __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2); |
| case TIMER_HPTIMER: |
| return __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2); |
| default: |
| WARN_ON(1); |
| return 0; |
| } |
| } |
| |
| static u64 timer_get_offset(struct arch_timer_context *ctxt) |
| { |
| u64 offset = 0; |
| |
| if (!ctxt) |
| return 0; |
| |
| if (ctxt->offset.vm_offset) |
| offset += *ctxt->offset.vm_offset; |
| if (ctxt->offset.vcpu_offset) |
| offset += *ctxt->offset.vcpu_offset; |
| |
| return offset; |
| } |
| |
| static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl) |
| { |
| struct kvm_vcpu *vcpu = ctxt->vcpu; |
| |
| switch(arch_timer_ctx_index(ctxt)) { |
| case TIMER_VTIMER: |
| __vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl; |
| break; |
| case TIMER_PTIMER: |
| __vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl; |
| break; |
| case TIMER_HVTIMER: |
| __vcpu_sys_reg(vcpu, CNTHV_CTL_EL2) = ctl; |
| break; |
| case TIMER_HPTIMER: |
| __vcpu_sys_reg(vcpu, CNTHP_CTL_EL2) = ctl; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| } |
| |
| static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval) |
| { |
| struct kvm_vcpu *vcpu = ctxt->vcpu; |
| |
| switch(arch_timer_ctx_index(ctxt)) { |
| case TIMER_VTIMER: |
| __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval; |
| break; |
| case TIMER_PTIMER: |
| __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval; |
| break; |
| case TIMER_HVTIMER: |
| __vcpu_sys_reg(vcpu, CNTHV_CVAL_EL2) = cval; |
| break; |
| case TIMER_HPTIMER: |
| __vcpu_sys_reg(vcpu, CNTHP_CVAL_EL2) = cval; |
| break; |
| default: |
| WARN_ON(1); |
| } |
| } |
| |
| static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset) |
| { |
| if (!ctxt->offset.vm_offset) { |
| WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt)); |
| return; |
| } |
| |
| WRITE_ONCE(*ctxt->offset.vm_offset, offset); |
| } |
| |
| u64 kvm_phys_timer_read(void) |
| { |
| return timecounter->cc->read(timecounter->cc); |
| } |
| |
| static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map) |
| { |
| if (vcpu_has_nv(vcpu)) { |
| if (is_hyp_ctxt(vcpu)) { |
| map->direct_vtimer = vcpu_hvtimer(vcpu); |
| map->direct_ptimer = vcpu_hptimer(vcpu); |
| map->emul_vtimer = vcpu_vtimer(vcpu); |
| map->emul_ptimer = vcpu_ptimer(vcpu); |
| } else { |
| map->direct_vtimer = vcpu_vtimer(vcpu); |
| map->direct_ptimer = vcpu_ptimer(vcpu); |
| map->emul_vtimer = vcpu_hvtimer(vcpu); |
| map->emul_ptimer = vcpu_hptimer(vcpu); |
| } |
| } else if (has_vhe()) { |
| map->direct_vtimer = vcpu_vtimer(vcpu); |
| map->direct_ptimer = vcpu_ptimer(vcpu); |
| map->emul_vtimer = NULL; |
| map->emul_ptimer = NULL; |
| } else { |
| map->direct_vtimer = vcpu_vtimer(vcpu); |
| map->direct_ptimer = NULL; |
| map->emul_vtimer = NULL; |
| map->emul_ptimer = vcpu_ptimer(vcpu); |
| } |
| |
| trace_kvm_get_timer_map(vcpu->vcpu_id, map); |
| } |
| |
| static inline bool userspace_irqchip(struct kvm *kvm) |
| { |
| return static_branch_unlikely(&userspace_irqchip_in_use) && |
| unlikely(!irqchip_in_kernel(kvm)); |
| } |
| |
| static void soft_timer_start(struct hrtimer *hrt, u64 ns) |
| { |
| hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns), |
| HRTIMER_MODE_ABS_HARD); |
| } |
| |
| static void soft_timer_cancel(struct hrtimer *hrt) |
| { |
| hrtimer_cancel(hrt); |
| } |
| |
| static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) |
| { |
| struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; |
| struct arch_timer_context *ctx; |
| struct timer_map map; |
| |
| /* |
| * We may see a timer interrupt after vcpu_put() has been called which |
| * sets the CPU's vcpu pointer to NULL, because even though the timer |
| * has been disabled in timer_save_state(), the hardware interrupt |
| * signal may not have been retired from the interrupt controller yet. |
| */ |
| if (!vcpu) |
| return IRQ_HANDLED; |
| |
| get_timer_map(vcpu, &map); |
| |
| if (irq == host_vtimer_irq) |
| ctx = map.direct_vtimer; |
| else |
| ctx = map.direct_ptimer; |
| |
| if (kvm_timer_should_fire(ctx)) |
| kvm_timer_update_irq(vcpu, true, ctx); |
| |
| if (userspace_irqchip(vcpu->kvm) && |
| !static_branch_unlikely(&has_gic_active_state)) |
| disable_percpu_irq(host_vtimer_irq); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx, |
| u64 val) |
| { |
| u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx); |
| |
| if (now < val) { |
| u64 ns; |
| |
| ns = cyclecounter_cyc2ns(timecounter->cc, |
| val - now, |
| timecounter->mask, |
| &timer_ctx->ns_frac); |
| return ns; |
| } |
| |
| return 0; |
| } |
| |
| static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx) |
| { |
| return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx)); |
| } |
| |
| static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx) |
| { |
| WARN_ON(timer_ctx && timer_ctx->loaded); |
| return timer_ctx && |
| ((timer_get_ctl(timer_ctx) & |
| (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE); |
| } |
| |
| static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu) |
| { |
| return (cpus_have_final_cap(ARM64_HAS_WFXT) && |
| vcpu_get_flag(vcpu, IN_WFIT)); |
| } |
| |
| static u64 wfit_delay_ns(struct kvm_vcpu *vcpu) |
| { |
| u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu)); |
| struct arch_timer_context *ctx; |
| |
