blob: 8ac8f7b8e317302c940f2d1a9f9953599a7dfadb [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* HID driver for Sony DualSense(TM) controller.
*
* Copyright (c) 2020-2022 Sony Interactive Entertainment
*/
#include <linux/bits.h>
#include <linux/crc32.h>
#include <linux/device.h>
#include <linux/hid.h>
#include <linux/idr.h>
#include <linux/input/mt.h>
#include <linux/leds.h>
#include <linux/led-class-multicolor.h>
#include <linux/module.h>
#include <asm/unaligned.h>
#include "hid-ids.h"
/* List of connected playstation devices. */
static DEFINE_MUTEX(ps_devices_lock);
static LIST_HEAD(ps_devices_list);
static DEFINE_IDA(ps_player_id_allocator);
#define HID_PLAYSTATION_VERSION_PATCH 0x8000
/* Base class for playstation devices. */
struct ps_device {
struct list_head list;
struct hid_device *hdev;
spinlock_t lock;
uint32_t player_id;
struct power_supply_desc battery_desc;
struct power_supply *battery;
uint8_t battery_capacity;
int battery_status;
const char *input_dev_name; /* Name of primary input device. */
uint8_t mac_address[6]; /* Note: stored in little endian order. */
uint32_t hw_version;
uint32_t fw_version;
int (*parse_report)(struct ps_device *dev, struct hid_report *report, u8 *data, int size);
void (*remove)(struct ps_device *dev);
};
/* Calibration data for playstation motion sensors. */
struct ps_calibration_data {
int abs_code;
short bias;
int sens_numer;
int sens_denom;
};
struct ps_led_info {
const char *name;
const char *color;
int max_brightness;
enum led_brightness (*brightness_get)(struct led_classdev *cdev);
int (*brightness_set)(struct led_classdev *cdev, enum led_brightness);
int (*blink_set)(struct led_classdev *led, unsigned long *on, unsigned long *off);
};
/* Seed values for DualShock4 / DualSense CRC32 for different report types. */
#define PS_INPUT_CRC32_SEED 0xA1
#define PS_OUTPUT_CRC32_SEED 0xA2
#define PS_FEATURE_CRC32_SEED 0xA3
#define DS_INPUT_REPORT_USB 0x01
#define DS_INPUT_REPORT_USB_SIZE 64
#define DS_INPUT_REPORT_BT 0x31
#define DS_INPUT_REPORT_BT_SIZE 78
#define DS_OUTPUT_REPORT_USB 0x02
#define DS_OUTPUT_REPORT_USB_SIZE 63
#define DS_OUTPUT_REPORT_BT 0x31
#define DS_OUTPUT_REPORT_BT_SIZE 78
#define DS_FEATURE_REPORT_CALIBRATION 0x05
#define DS_FEATURE_REPORT_CALIBRATION_SIZE 41
#define DS_FEATURE_REPORT_PAIRING_INFO 0x09
#define DS_FEATURE_REPORT_PAIRING_INFO_SIZE 20
#define DS_FEATURE_REPORT_FIRMWARE_INFO 0x20
#define DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE 64
/* Button masks for DualSense input report. */
#define DS_BUTTONS0_HAT_SWITCH GENMASK(3, 0)
#define DS_BUTTONS0_SQUARE BIT(4)
#define DS_BUTTONS0_CROSS BIT(5)
#define DS_BUTTONS0_CIRCLE BIT(6)
#define DS_BUTTONS0_TRIANGLE BIT(7)
#define DS_BUTTONS1_L1 BIT(0)
#define DS_BUTTONS1_R1 BIT(1)
#define DS_BUTTONS1_L2 BIT(2)
#define DS_BUTTONS1_R2 BIT(3)
#define DS_BUTTONS1_CREATE BIT(4)
#define DS_BUTTONS1_OPTIONS BIT(5)
#define DS_BUTTONS1_L3 BIT(6)
#define DS_BUTTONS1_R3 BIT(7)
#define DS_BUTTONS2_PS_HOME BIT(0)
#define DS_BUTTONS2_TOUCHPAD BIT(1)
#define DS_BUTTONS2_MIC_MUTE BIT(2)
/* Status field of DualSense input report. */
#define DS_STATUS_BATTERY_CAPACITY GENMASK(3, 0)
#define DS_STATUS_CHARGING GENMASK(7, 4)
#define DS_STATUS_CHARGING_SHIFT 4
/* Feature version from DualSense Firmware Info report. */
#define DS_FEATURE_VERSION(major, minor) ((major & 0xff) << 8 | (minor & 0xff))
/*
* Status of a DualSense touch point contact.
* Contact IDs, with highest bit set are 'inactive'
* and any associated data is then invalid.
*/
#define DS_TOUCH_POINT_INACTIVE BIT(7)
/* Magic value required in tag field of Bluetooth output report. */
#define DS_OUTPUT_TAG 0x10
/* Flags for DualSense output report. */
#define DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION BIT(0)
#define DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT BIT(1)
#define DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE BIT(0)
#define DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE BIT(1)
#define DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE BIT(2)
#define DS_OUTPUT_VALID_FLAG1_RELEASE_LEDS BIT(3)
#define DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE BIT(4)
#define DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE BIT(1)
#define DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2 BIT(2)
#define DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE BIT(4)
#define DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT BIT(1)
/* DualSense hardware limits */
#define DS_ACC_RES_PER_G 8192
#define DS_ACC_RANGE (4*DS_ACC_RES_PER_G)
#define DS_GYRO_RES_PER_DEG_S 1024
#define DS_GYRO_RANGE (2048*DS_GYRO_RES_PER_DEG_S)
#define DS_TOUCHPAD_WIDTH 1920
#define DS_TOUCHPAD_HEIGHT 1080
struct dualsense {
struct ps_device base;
struct input_dev *gamepad;
struct input_dev *sensors;
struct input_dev *touchpad;
/* Update version is used as a feature/capability version. */
uint16_t update_version;
/* Calibration data for accelerometer and gyroscope. */
struct ps_calibration_data accel_calib_data[3];
struct ps_calibration_data gyro_calib_data[3];
/* Timestamp for sensor data */
bool sensor_timestamp_initialized;
uint32_t prev_sensor_timestamp;
uint32_t sensor_timestamp_us;
/* Compatible rumble state */
bool use_vibration_v2;
bool update_rumble;
uint8_t motor_left;
uint8_t motor_right;
/* RGB lightbar */
struct led_classdev_mc lightbar;
bool update_lightbar;
