blob: 40828616f723ea3e7515278ce45c4f2f72823ad8 [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/*
* R9A06G032 clock driver
*
* Copyright (C) 2018 Renesas Electronics Europe Limited
*
* Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_clock.h>
#include <linux/pm_domain.h>
#include <linux/slab.h>
#include <linux/soc/renesas/r9a06g032-sysctrl.h>
#include <linux/spinlock.h>
#include <dt-bindings/clock/r9a06g032-sysctrl.h>
#define R9A06G032_SYSCTRL_USB 0x00
#define R9A06G032_SYSCTRL_USB_H2MODE (1<<1)
#define R9A06G032_SYSCTRL_DMAMUX 0xA0
/**
* struct regbit - describe one bit in a register
* @reg: offset of register relative to base address,
* expressed in units of 32-bit words (not bytes),
* @bit: which bit (0 to 31) in the register
*
* This structure is used to compactly encode the location
* of a single bit in a register. Five bits are needed to
* encode the bit number. With uint16_t data type, this
* leaves 11 bits to encode a register offset up to 2047.
*
* Since registers are aligned on 32-bit boundaries, the
* offset will be specified in 32-bit words rather than bytes.
* This allows encoding an offset up to 0x1FFC (8188) bytes.
*
* Helper macro RB() takes care of converting the register
* offset from bytes to 32-bit words.
*/
struct regbit {
u16 bit:5;
u16 reg:11;
};
#define RB(_reg, _bit) ((struct regbit) { \
.reg = (_reg) / 4, \
.bit = (_bit) \
})
/**
* struct r9a06g032_gate - clock-related control bits
* @gate: clock enable/disable
* @reset: clock module reset (active low)
* @ready: enables NoC forwarding of read/write requests to device,
* (eg. device is ready to handle read/write requests)
* @midle: request to idle the NoC interconnect
*
* Each of these fields describes a single bit in a register,
* which controls some aspect of clock gating. The @gate field
* is mandatory, this one enables/disables the clock. The
* other fields are optional, with zero indicating "not used".
*
* In most cases there is a @reset bit which needs to be
* de-asserted to bring the module out of reset.
*
* Modules may also need to signal when they are @ready to
* handle requests (read/writes) from the NoC interconnect.
*
* Similarly, the @midle bit is used to idle the master.
*/
struct r9a06g032_gate {
struct regbit gate, reset, ready, midle;
/* Unused fields omitted to save space */
/* struct regbit scon, mirack, mistat */;
};
enum gate_type {
K_GATE = 0, /* gate which enable/disable */
K_FFC, /* fixed factor clock */
K_DIV, /* divisor */
K_BITSEL, /* special for UARTs */
K_DUALGATE /* special for UARTs */
};
/**
* struct r9a06g032_clkdesc - describe a single clock
* @name: string describing this clock
* @managed: boolean indicating if this clock should be
* started/stopped as part of power management
* @type: see enum @gate_type
* @index: the ID of this clock element
* @source: the ID+1 of the parent clock element.
* Root clock uses ID of ~0 (PARENT_ID);
* @gate: clock enable/disable
* @div_min: smallest permitted clock divider
* @div_max: largest permitted clock divider
* @reg: clock divider register offset, in 32-bit words
* @div_table: optional list of fixed clock divider values;
* must be in ascending order, zero for unused
* @div: divisor for fixed-factor clock
* @mul: multiplier for fixed-factor clock
* @group: UART group, 0=UART0/1/2, 1=UART3/4/5/6/7
* @sel: select either g1/r1 or g2/r2 as clock source
* @g1: 1st source gate (clock enable/disable)
* @r1: 1st source reset (module reset)
* @g2: 2nd source gate (clock enable/disable)
* @r2: 2nd source reset (module reset)
*
* Describes a single element in the clock tree hierarchy.
* As there are quite a large number of clock elements, this
* structure is packed tightly to conserve space.
*/
struct r9a06g032_clkdesc {
const char *name;
uint32_t managed:1;
enum gate_type type:3;
uint32_t index:8;
uint32_t source:8; /* source index + 1 (0 == none) */
union {
/* type = K_GATE */
struct r9a06g032_gate gate;
/* type = K_DIV */
struct {
unsigned int div_min:10, div_max:10, reg:10;
u16 div_table[4];
};
/* type = K_FFC */
struct {
u16 div, mul;
};
/* type = K_DUALGATE */
struct {
uint16_t group:1;
struct regbit sel, g1, r1, g2, r2;
} dual;
};
};
/*
* The last three arguments are not currently used,
* but are kept in the r9a06g032_clocks table below.