| ctx = (vcpu_has_nv(vcpu) && is_hyp_ctxt(vcpu)) ? vcpu_hvtimer(vcpu) |
| : vcpu_vtimer(vcpu); |
| |
| return kvm_counter_compute_delta(ctx, val); |
| } |
| |
| /* |
| * Returns the earliest expiration time in ns among guest timers. |
| * Note that it will return 0 if none of timers can fire. |
| */ |
| static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu) |
| { |
| u64 min_delta = ULLONG_MAX; |
| int i; |
| |
| for (i = 0; i < nr_timers(vcpu); i++) { |
| struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i]; |
| |
| WARN(ctx->loaded, "timer %d loaded\n", i); |
| if (kvm_timer_irq_can_fire(ctx)) |
| min_delta = min(min_delta, kvm_timer_compute_delta(ctx)); |
| } |
| |
| if (vcpu_has_wfit_active(vcpu)) |
| min_delta = min(min_delta, wfit_delay_ns(vcpu)); |
| |
| /* If none of timers can fire, then return 0 */ |
| if (min_delta == ULLONG_MAX) |
| return 0; |
| |
| return min_delta; |
| } |
| |
| static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt) |
| { |
| struct arch_timer_cpu *timer; |
| struct kvm_vcpu *vcpu; |
| u64 ns; |
| |
| timer = container_of(hrt, struct arch_timer_cpu, bg_timer); |
| vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu); |
| |
| /* |
| * Check that the timer has really expired from the guest's |
| * PoV (NTP on the host may have forced it to expire |
| * early). If we should have slept longer, restart it. |
| */ |
| ns = kvm_timer_earliest_exp(vcpu); |
| if (unlikely(ns)) { |
| hrtimer_forward_now(hrt, ns_to_ktime(ns)); |
| return HRTIMER_RESTART; |
| } |
| |
| kvm_vcpu_wake_up(vcpu); |
| return HRTIMER_NORESTART; |
| } |
| |
| static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt) |
| { |
| struct arch_timer_context *ctx; |
| struct kvm_vcpu *vcpu; |
| u64 ns; |
| |
| ctx = container_of(hrt, struct arch_timer_context, hrtimer); |
| vcpu = ctx->vcpu; |
| |
| trace_kvm_timer_hrtimer_expire(ctx); |
| |
| /* |
| * Check that the timer has really expired from the guest's |
| * PoV (NTP on the host may have forced it to expire |
| * early). If not ready, schedule for a later time. |
| */ |
| ns = kvm_timer_compute_delta(ctx); |
| if (unlikely(ns)) { |
| hrtimer_forward_now(hrt, ns_to_ktime(ns)); |
| return HRTIMER_RESTART; |
| } |
| |
| kvm_timer_update_irq(vcpu, true, ctx); |
| return HRTIMER_NORESTART; |
| } |
| |
| static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx) |
| { |
| enum kvm_arch_timers index; |
| u64 cval, now; |
| |
| if (!timer_ctx) |
| return false; |
| |
| index = arch_timer_ctx_index(timer_ctx); |
| |
| if (timer_ctx->loaded) { |
| u32 cnt_ctl = 0; |
| |
| switch (index) { |
| case TIMER_VTIMER: |
| case TIMER_HVTIMER: |
| cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL); |
| break; |
| case TIMER_PTIMER: |
| case TIMER_HPTIMER: |
| cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL); |
| break; |
| case NR_KVM_TIMERS: |
| /* GCC is braindead */ |
| cnt_ctl = 0; |
| break; |
| } |
| |
| return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) && |
| (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) && |
| !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK); |
| } |
| |
| if (!kvm_timer_irq_can_fire(timer_ctx)) |
| return false; |
| |
| cval = timer_get_cval(timer_ctx); |
| now = kvm_phys_timer_read() - timer_get_offset(timer_ctx); |
| |
| return cval <= now; |
| } |
| |
| int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) |
| { |
| return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0; |
| } |
| |
| /* |
| * Reflect the timer output level into the kvm_run structure |
| */ |
| void kvm_timer_update_run(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| struct kvm_sync_regs *regs = &vcpu->run->s.regs; |
| |
| /* Populate the device bitmap with the timer states */ |
| regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER | |
| KVM_ARM_DEV_EL1_PTIMER); |
| if (kvm_timer_should_fire(vtimer)) |
| regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER; |
| if (kvm_timer_should_fire(ptimer)) |
| regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER; |
| } |
| |
| static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level, |
| struct arch_timer_context *timer_ctx) |
| { |
| int ret; |
| |
| timer_ctx->irq.level = new_level; |
| trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_irq(timer_ctx), |
| timer_ctx->irq.level); |
| |
| if (!userspace_irqchip(vcpu->kvm)) { |
| ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id, |
| timer_irq(timer_ctx), |
| timer_ctx->irq.level, |
| timer_ctx); |
| WARN_ON(ret); |
| } |
| } |
| |
| /* Only called for a fully emulated timer */ |
| static void timer_emulate(struct arch_timer_context *ctx) |
| { |
| bool should_fire = kvm_timer_should_fire(ctx); |
| |
| trace_kvm_timer_emulate(ctx, should_fire); |
| |
| if (should_fire != ctx->irq.level) { |
| kvm_timer_update_irq(ctx->vcpu, should_fire, ctx); |
| return; |
| } |
| |
| /* |
| * If the timer can fire now, we don't need to have a soft timer |
| * scheduled for the future. If the timer cannot fire at all, |
| * then we also don't need a soft timer. |
| */ |
| if (should_fire || !kvm_timer_irq_can_fire(ctx)) |
| return; |
| |
| soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx)); |
| } |
| |
| static void set_cntvoff(u64 cntvoff) |
| { |
| kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff); |