uint8_t lightbar_red;
uint8_t lightbar_green;
uint8_t lightbar_blue;
/* Microphone */
bool update_mic_mute;
bool mic_muted;
bool last_btn_mic_state;
/* Player leds */
bool update_player_leds;
uint8_t player_leds_state;
struct led_classdev player_leds[5];
struct work_struct output_worker;
bool output_worker_initialized;
void *output_report_dmabuf;
uint8_t output_seq; /* Sequence number for output report. */
};
struct dualsense_touch_point {
uint8_t contact;
uint8_t x_lo;
uint8_t x_hi:4, y_lo:4;
uint8_t y_hi;
} __packed;
static_assert(sizeof(struct dualsense_touch_point) == 4);
/* Main DualSense input report excluding any BT/USB specific headers. */
struct dualsense_input_report {
uint8_t x, y;
uint8_t rx, ry;
uint8_t z, rz;
uint8_t seq_number;
uint8_t buttons[4];
uint8_t reserved[4];
/* Motion sensors */
__le16 gyro[3]; /* x, y, z */
__le16 accel[3]; /* x, y, z */
__le32 sensor_timestamp;
uint8_t reserved2;
/* Touchpad */
struct dualsense_touch_point points[2];
uint8_t reserved3[12];
uint8_t status;
uint8_t reserved4[10];
} __packed;
/* Common input report size shared equals the size of the USB report minus 1 byte for ReportID. */
static_assert(sizeof(struct dualsense_input_report) == DS_INPUT_REPORT_USB_SIZE - 1);
/* Common data between DualSense BT/USB main output report. */
struct dualsense_output_report_common {
uint8_t valid_flag0;
uint8_t valid_flag1;
/* For DualShock 4 compatibility mode. */
uint8_t motor_right;
uint8_t motor_left;
/* Audio controls */
uint8_t reserved[4];
uint8_t mute_button_led;
uint8_t power_save_control;
uint8_t reserved2[28];
/* LEDs and lightbar */
uint8_t valid_flag2;
uint8_t reserved3[2];
uint8_t lightbar_setup;
uint8_t led_brightness;
uint8_t player_leds;
uint8_t lightbar_red;
uint8_t lightbar_green;
uint8_t lightbar_blue;
} __packed;
static_assert(sizeof(struct dualsense_output_report_common) == 47);
struct dualsense_output_report_bt {
uint8_t report_id; /* 0x31 */
uint8_t seq_tag;
uint8_t tag;
struct dualsense_output_report_common common;
uint8_t reserved[24];
__le32 crc32;
} __packed;
static_assert(sizeof(struct dualsense_output_report_bt) == DS_OUTPUT_REPORT_BT_SIZE);
struct dualsense_output_report_usb {
uint8_t report_id; /* 0x02 */
struct dualsense_output_report_common common;
uint8_t reserved[15];
} __packed;
static_assert(sizeof(struct dualsense_output_report_usb) == DS_OUTPUT_REPORT_USB_SIZE);
/*
* The DualSense has a main output report used to control most features. It is
* largely the same between Bluetooth and USB except for different headers and CRC.
* This structure hide the differences between the two to simplify sending output reports.
*/
struct dualsense_output_report {
uint8_t *data; /* Start of data */
uint8_t len; /* Size of output report */
/* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */
struct dualsense_output_report_bt *bt;
/* Points to USB data payload in case for a USB report else NULL. */
struct dualsense_output_report_usb *usb;
/* Points to common section of report, so past any headers. */
struct dualsense_output_report_common *common;
};
#define DS4_INPUT_REPORT_USB 0x01
#define DS4_INPUT_REPORT_USB_SIZE 64
#define DS4_INPUT_REPORT_BT 0x11
#define DS4_INPUT_REPORT_BT_SIZE 78
#define DS4_OUTPUT_REPORT_USB 0x05
#define DS4_OUTPUT_REPORT_USB_SIZE 32
#define DS4_OUTPUT_REPORT_BT 0x11
#define DS4_OUTPUT_REPORT_BT_SIZE 78
#define DS4_FEATURE_REPORT_CALIBRATION 0x02
#define DS4_FEATURE_REPORT_CALIBRATION_SIZE 37
#define DS4_FEATURE_REPORT_CALIBRATION_BT 0x05
#define DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE 41
#define DS4_FEATURE_REPORT_FIRMWARE_INFO 0xa3
#define DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE 49
#define DS4_FEATURE_REPORT_PAIRING_INFO 0x12
#define DS4_FEATURE_REPORT_PAIRING_INFO_SIZE 16
/*
* Status of a DualShock4 touch point contact.
* Contact IDs, with highest bit set are 'inactive'
* and any associated data is then invalid.
*/
#define DS4_TOUCH_POINT_INACTIVE BIT(7)
/* Status field of DualShock4 input report. */
#define DS4_STATUS0_BATTERY_CAPACITY GENMASK(3, 0)
#define DS4_STATUS0_CABLE_STATE BIT(4)
/* Battery status within batery_status field. */
#define DS4_BATTERY_STATUS_FULL 11
/* Status1 bit2 contains dongle connection state:
* 0 = connectd
* 1 = disconnected
*/
#define DS4_STATUS1_DONGLE_STATE BIT(2)
/* The lower 6 bits of hw_control of the Bluetooth main output report
* control the interval at which Dualshock 4 reports data:
* 0x00 - 1ms
* 0x01 - 1ms
* 0x02 - 2ms
* 0x3E - 62ms
* 0x3F - disabled
*/
#define DS4_OUTPUT_HWCTL_BT_POLL_MASK 0x3F
/* Default to 4ms poll interval, which is same as USB (not adjustable). */
#define DS4_BT_DEFAULT_POLL_INTERVAL_MS 4
#define DS4_OUTPUT_HWCTL_CRC32 0x40
#define DS4_OUTPUT_HWCTL_HID 0x80
/* Flags for DualShock4 output report. */
#define DS4_OUTPUT_VALID_FLAG0_MOTOR 0x01
#define DS4_OUTPUT_VALID_FLAG0_LED 0x02
#define DS4_OUTPUT_VALID_FLAG0_LED_BLINK 0x04
/* DualShock4 hardware limits */
#define DS4_ACC_RES_PER_G 8192
#define DS4_ACC_RANGE (4*DS_ACC_RES_PER_G)
#define DS4_GYRO_RES_PER_DEG_S 1024
#define DS4_GYRO_RANGE (2048*DS_GYRO_RES_PER_DEG_S)
#define DS4_LIGHTBAR_MAX_BLINK 255 /* 255 centiseconds */
#define DS4_TOUCHPAD_WIDTH 1920
#define DS4_TOUCHPAD_HEIGHT 942
enum dualshock4_dongle_state {
DONGLE_DISCONNECTED,
DONGLE_CALIBRATING,
DONGLE_CONNECTED,
DONGLE_DISABLED
};
struct dualshock4 {
struct ps_device base;