*/
#define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) { \
.gate = _clk, \
.reset = _rst, \
.ready = _rdy, \
.midle = _midle, \
/* .scon = _scon, */ \
/* .mirack = _mirack, */ \
/* .mistat = _mistat */ \
}
#define D_GATE(_idx, _n, _src, ...) { \
.type = K_GATE, \
.index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, \
.name = _n, \
.gate = I_GATE(__VA_ARGS__) \
}
#define D_MODULE(_idx, _n, _src, ...) { \
.type = K_GATE, \
.index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, \
.name = _n, \
.managed = 1, \
.gate = I_GATE(__VA_ARGS__) \
}
#define D_ROOT(_idx, _n, _mul, _div) { \
.type = K_FFC, \
.index = R9A06G032_##_idx, \
.name = _n, \
.div = _div, \
.mul = _mul \
}
#define D_FFC(_idx, _n, _src, _div) { \
.type = K_FFC, \
.index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, \
.name = _n, \
.div = _div, \
.mul = 1 \
}
#define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) { \
.type = K_DIV, \
.index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, \
.name = _n, \
.reg = _reg, \
.div_min = _min, \
.div_max = _max, \
.div_table = { __VA_ARGS__ } \
}
#define D_UGATE(_idx, _n, _src, _g, _g1, _r1, _g2, _r2) { \
.type = K_DUALGATE, \
.index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, \
.name = _n, \
.dual = { \
.group = _g, \
.g1 = _g1, \
.r1 = _r1, \
.g2 = _g2, \
.r2 = _r2 \
}, \
}
/* Internal clock IDs */
#define R9A06G032_CLKOUT 0
#define R9A06G032_CLKOUT_D10 2
#define R9A06G032_CLKOUT_D16 3
#define R9A06G032_CLKOUT_D160 4
#define R9A06G032_CLKOUT_D1OR2 5
#define R9A06G032_CLKOUT_D20 6
#define R9A06G032_CLKOUT_D40 7
#define R9A06G032_CLKOUT_D5 8
#define R9A06G032_CLKOUT_D8 9
#define R9A06G032_DIV_ADC 10
#define R9A06G032_DIV_I2C 11
#define R9A06G032_DIV_NAND 12
#define R9A06G032_DIV_P1_PG 13
#define R9A06G032_DIV_P2_PG 14
#define R9A06G032_DIV_P3_PG 15
#define R9A06G032_DIV_P4_PG 16
#define R9A06G032_DIV_P5_PG 17
#define R9A06G032_DIV_P6_PG 18
#define R9A06G032_DIV_QSPI0 19
#define R9A06G032_DIV_QSPI1 20
#define R9A06G032_DIV_REF_SYNC 21
#define R9A06G032_DIV_SDIO0 22
#define R9A06G032_DIV_SDIO1 23
#define R9A06G032_DIV_SWITCH 24
#define R9A06G032_DIV_UART 25
#define R9A06G032_DIV_MOTOR 64
#define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78
#define R9A06G032_CLK_ECAT100_D4 79
#define R9A06G032_CLK_HSR100_D2 80
#define R9A06G032_CLK_REF_SYNC_D4 81
#define R9A06G032_CLK_REF_SYNC_D8 82
#define R9A06G032_CLK_SERCOS100_D2 83
#define R9A06G032_DIV_CA7 84
#define R9A06G032_UART_GROUP_012 154
#define R9A06G032_UART_GROUP_34567 155
#define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1)
static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
D_ROOT(CLKOUT, "clkout", 25, 1),
D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, RB(0xe8, 9),
RB(0xe8, 10), RB(0xe8, 11), RB(0x00, 0),
RB(0x15c, 3), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, RB(0xe8, 12),
RB(0xe8, 13), RB(0xe8, 14), RB(0x00, 0),
RB(0x15c, 4), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, RB(0xe8, 15),
RB(0xe8, 16), RB(0xe8, 17), RB(0x00, 0),
RB(0x15c, 5), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, RB(0xe8, 18),
RB(0xe8, 19), RB(0xe8, 20), RB(0x00, 0),
RB(0x15c, 6), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, RB(0xe8, 21),
RB(0xe8, 22), RB(0xe8, 23), RB(0x00, 0),
RB(0x15c, 7), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_ADC, "clk_adc", DIV_ADC, RB(0x3c, 10),
RB(0x3c, 11), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, RB(0x80, 5),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, RB(0x90, 3),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, RB(0x3c, 6),
RB(0x3c, 7), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, RB(0x3c, 8),
RB(0x3c, 9), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, RB(0x68, 2),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_NAND, "clk_nand", DIV_NAND, RB(0x50, 4),
RB(0x50, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, RB(0xec, 20),
RB(0xec, 21), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, RB(0x10c, 2),
RB(0x10c, 3), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, RB(0x10c, 4),
RB(0x10c, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, RB(0x10c, 6),
RB(0x10c, 7), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, RB(0x104, 4),
RB(0x104, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, RB(0x104, 6),
RB(0x104, 7), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, RB(0x114, 0),
RB(0x114, 1), RB(0x114, 2), RB(0x00, 0),
RB(0x16c, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, RB(0x114, 3),
RB(0x114, 4), RB(0x114, 5), RB(0x00, 0),
RB(0x16c, 1), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, RB(0x114, 6),
RB(0x114, 7), RB(0x114, 8), RB(0x00, 0),
RB(0x16c, 2), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, RB(0x114, 9),
RB(0x114, 10), RB(0x114, 11), RB(0x00, 0),