| } |
| |
| static void set_cntpoff(u64 cntpoff) |
| { |
| if (has_cntpoff()) |
| write_sysreg_s(cntpoff, SYS_CNTPOFF_EL2); |
| } |
| |
| static void timer_save_state(struct arch_timer_context *ctx) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); |
| enum kvm_arch_timers index = arch_timer_ctx_index(ctx); |
| unsigned long flags; |
| |
| if (!timer->enabled) |
| return; |
| |
| local_irq_save(flags); |
| |
| if (!ctx->loaded) |
| goto out; |
| |
| switch (index) { |
| u64 cval; |
| |
| case TIMER_VTIMER: |
| case TIMER_HVTIMER: |
| timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL)); |
| timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL)); |
| |
| /* Disable the timer */ |
| write_sysreg_el0(0, SYS_CNTV_CTL); |
| isb(); |
| |
| /* |
| * The kernel may decide to run userspace after |
| * calling vcpu_put, so we reset cntvoff to 0 to |
| * ensure a consistent read between user accesses to |
| * the virtual counter and kernel access to the |
| * physical counter of non-VHE case. |
| * |
| * For VHE, the virtual counter uses a fixed virtual |
| * offset of zero, so no need to zero CNTVOFF_EL2 |
| * register, but this is actually useful when switching |
| * between EL1/vEL2 with NV. |
| * |
| * Do it unconditionally, as this is either unavoidable |
| * or dirt cheap. |
| */ |
| set_cntvoff(0); |
| break; |
| case TIMER_PTIMER: |
| case TIMER_HPTIMER: |
| timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL)); |
| cval = read_sysreg_el0(SYS_CNTP_CVAL); |
| |
| if (!has_cntpoff()) |
| cval -= timer_get_offset(ctx); |
| |
| timer_set_cval(ctx, cval); |
| |
| /* Disable the timer */ |
| write_sysreg_el0(0, SYS_CNTP_CTL); |
| isb(); |
| |
| set_cntpoff(0); |
| break; |
| case NR_KVM_TIMERS: |
| BUG(); |
| } |
| |
| trace_kvm_timer_save_state(ctx); |
| |
| ctx->loaded = false; |
| out: |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Schedule the background timer before calling kvm_vcpu_halt, so that this |
| * thread is removed from its waitqueue and made runnable when there's a timer |
| * interrupt to handle. |
| */ |
| static void kvm_timer_blocking(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct timer_map map; |
| |
| get_timer_map(vcpu, &map); |
| |
| /* |
| * If no timers are capable of raising interrupts (disabled or |
| * masked), then there's no more work for us to do. |
| */ |
| if (!kvm_timer_irq_can_fire(map.direct_vtimer) && |
| !kvm_timer_irq_can_fire(map.direct_ptimer) && |
| !kvm_timer_irq_can_fire(map.emul_vtimer) && |
| !kvm_timer_irq_can_fire(map.emul_ptimer) && |
| !vcpu_has_wfit_active(vcpu)) |
| return; |
| |
| /* |
| * At least one guest time will expire. Schedule a background timer. |
| * Set the earliest expiration time among the guest timers. |
| */ |
| soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu)); |
| } |
| |
| static void kvm_timer_unblocking(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| |
| soft_timer_cancel(&timer->bg_timer); |
| } |
| |
| static void timer_restore_state(struct arch_timer_context *ctx) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu); |
| enum kvm_arch_timers index = arch_timer_ctx_index(ctx); |
| unsigned long flags; |
| |
| if (!timer->enabled) |
| return; |
| |
| local_irq_save(flags); |
| |
| if (ctx->loaded) |
| goto out; |
| |
| switch (index) { |
| u64 cval, offset; |
| |
| case TIMER_VTIMER: |
| case TIMER_HVTIMER: |
| set_cntvoff(timer_get_offset(ctx)); |
| write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL); |
| isb(); |
| write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL); |
| break; |
| case TIMER_PTIMER: |
| case TIMER_HPTIMER: |
| cval = timer_get_cval(ctx); |
| offset = timer_get_offset(ctx); |
| set_cntpoff(offset); |
| if (!has_cntpoff()) |
| cval += offset; |
| write_sysreg_el0(cval, SYS_CNTP_CVAL); |
| isb(); |
| write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL); |
| break; |
| case NR_KVM_TIMERS: |
| BUG(); |
| } |
| |
| trace_kvm_timer_restore_state(ctx); |
| |
| ctx->loaded = true; |
| out: |
| local_irq_restore(flags); |
| } |
| |
| static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active) |
| { |
| int r; |
| r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active); |
| WARN_ON(r); |
| } |
| |
| static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx) |
| { |
| struct kvm_vcpu *vcpu = ctx->vcpu; |
| bool phys_active = false; |
| |
| /* |
| * Update the timer output so that it is likely to match the |
| * state we're about to restore. If the timer expires between |
| * this point and the register restoration, we'll take the |
| * interrupt anyway. |
| */ |
| kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx); |
| |
| if (irqchip_in_kernel(vcpu->kvm)) |
| phys_active = kvm_vgic_map_is_active(vcpu, timer_irq(ctx)); |
| |
| phys_active |= ctx->irq.level; |
| |
| set_timer_irq_phys_active(ctx, phys_active); |
| } |
| |
| static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| |
| /* |
| * Update the timer output so that it is likely to match the |
| * state we're about to restore. If the timer expires between |
| * this point and the register restoration, we'll take the |
| * interrupt anyway. |
| */ |
| kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer); |
| |
| /* |
| * When using a userspace irqchip with the architected timers and a |