struct input_dev *gamepad;
struct input_dev *sensors;
struct input_dev *touchpad;
/* Calibration data for accelerometer and gyroscope. */
struct ps_calibration_data accel_calib_data[3];
struct ps_calibration_data gyro_calib_data[3];
/* Only used on dongle to track state transitions. */
enum dualshock4_dongle_state dongle_state;
/* Used during calibration. */
struct work_struct dongle_hotplug_worker;
/* Timestamp for sensor data */
bool sensor_timestamp_initialized;
uint32_t prev_sensor_timestamp;
uint32_t sensor_timestamp_us;
/* Bluetooth poll interval */
bool update_bt_poll_interval;
uint8_t bt_poll_interval;
bool update_rumble;
uint8_t motor_left;
uint8_t motor_right;
/* Lightbar leds */
bool update_lightbar;
bool update_lightbar_blink;
bool lightbar_enabled; /* For use by global LED control. */
uint8_t lightbar_red;
uint8_t lightbar_green;
uint8_t lightbar_blue;
uint8_t lightbar_blink_on; /* In increments of 10ms. */
uint8_t lightbar_blink_off; /* In increments of 10ms. */
struct led_classdev lightbar_leds[4];
struct work_struct output_worker;
bool output_worker_initialized;
void *output_report_dmabuf;
};
struct dualshock4_touch_point {
uint8_t contact;
uint8_t x_lo;
uint8_t x_hi:4, y_lo:4;
uint8_t y_hi;
} __packed;
static_assert(sizeof(struct dualshock4_touch_point) == 4);
struct dualshock4_touch_report {
uint8_t timestamp;
struct dualshock4_touch_point points[2];
} __packed;
static_assert(sizeof(struct dualshock4_touch_report) == 9);
/* Main DualShock4 input report excluding any BT/USB specific headers. */
struct dualshock4_input_report_common {
uint8_t x, y;
uint8_t rx, ry;
uint8_t buttons[3];
uint8_t z, rz;
/* Motion sensors */
__le16 sensor_timestamp;
uint8_t sensor_temperature;
__le16 gyro[3]; /* x, y, z */
__le16 accel[3]; /* x, y, z */
uint8_t reserved2[5];
uint8_t status[2];
uint8_t reserved3;
} __packed;
static_assert(sizeof(struct dualshock4_input_report_common) == 32);
struct dualshock4_input_report_usb {
uint8_t report_id; /* 0x01 */
struct dualshock4_input_report_common common;
uint8_t num_touch_reports;
struct dualshock4_touch_report touch_reports[3];
uint8_t reserved[3];
} __packed;
static_assert(sizeof(struct dualshock4_input_report_usb) == DS4_INPUT_REPORT_USB_SIZE);
struct dualshock4_input_report_bt {
uint8_t report_id; /* 0x11 */
uint8_t reserved[2];
struct dualshock4_input_report_common common;
uint8_t num_touch_reports;
struct dualshock4_touch_report touch_reports[4]; /* BT has 4 compared to 3 for USB */
uint8_t reserved2[2];
__le32 crc32;
} __packed;
static_assert(sizeof(struct dualshock4_input_report_bt) == DS4_INPUT_REPORT_BT_SIZE);
/* Common data between Bluetooth and USB DualShock4 output reports. */
struct dualshock4_output_report_common {
uint8_t valid_flag0;
uint8_t valid_flag1;
uint8_t reserved;
uint8_t motor_right;
uint8_t motor_left;
uint8_t lightbar_red;
uint8_t lightbar_green;
uint8_t lightbar_blue;
uint8_t lightbar_blink_on;
uint8_t lightbar_blink_off;
} __packed;
struct dualshock4_output_report_usb {
uint8_t report_id; /* 0x5 */
struct dualshock4_output_report_common common;
uint8_t reserved[21];
} __packed;
static_assert(sizeof(struct dualshock4_output_report_usb) == DS4_OUTPUT_REPORT_USB_SIZE);
struct dualshock4_output_report_bt {
uint8_t report_id; /* 0x11 */
uint8_t hw_control;
uint8_t audio_control;
struct dualshock4_output_report_common common;
uint8_t reserved[61];
__le32 crc32;
} __packed;
static_assert(sizeof(struct dualshock4_output_report_bt) == DS4_OUTPUT_REPORT_BT_SIZE);
/*
* The DualShock4 has a main output report used to control most features. It is
* largely the same between Bluetooth and USB except for different headers and CRC.
* This structure hide the differences between the two to simplify sending output reports.
*/
struct dualshock4_output_report {
uint8_t *data; /* Start of data */
uint8_t len; /* Size of output report */
/* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */
struct dualshock4_output_report_bt *bt;
/* Points to USB data payload in case for a USB report else NULL. */
struct dualshock4_output_report_usb *usb;
/* Points to common section of report, so past any headers. */
struct dualshock4_output_report_common *common;
};
/*
* Common gamepad buttons across DualShock 3 / 4 and DualSense.
* Note: for device with a touchpad, touchpad button is not included
* as it will be part of the touchpad device.
*/
static const int ps_gamepad_buttons[] = {
BTN_WEST, /* Square */
BTN_NORTH, /* Triangle */
BTN_EAST, /* Circle */
BTN_SOUTH, /* Cross */
BTN_TL, /* L1 */
BTN_TR, /* R1 */
BTN_TL2, /* L2 */
BTN_TR2, /* R2 */
BTN_SELECT, /* Create (PS5) / Share (PS4) */
BTN_START, /* Option */
BTN_THUMBL, /* L3 */
BTN_THUMBR, /* R3 */
BTN_MODE, /* PS Home */
};
static const struct {int x; int y; } ps_gamepad_hat_mapping[] = {
{0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1},
{0, 0},
};
static int dualshock4_get_calibration_data(struct dualshock4 *ds4);
static inline void dualsense_schedule_work(struct dualsense *ds);
static inline void dualshock4_schedule_work(struct dualshock4 *ds4);
static void dualsense_set_lightbar(struct dualsense *ds, uint8_t red, uint8_t green, uint8_t blue);
static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4);
/*
* Add a new ps_device to ps_devices if it doesn't exist.
* Return error on duplicate device, which can happen if the same
* device is connected using both Bluetooth and USB.