RB(0x16c, 3), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, RB(0x1c, 6),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, RB(0x54, 4),
RB(0x54, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, RB(0x90, 4),
RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, RB(0x68, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, RB(0x68, 1),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, RB(0x0c, 4),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, RB(0xc8, 4),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, RB(0x84, 5),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, RB(0x10c, 0),
RB(0x10c, 1), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, RB(0xfc, 0),
RB(0xfc, 1), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, RB(0xfc, 2),
RB(0xfc, 3), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, RB(0xfc, 4),
RB(0xfc, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, RB(0xfc, 6),
RB(0xfc, 7), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, RB(0x104, 0),
RB(0x104, 1), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, RB(0x104, 2),
RB(0x104, 3), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, RB(0x130, 2),
RB(0x130, 3), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, RB(0x80, 0),
RB(0x80, 1), RB(0x00, 0), RB(0x80, 2),
RB(0x00, 0), RB(0x88, 0), RB(0x88, 1)),
D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, RB(0xe8, 0),
RB(0xe8, 1), RB(0xe8, 2), RB(0x00, 0),
RB(0x15c, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, RB(0x84, 0),
RB(0x84, 2), RB(0x00, 0), RB(0x84, 1),
RB(0x00, 0), RB(0x8c, 0), RB(0x8c, 1)),
D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, RB(0x118, 3),
RB(0x118, 4), RB(0x118, 5), RB(0x00, 0),
RB(0x168, 1), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, RB(0x118, 6),
RB(0x118, 7), RB(0x118, 8), RB(0x00, 0),
RB(0x168, 2), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, RB(0x118, 9),
RB(0x118, 10), RB(0x118, 11), RB(0x00, 0),
RB(0x168, 3), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, RB(0xe8, 3),
RB(0xe8, 4), RB(0xe8, 5), RB(0x00, 0),
RB(0x15c, 1), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, RB(0xe8, 6),
RB(0xe8, 7), RB(0xe8, 8), RB(0x00, 0),
RB(0x15c, 2), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, RB(0x1c, 3),
RB(0x00, 0), RB(0x00, 0), RB(0x1c, 4),
RB(0x00, 0), RB(0x20, 2), RB(0x20, 3)),
D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, RB(0x1c, 0),
RB(0x1c, 1), RB(0x00, 0), RB(0x1c, 2),
RB(0x00, 0), RB(0x20, 0), RB(0x20, 1)),
D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, RB(0x1c, 5),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, RB(0xf0, 12),
RB(0xf0, 13), RB(0x00, 0), RB(0xf0, 14),
RB(0x00, 0), RB(0x160, 4), RB(0x160, 5)),
D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, RB(0xf0, 9),
RB(0xf0, 10), RB(0xf0, 11), RB(0x00, 0),
RB(0x160, 3), RB(0x00, 0), RB(0x00, 0)),
D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, RB(0xf0, 3),
RB(0xf0, 4), RB(0xf0, 5), RB(0x00, 0),
RB(0x160, 1), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, RB(0xf0, 6),
RB(0xf0, 7), RB(0xf0, 8), RB(0x00, 0),
RB(0x160, 2), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, RB(0x3c, 15),
RB(0x3c, 16), RB(0x3c, 17), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, RB(0x3c, 12),
RB(0x3c, 13), RB(0x3c, 14), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, RB(0xf0, 0),
RB(0xf0, 1), RB(0xf0, 2), RB(0x00, 0),
RB(0x160, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, RB(0x3c, 0),
RB(0x3c, 1), RB(0x3c, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, RB(0x3c, 3),
RB(0x3c, 4), RB(0x3c, 5), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, RB(0x174, 0),
RB(0x174, 1), RB(0x00, 0), RB(0x174, 2),
RB(0x00, 0), RB(0x178, 0), RB(0x178, 1)),
D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, RB(0x64, 3),
RB(0x64, 4), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, RB(0x80, 3),
RB(0x80, 4), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, RB(0x90, 4),
RB(0x90, 5), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, RB(0x18c, 0),
RB(0x18c, 1), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, RB(0x84, 4),
RB(0x84, 3), RB(0x00, 0), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, RB(0x34, 15),
RB(0x34, 16), RB(0x34, 17), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, RB(0x184, 0),
RB(0x184, 1), RB(0x184, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, RB(0x24, 3),
RB(0x24, 4), RB(0x24, 5), RB(0x00, 0),
RB(0x28, 2), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, RB(0x24, 0),
RB(0x24, 1), RB(0x00, 0), RB(0x24, 2),
RB(0x00, 0), RB(0x28, 0), RB(0x28, 1)),
D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, RB(0x64, 0),
RB(0x64, 2), RB(0x00, 0), RB(0x64, 1),
RB(0x00, 0), RB(0x74, 0), RB(0x74, 1)),
D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, RB(0x4c, 0),
RB(0x4c, 1), RB(0x4c, 2), RB(0x4c, 3),
RB(0x58, 0), RB(0x58, 1), RB(0x58, 2)),