| * host interrupt controller that doesn't support an active state, we |
| * must still prevent continuously exiting from the guest, and |
| * therefore mask the physical interrupt by disabling it on the host |
| * interrupt controller when the virtual level is high, such that the |
| * guest can make forward progress. Once we detect the output level |
| * being de-asserted, we unmask the interrupt again so that we exit |
| * from the guest when the timer fires. |
| */ |
| if (vtimer->irq.level) |
| disable_percpu_irq(host_vtimer_irq); |
| else |
| enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); |
| } |
| |
| /* If _pred is true, set bit in _set, otherwise set it in _clr */ |
| #define assign_clear_set_bit(_pred, _bit, _clr, _set) \ |
| do { \ |
| if (_pred) \ |
| (_set) |= (_bit); \ |
| else \ |
| (_clr) |= (_bit); \ |
| } while (0) |
| |
| static void kvm_timer_vcpu_load_nested_switch(struct kvm_vcpu *vcpu, |
| struct timer_map *map) |
| { |
| int hw, ret; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return; |
| |
| /* |
| * We only ever unmap the vtimer irq on a VHE system that runs nested |
| * virtualization, in which case we have both a valid emul_vtimer, |
| * emul_ptimer, direct_vtimer, and direct_ptimer. |
| * |
| * Since this is called from kvm_timer_vcpu_load(), a change between |
| * vEL2 and vEL1/0 will have just happened, and the timer_map will |
| * represent this, and therefore we switch the emul/direct mappings |
| * below. |
| */ |
| hw = kvm_vgic_get_map(vcpu, timer_irq(map->direct_vtimer)); |
| if (hw < 0) { |
| kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_vtimer)); |
| kvm_vgic_unmap_phys_irq(vcpu, timer_irq(map->emul_ptimer)); |
| |
| ret = kvm_vgic_map_phys_irq(vcpu, |
| map->direct_vtimer->host_timer_irq, |
| timer_irq(map->direct_vtimer), |
| &arch_timer_irq_ops); |
| WARN_ON_ONCE(ret); |
| ret = kvm_vgic_map_phys_irq(vcpu, |
| map->direct_ptimer->host_timer_irq, |
| timer_irq(map->direct_ptimer), |
| &arch_timer_irq_ops); |
| WARN_ON_ONCE(ret); |
| |
| /* |
| * The virtual offset behaviour is "interresting", as it |
| * always applies when HCR_EL2.E2H==0, but only when |
| * accessed from EL1 when HCR_EL2.E2H==1. So make sure we |
| * track E2H when putting the HV timer in "direct" mode. |
| */ |
| if (map->direct_vtimer == vcpu_hvtimer(vcpu)) { |
| struct arch_timer_offset *offs = &map->direct_vtimer->offset; |
| |
| if (vcpu_el2_e2h_is_set(vcpu)) |
| offs->vcpu_offset = NULL; |
| else |
| offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2); |
| } |
| } |
| } |
| |
| static void timer_set_traps(struct kvm_vcpu *vcpu, struct timer_map *map) |
| { |
| bool tpt, tpc; |
| u64 clr, set; |
| |
| /* |
| * No trapping gets configured here with nVHE. See |
| * __timer_enable_traps(), which is where the stuff happens. |
| */ |
| if (!has_vhe()) |
| return; |
| |
| /* |
| * Our default policy is not to trap anything. As we progress |
| * within this function, reality kicks in and we start adding |
| * traps based on emulation requirements. |
| */ |
| tpt = tpc = false; |
| |
| /* |
| * We have two possibility to deal with a physical offset: |
| * |
| * - Either we have CNTPOFF (yay!) or the offset is 0: |
| * we let the guest freely access the HW |
| * |
| * - or neither of these condition apply: |
| * we trap accesses to the HW, but still use it |
| * after correcting the physical offset |
| */ |
| if (!has_cntpoff() && timer_get_offset(map->direct_ptimer)) |
| tpt = tpc = true; |
| |
| /* |
| * Apply the enable bits that the guest hypervisor has requested for |
| * its own guest. We can only add traps that wouldn't have been set |
| * above. |
| */ |
| if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { |
| u64 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); |
| |
| /* Use the VHE format for mental sanity */ |
| if (!vcpu_el2_e2h_is_set(vcpu)) |
| val = (val & (CNTHCTL_EL1PCEN | CNTHCTL_EL1PCTEN)) << 10; |
| |
| tpt |= !(val & (CNTHCTL_EL1PCEN << 10)); |
| tpc |= !(val & (CNTHCTL_EL1PCTEN << 10)); |
| } |
| |
| /* |
| * Now that we have collected our requirements, compute the |
| * trap and enable bits. |
| */ |
| set = 0; |
| clr = 0; |
| |
| assign_clear_set_bit(tpt, CNTHCTL_EL1PCEN << 10, set, clr); |
| assign_clear_set_bit(tpc, CNTHCTL_EL1PCTEN << 10, set, clr); |
| |
| /* This only happens on VHE, so use the CNTKCTL_EL1 accessor */ |
| sysreg_clear_set(cntkctl_el1, clr, set); |
| } |
| |
| void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct timer_map map; |
| |
| if (unlikely(!timer->enabled)) |
| return; |
| |
| get_timer_map(vcpu, &map); |
| |
| if (static_branch_likely(&has_gic_active_state)) { |
| if (vcpu_has_nv(vcpu)) |
| kvm_timer_vcpu_load_nested_switch(vcpu, &map); |
| |
| kvm_timer_vcpu_load_gic(map.direct_vtimer); |
| if (map.direct_ptimer) |
| kvm_timer_vcpu_load_gic(map.direct_ptimer); |
| } else { |
| kvm_timer_vcpu_load_nogic(vcpu); |
| } |
| |
| kvm_timer_unblocking(vcpu); |
| |
| timer_restore_state(map.direct_vtimer); |
| if (map.direct_ptimer) |
| timer_restore_state(map.direct_ptimer); |
| if (map.emul_vtimer) |
| timer_emulate(map.emul_vtimer); |
| if (map.emul_ptimer) |
| timer_emulate(map.emul_ptimer); |
| |
| timer_set_traps(vcpu, &map); |
| } |
| |
| bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); |