*/
static int ps_devices_list_add(struct ps_device *dev)
{
struct ps_device *entry;
mutex_lock(&ps_devices_lock);
list_for_each_entry(entry, &ps_devices_list, list) {
if (!memcmp(entry->mac_address, dev->mac_address, sizeof(dev->mac_address))) {
hid_err(dev->hdev, "Duplicate device found for MAC address %pMR.\n",
dev->mac_address);
mutex_unlock(&ps_devices_lock);
return -EEXIST;
}
}
list_add_tail(&dev->list, &ps_devices_list);
mutex_unlock(&ps_devices_lock);
return 0;
}
static int ps_devices_list_remove(struct ps_device *dev)
{
mutex_lock(&ps_devices_lock);
list_del(&dev->list);
mutex_unlock(&ps_devices_lock);
return 0;
}
static int ps_device_set_player_id(struct ps_device *dev)
{
int ret = ida_alloc(&ps_player_id_allocator, GFP_KERNEL);
if (ret < 0)
return ret;
dev->player_id = ret;
return 0;
}
static void ps_device_release_player_id(struct ps_device *dev)
{
ida_free(&ps_player_id_allocator, dev->player_id);
dev->player_id = U32_MAX;
}
static struct input_dev *ps_allocate_input_dev(struct hid_device *hdev, const char *name_suffix)
{
struct input_dev *input_dev;
input_dev = devm_input_allocate_device(&hdev->dev);
if (!input_dev)
return ERR_PTR(-ENOMEM);
input_dev->id.bustype = hdev->bus;
input_dev->id.vendor = hdev->vendor;
input_dev->id.product = hdev->product;
input_dev->id.version = hdev->version;
input_dev->uniq = hdev->uniq;
if (name_suffix) {
input_dev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s %s", hdev->name,
name_suffix);
if (!input_dev->name)
return ERR_PTR(-ENOMEM);
} else {
input_dev->name = hdev->name;
}
input_set_drvdata(input_dev, hdev);
return input_dev;
}
static enum power_supply_property ps_power_supply_props[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_SCOPE,
};
static int ps_battery_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct ps_device *dev = power_supply_get_drvdata(psy);
uint8_t battery_capacity;
int battery_status;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&dev->lock, flags);
battery_capacity = dev->battery_capacity;
battery_status = dev->battery_status;
spin_unlock_irqrestore(&dev->lock, flags);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
val->intval = battery_status;
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = 1;
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = battery_capacity;
break;
case POWER_SUPPLY_PROP_SCOPE:
val->intval = POWER_SUPPLY_SCOPE_DEVICE;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int ps_device_register_battery(struct ps_device *dev)
{
struct power_supply *battery;
struct power_supply_config battery_cfg = { .drv_data = dev };
int ret;
dev->battery_desc.type = POWER_SUPPLY_TYPE_BATTERY;
dev->battery_desc.properties = ps_power_supply_props;
dev->battery_desc.num_properties = ARRAY_SIZE(ps_power_supply_props);
dev->battery_desc.get_property = ps_battery_get_property;
dev->battery_desc.name = devm_kasprintf(&dev->hdev->dev, GFP_KERNEL,
"ps-controller-battery-%pMR", dev->mac_address);
if (!dev->battery_desc.name)
return -ENOMEM;
battery = devm_power_supply_register(&dev->hdev->dev, &dev->battery_desc, &battery_cfg);
if (IS_ERR(battery)) {
ret = PTR_ERR(battery);
hid_err(dev->hdev, "Unable to register battery device: %d\n", ret);
return ret;
}
dev->battery = battery;
ret = power_supply_powers(dev->battery, &dev->hdev->dev);
if (ret) {
hid_err(dev->hdev, "Unable to activate battery device: %d\n", ret);
return ret;
}
return 0;
}
/* Compute crc32 of HID data and compare against expected CRC. */
static bool ps_check_crc32(uint8_t seed, uint8_t *data, size_t len, uint32_t report_crc)
{
uint32_t crc;
crc = crc32_le(0xFFFFFFFF, &seed, 1);
crc = ~crc32_le(crc, data, len);
return crc == report_crc;
}
static struct input_dev *ps_gamepad_create(struct hid_device *hdev,
int (*play_effect)(struct input_dev *, void *, struct ff_effect *))
{
struct input_dev *gamepad;
unsigned int i;
int ret;
gamepad = ps_allocate_input_dev(hdev, NULL);
if (IS_ERR(gamepad))
return ERR_CAST(gamepad);
input_set_abs_params(gamepad, ABS_X, 0, 255, 0, 0);
input_set_abs_params(gamepad, ABS_Y, 0, 255, 0, 0);
input_set_abs_params(gamepad, ABS_Z, 0, 255, 0, 0);
input_set_abs_params(gamepad, ABS_RX, 0, 255, 0, 0);
input_set_abs_params(gamepad, ABS_RY, 0, 255, 0, 0);
input_set_abs_params(gamepad, ABS_RZ, 0, 255, 0, 0);
input_set_abs_params(gamepad, ABS_HAT0X, -1, 1, 0, 0);
input_set_abs_params(gamepad, ABS_HAT0Y, -1, 1, 0, 0);
for (i = 0; i < ARRAY_SIZE(ps_gamepad_buttons); i++)
input_set_capability(gamepad, EV_KEY, ps_gamepad_buttons[i]);
#if IS_ENABLED(CONFIG_PLAYSTATION_FF)
if (play_effect) {
input_set_capability(gamepad, EV_FF, FF_RUMBLE);
input_ff_create_memless(gamepad, NULL, play_effect);
}
#endif
ret = input_register_device(gamepad);
if (ret)
return ERR_PTR(ret);
return gamepad;
}
static int ps_get_report(struct hid_device *hdev, uint8_t report_id, uint8_t *buf, size_t size,
bool check_crc)
{
int ret;
ret = hid_hw_raw_request(hdev, report_id, buf, size, HID_FEATURE_REPORT,
HID_REQ_GET_REPORT);
if (ret < 0) {
hid_err(hdev, "Failed to retrieve feature with reportID %d: %d\n", report_id, ret);
return ret;
}
if (ret != size) {
hid_err(hdev, "Invalid byte count transferred, expected %zu got %d\n", size, ret);
return -EINVAL;
}
if (buf[0] != report_id) {
hid_err(hdev, "Invalid reportID received, expected %d got %d\n", report_id, buf[0]);
return -EINVAL;
}
if (hdev->bus == BUS_BLUETOOTH && check_crc) {
/* Last 4 bytes contains crc32. */
uint8_t crc_offset = size - 4;
uint32_t report_crc = get_unaligned_le32(&buf[crc_offset]);
if (!ps_check_crc32(PS_FEATURE_CRC32_SEED, buf, crc_offset, report_crc)) {
hid_err(hdev, "CRC check failed for reportID=%d\n", report_id);
return -EILSEQ;
}
}
return 0;
}
static int ps_led_register(struct ps_device *ps_dev, struct led_classdev *led,
const struct ps_led_info *led_info)
{
int ret;
if (led_info->name) {
led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL,
"%s:%s:%s", ps_dev->input_dev_name, led_info->color, led_info->name);
} else {
/* Backwards compatible mode for hid-sony, but not compliant with LED class spec. */
led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL,