D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, RB(0x4c, 4),
RB(0x4c, 5), RB(0x4c, 6), RB(0x4c, 7),
RB(0x58, 3), RB(0x58, 4), RB(0x58, 5)),
D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, RB(0x6c, 0),
RB(0x6c, 1), RB(0x6c, 2), RB(0x6c, 3),
RB(0x78, 0), RB(0x78, 1), RB(0x78, 2)),
D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, RB(0x70, 0),
RB(0x70, 1), RB(0x70, 2), RB(0x70, 3),
RB(0x7c, 0), RB(0x7c, 1), RB(0x7c, 2)),
D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, RB(0x40, 18),
RB(0x40, 19), RB(0x40, 20), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, RB(0x40, 21),
RB(0x40, 22), RB(0x40, 23), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, RB(0x44, 9),
RB(0x44, 10), RB(0x44, 11), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, RB(0x90, 0),
RB(0x90, 2), RB(0x00, 0), RB(0x90, 1),
RB(0x00, 0), RB(0x98, 0), RB(0x98, 1)),
D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, RB(0x34, 9),
RB(0x34, 10), RB(0x34, 11), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, RB(0x34, 12),
RB(0x34, 13), RB(0x34, 14), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, RB(0xf4, 0),
RB(0xf4, 1), RB(0xf4, 2), RB(0x00, 0),
RB(0x164, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, RB(0x2c, 4),
RB(0x2c, 5), RB(0x2c, 6), RB(0x00, 0),
RB(0x30, 3), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, RB(0x2c, 0),
RB(0x2c, 1), RB(0x2c, 2), RB(0x2c, 3),
RB(0x30, 0), RB(0x30, 1), RB(0x30, 2)),
D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, RB(0x50, 0),
RB(0x50, 1), RB(0x50, 2), RB(0x50, 3),
RB(0x5c, 0), RB(0x5c, 1), RB(0x5c, 2)),
D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, RB(0xf4, 12),
RB(0xf4, 13), RB(0x00, 0), RB(0xf4, 14),
RB(0x00, 0), RB(0x164, 4), RB(0x164, 5)),
D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, RB(0x44, 12),
RB(0x44, 13), RB(0x44, 14), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, RB(0x44, 15),
RB(0x44, 16), RB(0x44, 17), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, RB(0xf4, 6),
RB(0xf4, 7), RB(0xf4, 8), RB(0x00, 0),
RB(0x164, 2), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, RB(0xf4, 9),
RB(0xf4, 10), RB(0xf4, 11), RB(0x00, 0),
RB(0x164, 3), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, RB(0x54, 0),
RB(0x54, 1), RB(0x54, 2), RB(0x54, 3),
RB(0x60, 0), RB(0x60, 1), RB(0x60, 2)),
D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, RB(0x90, 0),
RB(0x90, 1), RB(0x90, 2), RB(0x90, 3),
RB(0x98, 0), RB(0x98, 1), RB(0x98, 2)),
D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, RB(0x154, 0),
RB(0x154, 1), RB(0x154, 2), RB(0x00, 0),
RB(0x170, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, RB(0x140, 0),
RB(0x140, 3), RB(0x00, 0), RB(0x140, 2),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, RB(0x0c, 0),
RB(0x0c, 1), RB(0x0c, 2), RB(0x0c, 3),
RB(0x10, 0), RB(0x10, 1), RB(0x10, 2)),
D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, RB(0xc8, 0),
RB(0xc8, 1), RB(0xc8, 2), RB(0xc8, 3),
RB(0xcc, 0), RB(0xcc, 1), RB(0xcc, 2)),
D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, RB(0xf4, 3),
RB(0xf4, 4), RB(0xf4, 5), RB(0x00, 0),
RB(0x164, 1), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, RB(0x40, 0),
RB(0x40, 1), RB(0x40, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, RB(0x40, 3),
RB(0x40, 4), RB(0x40, 5), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, RB(0x40, 6),
RB(0x40, 7), RB(0x40, 8), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, RB(0x40, 9),
RB(0x40, 10), RB(0x40, 11), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, RB(0x40, 12),
RB(0x40, 13), RB(0x40, 14), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, RB(0x40, 15),
RB(0x40, 16), RB(0x40, 17), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, RB(0x130, 0),
RB(0x00, 0), RB(0x130, 1), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, RB(0x188, 0),
RB(0x188, 1), RB(0x188, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, RB(0x34, 0),
RB(0x34, 1), RB(0x34, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, RB(0x34, 3),
RB(0x34, 4), RB(0x34, 5), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, RB(0x34, 6),
RB(0x34, 7), RB(0x34, 8), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, RB(0x40, 24),
RB(0x40, 25), RB(0x40, 26), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, RB(0x40, 27),
RB(0x40, 28), RB(0x40, 29), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, RB(0x44, 0),
RB(0x44, 1), RB(0x44, 2), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, RB(0x44, 3),
RB(0x44, 4), RB(0x44, 5), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, RB(0x44, 6),
RB(0x44, 7), RB(0x44, 8), RB(0x00, 0),
RB(0x00, 0), RB(0x00, 0), RB(0x00, 0)),
/*
* These are not hardware clocks, but are needed to handle the special
* case where we have a 'selector bit' that doesn't just change the
* parent for a clock, but also the gate it's supposed to use.