| struct kvm_sync_regs *sregs = &vcpu->run->s.regs; |
| bool vlevel, plevel; |
| |
| if (likely(irqchip_in_kernel(vcpu->kvm))) |
| return false; |
| |
| vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER; |
| plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER; |
| |
| return kvm_timer_should_fire(vtimer) != vlevel || |
| kvm_timer_should_fire(ptimer) != plevel; |
| } |
| |
| void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct timer_map map; |
| |
| if (unlikely(!timer->enabled)) |
| return; |
| |
| get_timer_map(vcpu, &map); |
| |
| timer_save_state(map.direct_vtimer); |
| if (map.direct_ptimer) |
| timer_save_state(map.direct_ptimer); |
| |
| /* |
| * Cancel soft timer emulation, because the only case where we |
| * need it after a vcpu_put is in the context of a sleeping VCPU, and |
| * in that case we already factor in the deadline for the physical |
| * timer when scheduling the bg_timer. |
| * |
| * In any case, we re-schedule the hrtimer for the physical timer when |
| * coming back to the VCPU thread in kvm_timer_vcpu_load(). |
| */ |
| if (map.emul_vtimer) |
| soft_timer_cancel(&map.emul_vtimer->hrtimer); |
| if (map.emul_ptimer) |
| soft_timer_cancel(&map.emul_ptimer->hrtimer); |
| |
| if (kvm_vcpu_is_blocking(vcpu)) |
| kvm_timer_blocking(vcpu); |
| } |
| |
| /* |
| * With a userspace irqchip we have to check if the guest de-asserted the |
| * timer and if so, unmask the timer irq signal on the host interrupt |
| * controller to ensure that we see future timer signals. |
| */ |
| static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); |
| |
| if (!kvm_timer_should_fire(vtimer)) { |
| kvm_timer_update_irq(vcpu, false, vtimer); |
| if (static_branch_likely(&has_gic_active_state)) |
| set_timer_irq_phys_active(vtimer, false); |
| else |
| enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); |
| } |
| } |
| |
| void kvm_timer_sync_user(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| |
| if (unlikely(!timer->enabled)) |
| return; |
| |
| if (unlikely(!irqchip_in_kernel(vcpu->kvm))) |
| unmask_vtimer_irq_user(vcpu); |
| } |
| |
| int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct timer_map map; |
| |
| get_timer_map(vcpu, &map); |
| |
| /* |
| * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8 |
| * and to 0 for ARMv7. We provide an implementation that always |
| * resets the timer to be disabled and unmasked and is compliant with |
| * the ARMv7 architecture. |
| */ |
| for (int i = 0; i < nr_timers(vcpu); i++) |
| timer_set_ctl(vcpu_get_timer(vcpu, i), 0); |
| |
| /* |
| * A vcpu running at EL2 is in charge of the offset applied to |
| * the virtual timer, so use the physical VM offset, and point |
| * the vcpu offset to CNTVOFF_EL2. |
| */ |
| if (vcpu_has_nv(vcpu)) { |
| struct arch_timer_offset *offs = &vcpu_vtimer(vcpu)->offset; |
| |
| offs->vcpu_offset = &__vcpu_sys_reg(vcpu, CNTVOFF_EL2); |
| offs->vm_offset = &vcpu->kvm->arch.timer_data.poffset; |
| } |
| |
| if (timer->enabled) { |
| for (int i = 0; i < nr_timers(vcpu); i++) |
| kvm_timer_update_irq(vcpu, false, |
| vcpu_get_timer(vcpu, i)); |
| |
| if (irqchip_in_kernel(vcpu->kvm)) { |
| kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_vtimer)); |
| if (map.direct_ptimer) |
| kvm_vgic_reset_mapped_irq(vcpu, timer_irq(map.direct_ptimer)); |
| } |
| } |
| |
| if (map.emul_vtimer) |
| soft_timer_cancel(&map.emul_vtimer->hrtimer); |
| if (map.emul_ptimer) |
| soft_timer_cancel(&map.emul_ptimer->hrtimer); |
| |
| return 0; |
| } |
| |
| static void timer_context_init(struct kvm_vcpu *vcpu, int timerid) |
| { |
| struct arch_timer_context *ctxt = vcpu_get_timer(vcpu, timerid); |
| struct kvm *kvm = vcpu->kvm; |
| |
| ctxt->vcpu = vcpu; |
| |
| if (timerid == TIMER_VTIMER) |
| ctxt->offset.vm_offset = &kvm->arch.timer_data.voffset; |
| else |
| ctxt->offset.vm_offset = &kvm->arch.timer_data.poffset; |
| |
| hrtimer_init(&ctxt->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); |
| ctxt->hrtimer.function = kvm_hrtimer_expire; |
| |
| switch (timerid) { |
| case TIMER_PTIMER: |
| case TIMER_HPTIMER: |
| ctxt->host_timer_irq = host_ptimer_irq; |
| break; |
| case TIMER_VTIMER: |
| case TIMER_HVTIMER: |
| ctxt->host_timer_irq = host_vtimer_irq; |
| break; |
| } |
| } |
| |
| void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| |
| for (int i = 0; i < NR_KVM_TIMERS; i++) |
| timer_context_init(vcpu, i); |
| |
| /* Synchronize offsets across timers of a VM if not already provided */ |
| if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &vcpu->kvm->arch.flags)) { |
| timer_set_offset(vcpu_vtimer(vcpu), kvm_phys_timer_read()); |
| timer_set_offset(vcpu_ptimer(vcpu), 0); |
| } |
| |
| hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD); |
| timer->bg_timer.function = kvm_bg_timer_expire; |
| } |
| |
| void kvm_timer_init_vm(struct kvm *kvm) |
| { |
| for (int i = 0; i < NR_KVM_TIMERS; i++) |
| kvm->arch.timer_data.ppi[i] = default_ppi[i]; |
| } |
| |
| void kvm_timer_cpu_up(void) |
| { |
| enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); |
| if (host_ptimer_irq) |
| enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags); |
| } |
| |
| void kvm_timer_cpu_down(void) |
| { |
| disable_percpu_irq(host_vtimer_irq); |
| if (host_ptimer_irq) |
| disable_percpu_irq(host_ptimer_irq); |
| } |