"%s:%s", ps_dev->input_dev_name, led_info->color);
}
if (!led->name)
return -ENOMEM;
led->brightness = 0;
led->max_brightness = led_info->max_brightness;
led->flags = LED_CORE_SUSPENDRESUME;
led->brightness_get = led_info->brightness_get;
led->brightness_set_blocking = led_info->brightness_set;
led->blink_set = led_info->blink_set;
ret = devm_led_classdev_register(&ps_dev->hdev->dev, led);
if (ret) {
hid_err(ps_dev->hdev, "Failed to register LED %s: %d\n", led_info->name, ret);
return ret;
}
return 0;
}
/* Register a DualSense/DualShock4 RGB lightbar represented by a multicolor LED. */
static int ps_lightbar_register(struct ps_device *ps_dev, struct led_classdev_mc *lightbar_mc_dev,
int (*brightness_set)(struct led_classdev *, enum led_brightness))
{
struct hid_device *hdev = ps_dev->hdev;
struct mc_subled *mc_led_info;
struct led_classdev *led_cdev;
int ret;
mc_led_info = devm_kmalloc_array(&hdev->dev, 3, sizeof(*mc_led_info),
GFP_KERNEL | __GFP_ZERO);
if (!mc_led_info)
return -ENOMEM;
mc_led_info[0].color_index = LED_COLOR_ID_RED;
mc_led_info[1].color_index = LED_COLOR_ID_GREEN;
mc_led_info[2].color_index = LED_COLOR_ID_BLUE;
lightbar_mc_dev->subled_info = mc_led_info;
lightbar_mc_dev->num_colors = 3;
led_cdev = &lightbar_mc_dev->led_cdev;
led_cdev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s:rgb:indicator",
ps_dev->input_dev_name);
if (!led_cdev->name)
return -ENOMEM;
led_cdev->brightness = 255;
led_cdev->max_brightness = 255;
led_cdev->brightness_set_blocking = brightness_set;
ret = devm_led_classdev_multicolor_register(&hdev->dev, lightbar_mc_dev);
if (ret < 0) {
hid_err(hdev, "Cannot register multicolor LED device\n");
return ret;
}
return 0;
}
static struct input_dev *ps_sensors_create(struct hid_device *hdev, int accel_range, int accel_res,
int gyro_range, int gyro_res)
{
struct input_dev *sensors;
int ret;
sensors = ps_allocate_input_dev(hdev, "Motion Sensors");
if (IS_ERR(sensors))
return ERR_CAST(sensors);
__set_bit(INPUT_PROP_ACCELEROMETER, sensors->propbit);
__set_bit(EV_MSC, sensors->evbit);
__set_bit(MSC_TIMESTAMP, sensors->mscbit);
/* Accelerometer */
input_set_abs_params(sensors, ABS_X, -accel_range, accel_range, 16, 0);
input_set_abs_params(sensors, ABS_Y, -accel_range, accel_range, 16, 0);
input_set_abs_params(sensors, ABS_Z, -accel_range, accel_range, 16, 0);
input_abs_set_res(sensors, ABS_X, accel_res);
input_abs_set_res(sensors, ABS_Y, accel_res);
input_abs_set_res(sensors, ABS_Z, accel_res);
/* Gyroscope */
input_set_abs_params(sensors, ABS_RX, -gyro_range, gyro_range, 16, 0);
input_set_abs_params(sensors, ABS_RY, -gyro_range, gyro_range, 16, 0);
input_set_abs_params(sensors, ABS_RZ, -gyro_range, gyro_range, 16, 0);
input_abs_set_res(sensors, ABS_RX, gyro_res);
input_abs_set_res(sensors, ABS_RY, gyro_res);
input_abs_set_res(sensors, ABS_RZ, gyro_res);
ret = input_register_device(sensors);
if (ret)
return ERR_PTR(ret);
return sensors;
}
static struct input_dev *ps_touchpad_create(struct hid_device *hdev, int width, int height,
unsigned int num_contacts)
{
struct input_dev *touchpad;
int ret;
touchpad = ps_allocate_input_dev(hdev, "Touchpad");
if (IS_ERR(touchpad))
return ERR_CAST(touchpad);
/* Map button underneath touchpad to BTN_LEFT. */
input_set_capability(touchpad, EV_KEY, BTN_LEFT);
__set_bit(INPUT_PROP_BUTTONPAD, touchpad->propbit);
input_set_abs_params(touchpad, ABS_MT_POSITION_X, 0, width - 1, 0, 0);
input_set_abs_params(touchpad, ABS_MT_POSITION_Y, 0, height - 1, 0, 0);
ret = input_mt_init_slots(touchpad, num_contacts, INPUT_MT_POINTER);
if (ret)
return ERR_PTR(ret);
ret = input_register_device(touchpad);
if (ret)
return ERR_PTR(ret);
return touchpad;
}
static ssize_t firmware_version_show(struct device *dev,
struct device_attribute
*attr, char *buf)
{
struct hid_device *hdev = to_hid_device(dev);
struct ps_device *ps_dev = hid_get_drvdata(hdev);
return sysfs_emit(buf, "0x%08x\n", ps_dev->fw_version);
}
static DEVICE_ATTR_RO(firmware_version);
static ssize_t hardware_version_show(struct device *dev,
struct device_attribute
*attr, char *buf)
{
struct hid_device *hdev = to_hid_device(dev);
struct ps_device *ps_dev = hid_get_drvdata(hdev);
return sysfs_emit(buf, "0x%08x\n", ps_dev->hw_version);
}
static DEVICE_ATTR_RO(hardware_version);
static struct attribute *ps_device_attrs[] = {
&dev_attr_firmware_version.attr,
&dev_attr_hardware_version.attr,
NULL
};
ATTRIBUTE_GROUPS(ps_device);
static int dualsense_get_calibration_data(struct dualsense *ds)
{
struct hid_device *hdev = ds->base.hdev;
short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus;
short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus;
short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus;
short gyro_speed_plus, gyro_speed_minus;
short acc_x_plus, acc_x_minus;
short acc_y_plus, acc_y_minus;
short acc_z_plus, acc_z_minus;
int speed_2x;
int range_2g;
int ret = 0;
int i;
uint8_t *buf;
buf = kzalloc(DS_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_CALIBRATION, buf,
DS_FEATURE_REPORT_CALIBRATION_SIZE, true);
if (ret) {
hid_err(ds->base.hdev, "Failed to retrieve DualSense calibration info: %d\n", ret);
goto err_free;
}
gyro_pitch_bias = get_unaligned_le16(&buf[1]);
gyro_yaw_bias = get_unaligned_le16(&buf[3]);
gyro_roll_bias = get_unaligned_le16(&buf[5]);
gyro_pitch_plus = get_unaligned_le16(&buf[7]);
gyro_pitch_minus = get_unaligned_le16(&buf[9]);
gyro_yaw_plus = get_unaligned_le16(&buf[11]);
gyro_yaw_minus = get_unaligned_le16(&buf[13]);
gyro_roll_plus = get_unaligned_le16(&buf[15]);
gyro_roll_minus = get_unaligned_le16(&buf[17]);
gyro_speed_plus = get_unaligned_le16(&buf[19]);
gyro_speed_minus = get_unaligned_le16(&buf[21]);
acc_x_plus = get_unaligned_le16(&buf[23]);
acc_x_minus = get_unaligned_le16(&buf[25]);
acc_y_plus = get_unaligned_le16(&buf[27]);
acc_y_minus = get_unaligned_le16(&buf[29]);
acc_z_plus = get_unaligned_le16(&buf[31]);
acc_z_minus = get_unaligned_le16(&buf[33]);
/*
* Set gyroscope calibration and normalization parameters.
* Data values will be normalized to 1/DS_GYRO_RES_PER_DEG_S degree/s.