*/
{
.index = R9A06G032_UART_GROUP_012,
.name = "uart_group_012",
.type = K_BITSEL,
.source = 1 + R9A06G032_DIV_UART,
/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
.dual.sel = RB(0x34, 30),
.dual.group = 0,
},
{
.index = R9A06G032_UART_GROUP_34567,
.name = "uart_group_34567",
.type = K_BITSEL,
.source = 1 + R9A06G032_DIV_P2_PG,
/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
.dual.sel = RB(0xec, 24),
.dual.group = 1,
},
D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0,
RB(0x34, 18), RB(0x34, 19), RB(0x34, 20), RB(0x34, 21)),
D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0,
RB(0x34, 22), RB(0x34, 23), RB(0x34, 24), RB(0x34, 25)),
D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0,
RB(0x34, 26), RB(0x34, 27), RB(0x34, 28), RB(0x34, 29)),
D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1,
RB(0xec, 0), RB(0xec, 1), RB(0xec, 2), RB(0xec, 3)),
D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1,
RB(0xec, 4), RB(0xec, 5), RB(0xec, 6), RB(0xec, 7)),
D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1,
RB(0xec, 8), RB(0xec, 9), RB(0xec, 10), RB(0xec, 11)),
D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1,
RB(0xec, 12), RB(0xec, 13), RB(0xec, 14), RB(0xec, 15)),
D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1,
RB(0xec, 16), RB(0xec, 17), RB(0xec, 18), RB(0xec, 19)),
};
struct r9a06g032_priv {
struct clk_onecell_data data;
spinlock_t lock; /* protects concurrent access to gates */
void __iomem *reg;
};
static struct r9a06g032_priv *sysctrl_priv;
/* Exported helper to access the DMAMUX register */
int r9a06g032_sysctrl_set_dmamux(u32 mask, u32 val)
{
unsigned long flags;
u32 dmamux;
if (!sysctrl_priv)
return -EPROBE_DEFER;
spin_lock_irqsave(&sysctrl_priv->lock, flags);
dmamux = readl(sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
dmamux &= ~mask;
dmamux |= val & mask;
writel(dmamux, sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
spin_unlock_irqrestore(&sysctrl_priv->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(r9a06g032_sysctrl_set_dmamux);
static void clk_rdesc_set(struct r9a06g032_priv *clocks,
struct regbit rb, unsigned int on)
{
u32 __iomem *reg = clocks->reg + (rb.reg * 4);
u32 val;
if (!rb.reg && !rb.bit)
return;
val = readl(reg);
val = (val & ~BIT(rb.bit)) | ((!!on) << rb.bit);
writel(val, reg);
}
static int clk_rdesc_get(struct r9a06g032_priv *clocks, struct regbit rb)
{
u32 __iomem *reg = clocks->reg + (rb.reg * 4);
u32 val = readl(reg);
return !!(val & BIT(rb.bit));
}
/*
* This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
* clock gate framework as the gates on the R9A06G032 have a special enabling
* sequence, therefore we use this little proxy.