| |
| int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) |
| { |
| struct arch_timer_context *timer; |
| |
| switch (regid) { |
| case KVM_REG_ARM_TIMER_CTL: |
| timer = vcpu_vtimer(vcpu); |
| kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); |
| break; |
| case KVM_REG_ARM_TIMER_CNT: |
| if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, |
| &vcpu->kvm->arch.flags)) { |
| timer = vcpu_vtimer(vcpu); |
| timer_set_offset(timer, kvm_phys_timer_read() - value); |
| } |
| break; |
| case KVM_REG_ARM_TIMER_CVAL: |
| timer = vcpu_vtimer(vcpu); |
| kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); |
| break; |
| case KVM_REG_ARM_PTIMER_CTL: |
| timer = vcpu_ptimer(vcpu); |
| kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value); |
| break; |
| case KVM_REG_ARM_PTIMER_CNT: |
| if (!test_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, |
| &vcpu->kvm->arch.flags)) { |
| timer = vcpu_ptimer(vcpu); |
| timer_set_offset(timer, kvm_phys_timer_read() - value); |
| } |
| break; |
| case KVM_REG_ARM_PTIMER_CVAL: |
| timer = vcpu_ptimer(vcpu); |
| kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value); |
| break; |
| |
| default: |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static u64 read_timer_ctl(struct arch_timer_context *timer) |
| { |
| /* |
| * Set ISTATUS bit if it's expired. |
| * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is |
| * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit |
| * regardless of ENABLE bit for our implementation convenience. |
| */ |
| u32 ctl = timer_get_ctl(timer); |
| |
| if (!kvm_timer_compute_delta(timer)) |
| ctl |= ARCH_TIMER_CTRL_IT_STAT; |
| |
| return ctl; |
| } |
| |
| u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid) |
| { |
| switch (regid) { |
| case KVM_REG_ARM_TIMER_CTL: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_vtimer(vcpu), TIMER_REG_CTL); |
| case KVM_REG_ARM_TIMER_CNT: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_vtimer(vcpu), TIMER_REG_CNT); |
| case KVM_REG_ARM_TIMER_CVAL: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_vtimer(vcpu), TIMER_REG_CVAL); |
| case KVM_REG_ARM_PTIMER_CTL: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_ptimer(vcpu), TIMER_REG_CTL); |
| case KVM_REG_ARM_PTIMER_CNT: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_ptimer(vcpu), TIMER_REG_CNT); |
| case KVM_REG_ARM_PTIMER_CVAL: |
| return kvm_arm_timer_read(vcpu, |
| vcpu_ptimer(vcpu), TIMER_REG_CVAL); |
| } |
| return (u64)-1; |
| } |
| |
| static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu, |
| struct arch_timer_context *timer, |
| enum kvm_arch_timer_regs treg) |
| { |
| u64 val; |
| |
| switch (treg) { |
| case TIMER_REG_TVAL: |
| val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer); |
| val = lower_32_bits(val); |
| break; |
| |
| case TIMER_REG_CTL: |
| val = read_timer_ctl(timer); |
| break; |
| |
| case TIMER_REG_CVAL: |
| val = timer_get_cval(timer); |
| break; |
| |
| case TIMER_REG_CNT: |
| val = kvm_phys_timer_read() - timer_get_offset(timer); |
| break; |
| |
| case TIMER_REG_VOFF: |
| val = *timer->offset.vcpu_offset; |
| break; |
| |
| default: |
| BUG(); |
| } |
| |
| return val; |
| } |
| |
| u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu, |
| enum kvm_arch_timers tmr, |
| enum kvm_arch_timer_regs treg) |
| { |
| struct arch_timer_context *timer; |
| struct timer_map map; |
| u64 val; |
| |
| get_timer_map(vcpu, &map); |
| timer = vcpu_get_timer(vcpu, tmr); |
| |
| if (timer == map.emul_vtimer || timer == map.emul_ptimer) |
| return kvm_arm_timer_read(vcpu, timer, treg); |
| |
| preempt_disable(); |
| timer_save_state(timer); |
| |
| val = kvm_arm_timer_read(vcpu, timer, treg); |
| |
| timer_restore_state(timer); |
| preempt_enable(); |
| |
| return val; |
| } |
| |
| static void kvm_arm_timer_write(struct kvm_vcpu *vcpu, |
| struct arch_timer_context *timer, |
| enum kvm_arch_timer_regs treg, |
| u64 val) |
| { |
| switch (treg) { |
| case TIMER_REG_TVAL: |
| timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val); |
| break; |
| |
| case TIMER_REG_CTL: |
| timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT); |
| break; |
| |
| case TIMER_REG_CVAL: |
| timer_set_cval(timer, val); |
| break; |
| |
| case TIMER_REG_VOFF: |
| *timer->offset.vcpu_offset = val; |
| break; |
| |
| default: |
| BUG(); |
| } |
| } |
| |
| void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu, |
| enum kvm_arch_timers tmr, |
| enum kvm_arch_timer_regs treg, |
| u64 val) |
| { |
| struct arch_timer_context *timer; |
| struct timer_map map; |
| |
| get_timer_map(vcpu, &map); |
| timer = vcpu_get_timer(vcpu, tmr); |
| if (timer == map.emul_vtimer || timer == map.emul_ptimer) { |
| soft_timer_cancel(&timer->hrtimer); |
| kvm_arm_timer_write(vcpu, timer, treg, val); |
| timer_emulate(timer); |
| } else { |
| preempt_disable(); |
| timer_save_state(timer); |
| kvm_arm_timer_write(vcpu, timer, treg, val); |
| timer_restore_state(timer); |
| preempt_enable(); |
| } |
| } |
| |
| static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) |
| { |
| if (vcpu) |
| irqd_set_forwarded_to_vcpu(d); |
| else |
| irqd_clr_forwarded_to_vcpu(d); |
| |
| return 0; |
| } |
| |
| static int timer_irq_set_irqchip_state(struct irq_data *d, |
| enum irqchip_irq_state which, bool val) |
| { |