*/
speed_2x = (gyro_speed_plus + gyro_speed_minus);
ds->gyro_calib_data[0].abs_code = ABS_RX;
ds->gyro_calib_data[0].bias = 0;
ds->gyro_calib_data[0].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
ds->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) +
abs(gyro_pitch_minus - gyro_pitch_bias);
ds->gyro_calib_data[1].abs_code = ABS_RY;
ds->gyro_calib_data[1].bias = 0;
ds->gyro_calib_data[1].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
ds->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) +
abs(gyro_yaw_minus - gyro_yaw_bias);
ds->gyro_calib_data[2].abs_code = ABS_RZ;
ds->gyro_calib_data[2].bias = 0;
ds->gyro_calib_data[2].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
ds->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) +
abs(gyro_roll_minus - gyro_roll_bias);
/*
* Sanity check gyro calibration data. This is needed to prevent crashes
* during report handling of virtual, clone or broken devices not implementing
* calibration data properly.
*/
for (i = 0; i < ARRAY_SIZE(ds->gyro_calib_data); i++) {
if (ds->gyro_calib_data[i].sens_denom == 0) {
hid_warn(hdev, "Invalid gyro calibration data for axis (%d), disabling calibration.",
ds->gyro_calib_data[i].abs_code);
ds->gyro_calib_data[i].bias = 0;
ds->gyro_calib_data[i].sens_numer = DS_GYRO_RANGE;
ds->gyro_calib_data[i].sens_denom = S16_MAX;
}
}
/*
* Set accelerometer calibration and normalization parameters.
* Data values will be normalized to 1/DS_ACC_RES_PER_G g.
*/
range_2g = acc_x_plus - acc_x_minus;
ds->accel_calib_data[0].abs_code = ABS_X;
ds->accel_calib_data[0].bias = acc_x_plus - range_2g / 2;
ds->accel_calib_data[0].sens_numer = 2*DS_ACC_RES_PER_G;
ds->accel_calib_data[0].sens_denom = range_2g;
range_2g = acc_y_plus - acc_y_minus;
ds->accel_calib_data[1].abs_code = ABS_Y;
ds->accel_calib_data[1].bias = acc_y_plus - range_2g / 2;
ds->accel_calib_data[1].sens_numer = 2*DS_ACC_RES_PER_G;
ds->accel_calib_data[1].sens_denom = range_2g;
range_2g = acc_z_plus - acc_z_minus;
ds->accel_calib_data[2].abs_code = ABS_Z;
ds->accel_calib_data[2].bias = acc_z_plus - range_2g / 2;
ds->accel_calib_data[2].sens_numer = 2*DS_ACC_RES_PER_G;
ds->accel_calib_data[2].sens_denom = range_2g;
/*
* Sanity check accelerometer calibration data. This is needed to prevent crashes
* during report handling of virtual, clone or broken devices not implementing calibration
* data properly.
*/
for (i = 0; i < ARRAY_SIZE(ds->accel_calib_data); i++) {
if (ds->accel_calib_data[i].sens_denom == 0) {
hid_warn(hdev, "Invalid accelerometer calibration data for axis (%d), disabling calibration.",
ds->accel_calib_data[i].abs_code);
ds->accel_calib_data[i].bias = 0;
ds->accel_calib_data[i].sens_numer = DS_ACC_RANGE;
ds->accel_calib_data[i].sens_denom = S16_MAX;
}
}
err_free:
kfree(buf);
return ret;
}
static int dualsense_get_firmware_info(struct dualsense *ds)
{
uint8_t *buf;
int ret;
buf = kzalloc(DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_FIRMWARE_INFO, buf,
DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, true);
if (ret) {
hid_err(ds->base.hdev, "Failed to retrieve DualSense firmware info: %d\n", ret);
goto err_free;
}
ds->base.hw_version = get_unaligned_le32(&buf[24]);
ds->base.fw_version = get_unaligned_le32(&buf[28]);
/* Update version is some kind of feature version. It is distinct from
* the firmware version as there can be many different variations of a
* controller over time with the same physical shell, but with different
* PCBs and other internal changes. The update version (internal name) is
* used as a means to detect what features are available and change behavior.
* Note: the version is different between DualSense and DualSense Edge.
*/
ds->update_version = get_unaligned_le16(&buf[44]);
err_free:
kfree(buf);
return ret;
}
static int dualsense_get_mac_address(struct dualsense *ds)
{
uint8_t *buf;
int ret = 0;
buf = kzalloc(DS_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_PAIRING_INFO, buf,
DS_FEATURE_REPORT_PAIRING_INFO_SIZE, true);
if (ret) {
hid_err(ds->base.hdev, "Failed to retrieve DualSense pairing info: %d\n", ret);
goto err_free;
}
memcpy(ds->base.mac_address, &buf[1], sizeof(ds->base.mac_address));
err_free:
kfree(buf);
return ret;
}
static int dualsense_lightbar_set_brightness(struct led_classdev *cdev,
enum led_brightness brightness)
{
struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev);
struct dualsense *ds = container_of(mc_cdev, struct dualsense, lightbar);
uint8_t red, green, blue;
led_mc_calc_color_components(mc_cdev, brightness);
red = mc_cdev->subled_info[0].brightness;
green = mc_cdev->subled_info[1].brightness;
blue = mc_cdev->subled_info[2].brightness;
dualsense_set_lightbar(ds, red, green, blue);
return 0;
}
static enum led_brightness dualsense_player_led_get_brightness(struct led_classdev *led)
{
struct hid_device *hdev = to_hid_device(led->dev->parent);
struct dualsense *ds = hid_get_drvdata(hdev);
return !!(ds->player_leds_state & BIT(led - ds->player_leds));
}
static int dualsense_player_led_set_brightness(struct led_classdev *led, enum led_brightness value)
{
struct hid_device *hdev = to_hid_device(led->dev->parent);
struct dualsense *ds = hid_get_drvdata(hdev);
unsigned long flags;
unsigned int led_index;
spin_lock_irqsave(&ds->base.lock, flags);
led_index = led - ds->player_leds;
if (value == LED_OFF)
ds->player_leds_state &= ~BIT(led_index);
else
ds->player_leds_state |= BIT(led_index);
ds->update_player_leds = true;
spin_unlock_irqrestore(&ds->base.lock, flags);
dualsense_schedule_work(ds);
return 0;
}
static void dualsense_init_output_report(struct dualsense *ds, struct dualsense_output_report *rp,
void *buf)
{
struct hid_device *hdev = ds->base.hdev;
if (hdev->bus == BUS_BLUETOOTH) {
struct dualsense_output_report_bt *bt = buf;
memset(bt, 0, sizeof(*bt));
bt->report_id = DS_OUTPUT_REPORT_BT;
bt->tag = DS_OUTPUT_TAG; /* Tag must be set. Exact meaning is unclear. */
/*
* Highest 4-bit is a sequence number, which needs to be increased
* every report. Lowest 4-bit is tag and can be zero for now.