*/
struct r9a06g032_clk_gate {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
struct r9a06g032_gate gate;
};
#define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
static int create_add_module_clock(struct of_phandle_args *clkspec,
struct device *dev)
{
struct clk *clk;
int error;
clk = of_clk_get_from_provider(clkspec);
if (IS_ERR(clk))
return PTR_ERR(clk);
error = pm_clk_create(dev);
if (error) {
clk_put(clk);
return error;
}
error = pm_clk_add_clk(dev, clk);
if (error) {
pm_clk_destroy(dev);
clk_put(clk);
}
return error;
}
static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
struct device *dev)
{
struct device_node *np = dev->of_node;
struct of_phandle_args clkspec;
int i = 0;
int error;
int index;
while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i++,
&clkspec)) {
if (clkspec.np != pd->dev.of_node)
continue;
index = clkspec.args[0];
if (index < R9A06G032_CLOCK_COUNT &&
r9a06g032_clocks[index].managed) {
error = create_add_module_clock(&clkspec, dev);
of_node_put(clkspec.np);
if (error)
return error;
}
}
return 0;
}
static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
{
if (!pm_clk_no_clocks(dev))
pm_clk_destroy(dev);
}
static int r9a06g032_add_clk_domain(struct device *dev)
{
struct device_node *np = dev->of_node;
struct generic_pm_domain *pd;
pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
if (!pd)
return -ENOMEM;
pd->name = np->name;
pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
GENPD_FLAG_ACTIVE_WAKEUP;
pd->attach_dev = r9a06g032_attach_dev;
pd->detach_dev = r9a06g032_detach_dev;
pm_genpd_init(pd, &pm_domain_always_on_gov, false);
of_genpd_add_provider_simple(np, pd);
return 0;
}
static void
r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
struct r9a06g032_gate *g, int on)
{
unsigned long flags;
WARN_ON(!g->gate.reg && !g->gate.bit);
spin_lock_irqsave(&clocks->lock, flags);
clk_rdesc_set(clocks, g->gate, on);
/* De-assert reset */
clk_rdesc_set(clocks, g->reset, 1);
spin_unlock_irqrestore(&clocks->lock, flags);
/* Hardware manual recommends 5us delay after enabling clock & reset */
udelay(5);
/* If the peripheral is memory mapped (i.e. an AXI slave), there is an
* associated SLVRDY bit in the System Controller that needs to be set
* so that the FlexWAY bus fabric passes on the read/write requests.
*/
spin_lock_irqsave(&clocks->lock, flags);
clk_rdesc_set(clocks, g->ready, on);
/* Clear 'Master Idle Request' bit */
clk_rdesc_set(clocks, g->midle, !on);
spin_unlock_irqrestore(&clocks->lock, flags);
/* Note: We don't wait for FlexWAY Socket Connection signal */
}
static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
{
struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
return 0;
}
static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
{
struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
}
static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
{
struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
/* if clock is in reset, the gate might be on, and still not 'be' on */
if (g->gate.reset.reg && !clk_rdesc_get(g->clocks, g->gate.reset))
return 0;
return clk_rdesc_get(g->clocks, g->gate.gate);
}
static const struct clk_ops r9a06g032_clk_gate_ops = {
.enable = r9a06g032_clk_gate_enable,
.disable = r9a06g032_clk_gate_disable,
.is_enabled = r9a06g032_clk_gate_is_enabled,
};
static struct clk *
r9a06g032_register_gate(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc)
{
struct clk *clk;
struct r9a06g032_clk_gate *g;
struct clk_init_data init = {};
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
return NULL;
init.name = desc->name;
init.ops = &r9a06g032_clk_gate_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
g->clocks = clocks;
g->index = desc->index;
g->gate = desc->gate;
g->hw.init = &init;
/*
* important here, some clocks are already in use by the CM3, we
* have to assume they are not Linux's to play with and try to disable
* at the end of the boot!
*/
if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
init.flags |= CLK_IS_CRITICAL;
pr_debug("%s was enabled, making read-only\n", desc->name);
}
clk = clk_register(NULL, &g->hw);
if (IS_ERR(clk)) {
kfree(g);
return NULL;
}
return clk;
}
struct r9a06g032_clk_div {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
u16 reg;
u16 min, max;
u8 table_size;
u16 table[8]; /* we know there are no more than 8 */
};
#define to_r9a06g032_div(_hw) \
container_of(_hw, struct r9a06g032_clk_div, hw)
static unsigned long
r9a06g032_div_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
u32 div = readl(reg);
if (div < clk->min)
div = clk->min;
else if (div > clk->max)
div = clk->max;
return DIV_ROUND_UP(parent_rate, div);
}
/*
* Attempts to find a value that is in range of min,max,
* and if a table of set dividers was specified for this
* register, try to find the fixed divider that is the closest
* to the target frequency
*/
static long
r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
unsigned long rate, unsigned long prate)
{
/* + 1 to cope with rates that have the remainder dropped */
u32 div = DIV_ROUND_UP(prate, rate + 1);
int i;
if (div <= clk->min)
return clk->min;
if (div >= clk->max)
return clk->max;
for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
if (div >= clk->table[i] && div <= clk->table[i + 1]) {
unsigned long m = rate -
DIV_ROUND_UP(prate, clk->table[i]);
unsigned long p =
DIV_ROUND_UP(prate, clk->table[i + 1]) -
rate;
/*
* select the divider that generates
* the value closest to the ideal frequency
*/
div = p >= m ? clk->table[i] : clk->table[i + 1];
return div;
}
}
return div;
}
static int
r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
{
struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate);
pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
hw->clk, req->rate, req->best_parent_rate, div);
pr_devel(" min %d (%ld) max %d (%ld)\n",
clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min),
clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max));
div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate);
/*
* this is a hack. Currently the serial driver asks for a clock rate
* that is 16 times the baud rate -- and that is wildly outside the
* range of the UART divider, somehow there is no provision for that
* case of 'let the divider as is if outside range'.