| if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d)) |
| return irq_chip_set_parent_state(d, which, val); |
| |
| if (val) |
| irq_chip_mask_parent(d); |
| else |
| irq_chip_unmask_parent(d); |
| |
| return 0; |
| } |
| |
| static void timer_irq_eoi(struct irq_data *d) |
| { |
| if (!irqd_is_forwarded_to_vcpu(d)) |
| irq_chip_eoi_parent(d); |
| } |
| |
| static void timer_irq_ack(struct irq_data *d) |
| { |
| d = d->parent_data; |
| if (d->chip->irq_ack) |
| d->chip->irq_ack(d); |
| } |
| |
| static struct irq_chip timer_chip = { |
| .name = "KVM", |
| .irq_ack = timer_irq_ack, |
| .irq_mask = irq_chip_mask_parent, |
| .irq_unmask = irq_chip_unmask_parent, |
| .irq_eoi = timer_irq_eoi, |
| .irq_set_type = irq_chip_set_type_parent, |
| .irq_set_vcpu_affinity = timer_irq_set_vcpu_affinity, |
| .irq_set_irqchip_state = timer_irq_set_irqchip_state, |
| }; |
| |
| static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *arg) |
| { |
| irq_hw_number_t hwirq = (uintptr_t)arg; |
| |
| return irq_domain_set_hwirq_and_chip(domain, virq, hwirq, |
| &timer_chip, NULL); |
| } |
| |
| static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| } |
| |
| static const struct irq_domain_ops timer_domain_ops = { |
| .alloc = timer_irq_domain_alloc, |
| .free = timer_irq_domain_free, |
| }; |
| |
| static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags) |
| { |
| *flags = irq_get_trigger_type(virq); |
| if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) { |
| kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n", |
| virq); |
| *flags = IRQF_TRIGGER_LOW; |
| } |
| } |
| |
| static int kvm_irq_init(struct arch_timer_kvm_info *info) |
| { |
| struct irq_domain *domain = NULL; |
| |
| if (info->virtual_irq <= 0) { |
| kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n", |
| info->virtual_irq); |
| return -ENODEV; |
| } |
| |
| host_vtimer_irq = info->virtual_irq; |
| kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags); |
| |
| if (kvm_vgic_global_state.no_hw_deactivation) { |
| struct fwnode_handle *fwnode; |
| struct irq_data *data; |
| |
| fwnode = irq_domain_alloc_named_fwnode("kvm-timer"); |
| if (!fwnode) |
| return -ENOMEM; |
| |
| /* Assume both vtimer and ptimer in the same parent */ |
| data = irq_get_irq_data(host_vtimer_irq); |
| domain = irq_domain_create_hierarchy(data->domain, 0, |
| NR_KVM_TIMERS, fwnode, |
| &timer_domain_ops, NULL); |
| if (!domain) { |
| irq_domain_free_fwnode(fwnode); |
| return -ENOMEM; |
| } |
| |
| arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE; |
| WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq, |
| (void *)TIMER_VTIMER)); |
| } |
| |
| if (info->physical_irq > 0) { |
| host_ptimer_irq = info->physical_irq; |
| kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags); |
| |
| if (domain) |
| WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq, |
| (void *)TIMER_PTIMER)); |
| } |
| |
| return 0; |
| } |
| |
| int __init kvm_timer_hyp_init(bool has_gic) |
| { |
| struct arch_timer_kvm_info *info; |
| int err; |
| |
| info = arch_timer_get_kvm_info(); |
| timecounter = &info->timecounter; |
| |
| if (!timecounter->cc) { |
| kvm_err("kvm_arch_timer: uninitialized timecounter\n"); |
| return -ENODEV; |
| } |
| |
| err = kvm_irq_init(info); |
| if (err) |
| return err; |
| |
| /* First, do the virtual EL1 timer irq */ |
| |
| err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler, |
| "kvm guest vtimer", kvm_get_running_vcpus()); |
| if (err) { |
| kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n", |
| host_vtimer_irq, err); |
| return err; |
| } |
| |
| if (has_gic) { |
| err = irq_set_vcpu_affinity(host_vtimer_irq, |
| kvm_get_running_vcpus()); |
| if (err) { |
| kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); |
| goto out_free_irq; |
| } |
| |
| static_branch_enable(&has_gic_active_state); |
| } |
| |
| kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq); |
| |
| /* Now let's do the physical EL1 timer irq */ |
| |
| if (info->physical_irq > 0) { |
| err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler, |
| "kvm guest ptimer", kvm_get_running_vcpus()); |
| if (err) { |
| kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n", |
| host_ptimer_irq, err); |
| return err; |
| } |
| |
| if (has_gic) { |
| err = irq_set_vcpu_affinity(host_ptimer_irq, |
| kvm_get_running_vcpus()); |
| if (err) { |
| kvm_err("kvm_arch_timer: error setting vcpu affinity\n"); |
| goto out_free_irq; |
| } |
| } |
| |
| kvm_debug("physical timer IRQ%d\n", host_ptimer_irq); |
| } else if (has_vhe()) { |
| kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n", |
| info->physical_irq); |
| err = -ENODEV; |
| goto out_free_irq; |
| } |
| |
| return 0; |
| out_free_irq: |
| free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus()); |
| return err; |
| } |
| |
| void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| |
| soft_timer_cancel(&timer->bg_timer); |
| } |
| |
| static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu) |
| { |
| u32 ppis = 0; |
| bool valid; |
| |
| mutex_lock(&vcpu->kvm->arch.config_lock); |
| |
| for (int i = 0; i < nr_timers(vcpu); i++) { |
| struct arch_timer_context *ctx; |
| int irq; |
| |
| ctx = vcpu_get_timer(vcpu, i); |
| irq = timer_irq(ctx); |
| if (kvm_vgic_set_owner(vcpu, irq, ctx)) |
| break; |