*/
bt->seq_tag = (ds->output_seq << 4) | 0x0;
if (++ds->output_seq == 16)
ds->output_seq = 0;
rp->data = buf;
rp->len = sizeof(*bt);
rp->bt = bt;
rp->usb = NULL;
rp->common = &bt->common;
} else { /* USB */
struct dualsense_output_report_usb *usb = buf;
memset(usb, 0, sizeof(*usb));
usb->report_id = DS_OUTPUT_REPORT_USB;
rp->data = buf;
rp->len = sizeof(*usb);
rp->bt = NULL;
rp->usb = usb;
rp->common = &usb->common;
}
}
static inline void dualsense_schedule_work(struct dualsense *ds)
{
unsigned long flags;
spin_lock_irqsave(&ds->base.lock, flags);
if (ds->output_worker_initialized)
schedule_work(&ds->output_worker);
spin_unlock_irqrestore(&ds->base.lock, flags);
}
/*
* Helper function to send DualSense output reports. Applies a CRC at the end of a report
* for Bluetooth reports.
*/
static void dualsense_send_output_report(struct dualsense *ds,
struct dualsense_output_report *report)
{
struct hid_device *hdev = ds->base.hdev;
/* Bluetooth packets need to be signed with a CRC in the last 4 bytes. */
if (report->bt) {
uint32_t crc;
uint8_t seed = PS_OUTPUT_CRC32_SEED;
crc = crc32_le(0xFFFFFFFF, &seed, 1);
crc = ~crc32_le(crc, report->data, report->len - 4);
report->bt->crc32 = cpu_to_le32(crc);
}
hid_hw_output_report(hdev, report->data, report->len);
}
static void dualsense_output_worker(struct work_struct *work)
{
struct dualsense *ds = container_of(work, struct dualsense, output_worker);
struct dualsense_output_report report;
struct dualsense_output_report_common *common;
unsigned long flags;
dualsense_init_output_report(ds, &report, ds->output_report_dmabuf);
common = report.common;
spin_lock_irqsave(&ds->base.lock, flags);
if (ds->update_rumble) {
/* Select classic rumble style haptics and enable it. */
common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT;
if (ds->use_vibration_v2)
common->valid_flag2 |= DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2;
else
common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION;
common->motor_left = ds->motor_left;
common->motor_right = ds->motor_right;
ds->update_rumble = false;
}
if (ds->update_lightbar) {
common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE;
common->lightbar_red = ds->lightbar_red;
common->lightbar_green = ds->lightbar_green;
common->lightbar_blue = ds->lightbar_blue;
ds->update_lightbar = false;
}
if (ds->update_player_leds) {
common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE;
common->player_leds = ds->player_leds_state;
ds->update_player_leds = false;
}
if (ds->update_mic_mute) {
common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE;
common->mute_button_led = ds->mic_muted;
if (ds->mic_muted) {
/* Disable microphone */
common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE;
common->power_save_control |= DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE;
} else {
/* Enable microphone */
common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE;
common->power_save_control &= ~DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE;
}
ds->update_mic_mute = false;
}
spin_unlock_irqrestore(&ds->base.lock, flags);
dualsense_send_output_report(ds, &report);
}
static int dualsense_parse_report(struct ps_device *ps_dev, struct hid_report *report,
u8 *data, int size)
{
struct hid_device *hdev = ps_dev->hdev;
struct dualsense *ds = container_of(ps_dev, struct dualsense, base);
struct dualsense_input_report *ds_report;
uint8_t battery_data, battery_capacity, charging_status, value;
int battery_status;
uint32_t sensor_timestamp;
bool btn_mic_state;
unsigned long flags;
int i;
/*
* DualSense in USB uses the full HID report for reportID 1, but
* Bluetooth uses a minimal HID report for reportID 1 and reports
* the full report using reportID 49.
*/
if (hdev->bus == BUS_USB && report->id == DS_INPUT_REPORT_USB &&
size == DS_INPUT_REPORT_USB_SIZE) {
ds_report = (struct dualsense_input_report *)&data[1];
} else if (hdev->bus == BUS_BLUETOOTH && report->id == DS_INPUT_REPORT_BT &&
size == DS_INPUT_REPORT_BT_SIZE) {
/* Last 4 bytes of input report contain crc32 */
uint32_t report_crc = get_unaligned_le32(&data[size - 4]);
if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) {
hid_err(hdev, "DualSense input CRC's check failed\n");
return -EILSEQ;
}
ds_report = (struct dualsense_input_report *)&data[2];
} else {
hid_err(hdev, "Unhandled reportID=%d\n", report->id);
return -1;
}
input_report_abs(ds->gamepad, ABS_X, ds_report->x);
input_report_abs(ds->gamepad, ABS_Y, ds_report->y);
input_report_abs(ds->gamepad, ABS_RX, ds_report->rx);
input_report_abs(ds->gamepad, ABS_RY, ds_report->ry);
input_report_abs(ds->gamepad, ABS_Z, ds_report->z);
input_report_abs(ds->gamepad, ABS_RZ, ds_report->rz);
value = ds_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH;
if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping))
value = 8; /* center */
input_report_abs(ds->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x);
input_report_abs(ds->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y);
input_report_key(ds->gamepad, BTN_WEST, ds_report->buttons[0] & DS_BUTTONS0_SQUARE);
input_report_key(ds->gamepad, BTN_SOUTH, ds_report->buttons[0] & DS_BUTTONS0_CROSS);
input_report_key(ds->gamepad, BTN_EAST, ds_report->buttons[0] & DS_BUTTONS0_CIRCLE);
input_report_key(ds->gamepad, BTN_NORTH, ds_report->buttons[0] & DS_BUTTONS0_TRIANGLE);
input_report_key(ds->gamepad, BTN_TL, ds_report->buttons[1] & DS_BUTTONS1_L1);
input_report_key(ds->gamepad, BTN_TR, ds_report->buttons[1] & DS_BUTTONS1_R1);
input_report_key(ds->gamepad, BTN_TL2, ds_report->buttons[1] & DS_BUTTONS1_L2);
input_report_key(ds->gamepad, BTN_TR2, ds_report->buttons[1] & DS_BUTTONS1_R2);
input_report_key(ds->gamepad, BTN_SELECT, ds_report->buttons[1] & DS_BUTTONS1_CREATE);
input_report_key(ds->gamepad, BTN_START, ds_report->buttons[1] & DS_BUTTONS1_OPTIONS);
input_report_key(ds->gamepad, BTN_THUMBL, ds_report->buttons[1] & DS_BUTTONS1_L3);
input_report_key(ds->gamepad, BTN_THUMBR, ds_report->buttons[1] & DS_BUTTONS1_R3);
input_report_key(ds->gamepad, BTN_MODE, ds_report->buttons[2] & DS_BUTTONS2_PS_HOME);
input_sync(ds->gamepad);
/*
* The DualSense has an internal microphone, which can be muted through a mute button
* on the device. The driver is expected to read the button state and program the device
* to mute/unmute audio at the hardware level.