* The serial driver *shouldn't* play with these clocks anyway, there's
* several uarts attached to this divider, and changing this impacts
* everyone.
*/
if (clk->index == R9A06G032_DIV_UART ||
clk->index == R9A06G032_DIV_P2_PG) {
pr_devel("%s div uart hack!\n", __func__);
req->rate = clk_get_rate(hw->clk);
return 0;
}
req->rate = DIV_ROUND_UP(req->best_parent_rate, div);
pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
req->best_parent_rate, div, req->rate);
return 0;
}
static int
r9a06g032_div_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
/* + 1 to cope with rates that have the remainder dropped */
u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
rate, parent_rate, div);
/*
* Need to write the bit 31 with the divider value to
* latch it. Technically we should wait until it has been
* cleared too.
* TODO: Find whether this callback is sleepable, in case
* the hardware /does/ require some sort of spinloop here.
*/
writel(div | BIT(31), reg);
return 0;
}
static const struct clk_ops r9a06g032_clk_div_ops = {
.recalc_rate = r9a06g032_div_recalc_rate,
.determine_rate = r9a06g032_div_determine_rate,
.set_rate = r9a06g032_div_set_rate,
};
static struct clk *
r9a06g032_register_div(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc)
{
struct r9a06g032_clk_div *div;
struct clk *clk;
struct clk_init_data init = {};
unsigned int i;
div = kzalloc(sizeof(*div), GFP_KERNEL);
if (!div)
return NULL;
init.name = desc->name;
init.ops = &r9a06g032_clk_div_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
div->clocks = clocks;
div->index = desc->index;
div->reg = desc->reg;
div->hw.init = &init;
div->min = desc->div_min;
div->max = desc->div_max;
/* populate (optional) divider table fixed values */
for (i = 0; i < ARRAY_SIZE(div->table) &&
i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
div->table[div->table_size++] = desc->div_table[i];
}
clk = clk_register(NULL, &div->hw);
if (IS_ERR(clk)) {
kfree(div);
return NULL;
}
return clk;
}
/*
* This clock provider handles the case of the R9A06G032 where you have
* peripherals that have two potential clock source and two gates, one for
* each of the clock source - the used clock source (for all sub clocks)
* is selected by a single bit.
* That single bit affects all sub-clocks, and therefore needs to change the
* active gate (and turn the others off) and force a recalculation of the rates.
*
* This implements two clock providers, one 'bitselect' that
* handles the switch between both parents, and another 'dualgate'
* that knows which gate to poke at, depending on the parent's bit position.
*/
struct r9a06g032_clk_bitsel {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
struct regbit selector; /* selector register + bit */
};
#define to_clk_bitselect(_hw) \
container_of(_hw, struct r9a06g032_clk_bitsel, hw)
static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
{
struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
return clk_rdesc_get(set->clocks, set->selector);
}
static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
{
struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
/* a single bit in the register selects one of two parent clocks */
clk_rdesc_set(set->clocks, set->selector, !!index);
return 0;
}
static const struct clk_ops clk_bitselect_ops = {
.get_parent = r9a06g032_clk_mux_get_parent,
.set_parent = r9a06g032_clk_mux_set_parent,
};
static struct clk *
r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc)
{
struct clk *clk;
struct r9a06g032_clk_bitsel *g;
struct clk_init_data init = {};
const char *names[2];
/* allocate the gate */
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
return NULL;
names[0] = parent_name;
names[1] = "clk_pll_usb";
init.name = desc->name;
init.ops = &clk_bitselect_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = names;
init.num_parents = 2;
g->clocks = clocks;
g->index = desc->index;
g->selector = desc->dual.sel;
g->hw.init = &init;
clk = clk_register(NULL, &g->hw);
if (IS_ERR(clk)) {
kfree(g);
return NULL;
}
return clk;
}
struct r9a06g032_clk_dualgate {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
struct regbit selector; /* selector register + bit */
struct r9a06g032_gate gate[2];
};
#define to_clk_dualgate(_hw) \
container_of(_hw, struct r9a06g032_clk_dualgate, hw)
static int
r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
{
u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
/* we always turn off the 'other' gate, regardless */
r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
return 0;
}
static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
{
struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
r9a06g032_clk_dualgate_setenable(gate, 1);
return 0;
}
static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
{
struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
r9a06g032_clk_dualgate_setenable(gate, 0);
}
static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
{
struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
}
static const struct clk_ops r9a06g032_clk_dualgate_ops = {
.enable = r9a06g032_clk_dualgate_enable,
.disable = r9a06g032_clk_dualgate_disable,
.is_enabled = r9a06g032_clk_dualgate_is_enabled,
};
static struct clk *
r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc,
struct regbit sel)
{
struct r9a06g032_clk_dualgate *g;
struct clk *clk;
struct clk_init_data init = {};
/* allocate the gate */
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
return NULL;
g->clocks = clocks;
g->index = desc->index;
g->selector = sel;
g->gate[0].gate = desc->dual.g1;
g->gate[0].reset = desc->dual.r1;
g->gate[1].gate = desc->dual.g2;
g->gate[1].reset = desc->dual.r2;
init.name = desc->name;
init.ops = &r9a06g032_clk_dualgate_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = &parent_name;
init.num_parents = 1;
g->hw.init = &init;
/*
* important here, some clocks are already in use by the CM3, we
* have to assume they are not Linux's to play with and try to disable
* at the end of the boot!