| |
| /* |
| * We know by construction that we only have PPIs, so |
| * all values are less than 32. |
| */ |
| ppis |= BIT(irq); |
| } |
| |
| valid = hweight32(ppis) == nr_timers(vcpu); |
| |
| if (valid) |
| set_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, &vcpu->kvm->arch.flags); |
| |
| mutex_unlock(&vcpu->kvm->arch.config_lock); |
| |
| return valid; |
| } |
| |
| static bool kvm_arch_timer_get_input_level(int vintid) |
| { |
| struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); |
| |
| if (WARN(!vcpu, "No vcpu context!\n")) |
| return false; |
| |
| for (int i = 0; i < nr_timers(vcpu); i++) { |
| struct arch_timer_context *ctx; |
| |
| ctx = vcpu_get_timer(vcpu, i); |
| if (timer_irq(ctx) == vintid) |
| return kvm_timer_should_fire(ctx); |
| } |
| |
| /* A timer IRQ has fired, but no matching timer was found? */ |
| WARN_RATELIMIT(1, "timer INTID%d unknown\n", vintid); |
| |
| return false; |
| } |
| |
| int kvm_timer_enable(struct kvm_vcpu *vcpu) |
| { |
| struct arch_timer_cpu *timer = vcpu_timer(vcpu); |
| struct timer_map map; |
| int ret; |
| |
| if (timer->enabled) |
| return 0; |
| |
| /* Without a VGIC we do not map virtual IRQs to physical IRQs */ |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| goto no_vgic; |
| |
| /* |
| * At this stage, we have the guarantee that the vgic is both |
| * available and initialized. |
| */ |
| if (!timer_irqs_are_valid(vcpu)) { |
| kvm_debug("incorrectly configured timer irqs\n"); |
| return -EINVAL; |
| } |
| |
| get_timer_map(vcpu, &map); |
| |
| ret = kvm_vgic_map_phys_irq(vcpu, |
| map.direct_vtimer->host_timer_irq, |
| timer_irq(map.direct_vtimer), |
| &arch_timer_irq_ops); |
| if (ret) |
| return ret; |
| |
| if (map.direct_ptimer) { |
| ret = kvm_vgic_map_phys_irq(vcpu, |
| map.direct_ptimer->host_timer_irq, |
| timer_irq(map.direct_ptimer), |
| &arch_timer_irq_ops); |
| } |
| |
| if (ret) |
| return ret; |
| |
| no_vgic: |
| timer->enabled = 1; |
| return 0; |
| } |
| |
| /* If we have CNTPOFF, permanently set ECV to enable it */ |
| void kvm_timer_init_vhe(void) |
| { |
| if (cpus_have_final_cap(ARM64_HAS_ECV_CNTPOFF)) |
| sysreg_clear_set(cntkctl_el1, 0, CNTHCTL_ECV); |
| } |
| |
| int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| { |
| int __user *uaddr = (int __user *)(long)attr->addr; |
| int irq, idx, ret = 0; |
| |
| if (!irqchip_in_kernel(vcpu->kvm)) |
| return -EINVAL; |
| |
| if (get_user(irq, uaddr)) |
| return -EFAULT; |
| |
| if (!(irq_is_ppi(irq))) |
| return -EINVAL; |
| |
| mutex_lock(&vcpu->kvm->arch.config_lock); |
| |
| if (test_bit(KVM_ARCH_FLAG_TIMER_PPIS_IMMUTABLE, |
| &vcpu->kvm->arch.flags)) { |
| ret = -EBUSY; |
| goto out; |
| } |
| |
| switch (attr->attr) { |
| case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: |
| idx = TIMER_VTIMER; |
| break; |
| case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: |
| idx = TIMER_PTIMER; |
| break; |
| case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: |
| idx = TIMER_HVTIMER; |
| break; |
| case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: |
| idx = TIMER_HPTIMER; |
| break; |
| default: |
| ret = -ENXIO; |
| goto out; |
| } |
| |
| /* |
| * We cannot validate the IRQ unicity before we run, so take it at |
| * face value. The verdict will be given on first vcpu run, for each |
| * vcpu. Yes this is late. Blame it on the stupid API. |
| */ |
| vcpu->kvm->arch.timer_data.ppi[idx] = irq; |
| |
| out: |
| mutex_unlock(&vcpu->kvm->arch.config_lock); |
| return ret; |
| } |
| |
| int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| { |
| int __user *uaddr = (int __user *)(long)attr->addr; |
| struct arch_timer_context *timer; |
| int irq; |
| |
| switch (attr->attr) { |
| case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: |
| timer = vcpu_vtimer(vcpu); |
| break; |
| case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: |
| timer = vcpu_ptimer(vcpu); |
| break; |
| case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: |
| timer = vcpu_hvtimer(vcpu); |
| break; |
| case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: |
| timer = vcpu_hptimer(vcpu); |
| break; |
| default: |
| return -ENXIO; |
| } |
| |
| irq = timer_irq(timer); |
| return put_user(irq, uaddr); |
| } |
| |
| int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) |
| { |
| switch (attr->attr) { |
| case KVM_ARM_VCPU_TIMER_IRQ_VTIMER: |
| case KVM_ARM_VCPU_TIMER_IRQ_PTIMER: |
| case KVM_ARM_VCPU_TIMER_IRQ_HVTIMER: |
| case KVM_ARM_VCPU_TIMER_IRQ_HPTIMER: |
| return 0; |
| } |
| |
| return -ENXIO; |
| } |
| |
| int kvm_vm_ioctl_set_counter_offset(struct kvm *kvm, |
| struct kvm_arm_counter_offset *offset) |
| { |
| int ret = 0; |
| |
| if (offset->reserved) |
| return -EINVAL; |
| |
| mutex_lock(&kvm->lock); |
| |
| if (lock_all_vcpus(kvm)) { |
| set_bit(KVM_ARCH_FLAG_VM_COUNTER_OFFSET, &kvm->arch.flags); |
| |
| /* |
| * If userspace decides to set the offset using this |
| * API rather than merely restoring the counter |
| * values, the offset applies to both the virtual and |
| * physical views. |
| */ |
| kvm->arch.timer_data.voffset = offset->counter_offset; |
| kvm->arch.timer_data.poffset = offset->counter_offset; |
| |
| unlock_all_vcpus(kvm); |
| } else { |
| ret = -EBUSY; |
| } |
| |
| mutex_unlock(&kvm->lock); |
| |
| return ret; |
| } |