*/
if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
init.flags |= CLK_IS_CRITICAL;
pr_debug("%s was enabled, making read-only\n", desc->name);
}
clk = clk_register(NULL, &g->hw);
if (IS_ERR(clk)) {
kfree(g);
return NULL;
}
return clk;
}
static void r9a06g032_clocks_del_clk_provider(void *data)
{
of_clk_del_provider(data);
}
static void __init r9a06g032_init_h2mode(struct r9a06g032_priv *clocks)
{
struct device_node *usbf_np = NULL;
u32 usb;
while ((usbf_np = of_find_compatible_node(usbf_np, NULL,
"renesas,rzn1-usbf"))) {
if (of_device_is_available(usbf_np))
break;
}
usb = readl(clocks->reg + R9A06G032_SYSCTRL_USB);
if (usbf_np) {
/* 1 host and 1 device mode */
usb &= ~R9A06G032_SYSCTRL_USB_H2MODE;
of_node_put(usbf_np);
} else {
/* 2 hosts mode */
usb |= R9A06G032_SYSCTRL_USB_H2MODE;
}
writel(usb, clocks->reg + R9A06G032_SYSCTRL_USB);
}
static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct r9a06g032_priv *clocks;
struct clk **clks;
struct clk *mclk;
unsigned int i;
struct regbit uart_group_sel[2];
int error;
clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
GFP_KERNEL);
if (!clocks || !clks)
return -ENOMEM;
spin_lock_init(&clocks->lock);
clocks->data.clks = clks;
clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
mclk = devm_clk_get(dev, "mclk");
if (IS_ERR(mclk))
return PTR_ERR(mclk);
clocks->reg = of_iomap(np, 0);
if (WARN_ON(!clocks->reg))
return -ENOMEM;
r9a06g032_init_h2mode(clocks);
for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
const char *parent_name = d->source ?
__clk_get_name(clocks->data.clks[d->source - 1]) :
__clk_get_name(mclk);
struct clk *clk = NULL;
switch (d->type) {
case K_FFC:
clk = clk_register_fixed_factor(NULL, d->name,
parent_name, 0,
d->mul, d->div);
break;
case K_GATE:
clk = r9a06g032_register_gate(clocks, parent_name, d);
break;
case K_DIV:
clk = r9a06g032_register_div(clocks, parent_name, d);
break;
case K_BITSEL:
/* keep that selector register around */
uart_group_sel[d->dual.group] = d->dual.sel;
clk = r9a06g032_register_bitsel(clocks, parent_name, d);
break;
case K_DUALGATE:
clk = r9a06g032_register_dualgate(clocks, parent_name,
d,
uart_group_sel[d->dual.group]);
break;
}
clocks->data.clks[d->index] = clk;
}
error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
if (error)
return error;
error = devm_add_action_or_reset(dev,
r9a06g032_clocks_del_clk_provider, np);
if (error)
return error;
error = r9a06g032_add_clk_domain(dev);
if (error)
return error;
sysctrl_priv = clocks;
error = of_platform_populate(np, NULL, NULL, dev);
if (error)
dev_err(dev, "Failed to populate children (%d)\n", error);
return 0;
}
static const struct of_device_id r9a06g032_match[] = {
{ .compatible = "renesas,r9a06g032-sysctrl" },
{ }
};
static struct platform_driver r9a06g032_clock_driver = {
.driver = {
.name = "renesas,r9a06g032-sysctrl",
.of_match_table = r9a06g032_match,
},
};
static int __init r9a06g032_clocks_init(void)
{
return platform_driver_probe(&r9a06g032_clock_driver,
r9a06g032_clocks_probe);
}
subsys_initcall(r9a06g032_clocks_init);