*/
btn_mic_state = !!(ds_report->buttons[2] & DS_BUTTONS2_MIC_MUTE);
if (btn_mic_state && !ds->last_btn_mic_state) {
spin_lock_irqsave(&ps_dev->lock, flags);
ds->update_mic_mute = true;
ds->mic_muted = !ds->mic_muted; /* toggle */
spin_unlock_irqrestore(&ps_dev->lock, flags);
/* Schedule updating of microphone state at hardware level. */
dualsense_schedule_work(ds);
}
ds->last_btn_mic_state = btn_mic_state;
/* Parse and calibrate gyroscope data. */
for (i = 0; i < ARRAY_SIZE(ds_report->gyro); i++) {
int raw_data = (short)le16_to_cpu(ds_report->gyro[i]);
int calib_data = mult_frac(ds->gyro_calib_data[i].sens_numer,
raw_data, ds->gyro_calib_data[i].sens_denom);
input_report_abs(ds->sensors, ds->gyro_calib_data[i].abs_code, calib_data);
}
/* Parse and calibrate accelerometer data. */
for (i = 0; i < ARRAY_SIZE(ds_report->accel); i++) {
int raw_data = (short)le16_to_cpu(ds_report->accel[i]);
int calib_data = mult_frac(ds->accel_calib_data[i].sens_numer,
raw_data - ds->accel_calib_data[i].bias,
ds->accel_calib_data[i].sens_denom);
input_report_abs(ds->sensors, ds->accel_calib_data[i].abs_code, calib_data);
}
/* Convert timestamp (in 0.33us unit) to timestamp_us */
sensor_timestamp = le32_to_cpu(ds_report->sensor_timestamp);
if (!ds->sensor_timestamp_initialized) {
ds->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp, 3);
ds->sensor_timestamp_initialized = true;
} else {
uint32_t delta;
if (ds->prev_sensor_timestamp > sensor_timestamp)
delta = (U32_MAX - ds->prev_sensor_timestamp + sensor_timestamp + 1);
else
delta = sensor_timestamp - ds->prev_sensor_timestamp;
ds->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta, 3);
}
ds->prev_sensor_timestamp = sensor_timestamp;
input_event(ds->sensors, EV_MSC, MSC_TIMESTAMP, ds->sensor_timestamp_us);
input_sync(ds->sensors);
for (i = 0; i < ARRAY_SIZE(ds_report->points); i++) {
struct dualsense_touch_point *point = &ds_report->points[i];
bool active = (point->contact & DS_TOUCH_POINT_INACTIVE) ? false : true;
input_mt_slot(ds->touchpad, i);
input_mt_report_slot_state(ds->touchpad, MT_TOOL_FINGER, active);
if (active) {
int x = (point->x_hi << 8) | point->x_lo;
int y = (point->y_hi << 4) | point->y_lo;
input_report_abs(ds->touchpad, ABS_MT_POSITION_X, x);
input_report_abs(ds->touchpad, ABS_MT_POSITION_Y, y);
}
}
input_mt_sync_frame(ds->touchpad);
input_report_key(ds->touchpad, BTN_LEFT, ds_report->buttons[2] & DS_BUTTONS2_TOUCHPAD);
input_sync(ds->touchpad);
battery_data = ds_report->status & DS_STATUS_BATTERY_CAPACITY;
charging_status = (ds_report->status & DS_STATUS_CHARGING) >> DS_STATUS_CHARGING_SHIFT;
switch (charging_status) {
case 0x0:
/*
* Each unit of battery data corresponds to 10%
* 0 = 0-9%, 1 = 10-19%, .. and 10 = 100%
*/
battery_capacity = min(battery_data * 10 + 5, 100);
battery_status = POWER_SUPPLY_STATUS_DISCHARGING;
break;
case 0x1:
battery_capacity = min(battery_data * 10 + 5, 100);
battery_status = POWER_SUPPLY_STATUS_CHARGING;
break;
case 0x2:
battery_capacity = 100;
battery_status = POWER_SUPPLY_STATUS_FULL;
break;
case 0xa: /* voltage or temperature out of range */
case 0xb: /* temperature error */
battery_capacity = 0;
battery_status = POWER_SUPPLY_STATUS_NOT_CHARGING;
break;
case 0xf: /* charging error */
default:
battery_capacity = 0;
battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
}
spin_lock_irqsave(&ps_dev->lock, flags);
ps_dev->battery_capacity = battery_capacity;
ps_dev->battery_status = battery_status;
spin_unlock_irqrestore(&ps_dev->lock, flags);
return 0;
}
static int dualsense_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect)
{
struct hid_device *hdev = input_get_drvdata(dev);
struct dualsense *ds = hid_get_drvdata(hdev);
unsigned long flags;
if (effect->type != FF_RUMBLE)
return 0;
spin_lock_irqsave(&ds->base.lock, flags);
ds->update_rumble = true;
ds->motor_left = effect->u.rumble.strong_magnitude / 256;
ds->motor_right = effect->u.rumble.weak_magnitude / 256;
spin_unlock_irqrestore(&ds->base.lock, flags);
dualsense_schedule_work(ds);
return 0;
}
static void dualsense_remove(struct ps_device *ps_dev)
{
struct dualsense *ds = container_of(ps_dev, struct dualsense, base);
unsigned long flags;
spin_lock_irqsave(&ds->base.lock, flags);
ds->output_worker_initialized = false;
spin_unlock_irqrestore(&ds->base.lock, flags);
cancel_work_sync(&ds->output_worker);
}
static int dualsense_reset_leds(struct dualsense *ds)
{
struct dualsense_output_report report;
uint8_t *buf;
buf = kzalloc(sizeof(struct dualsense_output_report_bt), GFP_KERNEL);
if (!buf)
return -ENOMEM;
dualsense_init_output_report(ds, &report, buf);
/*
* On Bluetooth the DualSense outputs an animation on the lightbar
* during startup and maintains a color afterwards. We need to explicitly
* reconfigure the lightbar before we can do any programming later on.
* In USB the lightbar is not on by default, but redoing the setup there
* doesn't hurt.
*/
report.common->valid_flag2 = DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE;
report.common->lightbar_setup = DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT; /* Fade light out. */
dualsense_send_output_report(ds, &report);
kfree(buf);
return 0;
}
static void dualsense_set_lightbar(struct dualsense *ds, uint8_t red, uint8_t green, uint8_t blue)
{
unsigned long flags;
spin_lock_irqsave(&ds->base.lock, flags);
ds->update_lightbar = true;
ds->lightbar_red = red;
ds->lightbar_green = green;
ds->lightbar_blue = blue;
spin_unlock_irqrestore(&ds->base.lock, flags);
dualsense_schedule_work(ds);
}
static void dualsense_set_player_leds(struct dualsense *ds)
{
/*
* The DualSense controller has a row of 5 LEDs used for player ids.
* Behavior on the PlayStation 5 console is to center the player id
* across the LEDs, so e.g. player 1 would be "--x--" with x being 'on'.
* Follow a similar mapping here.
*/
static const int player_ids[5] = {
BIT(2),
BIT(3) | BIT(1),
BIT(4) | BIT(2) | BIT(0),
BIT(4) | BIT(3) | BIT(1) | BIT(0),
BIT(4) | BIT(3) | BIT(2) | BIT(1) | BIT(0)
};
uint8_t player_id = ds->base.player_id % ARRAY_SIZE(player_ids);
ds->update_player_leds = true;
ds->player_leds_state = player_ids[player_id];
dualsense_schedule_work(ds);
}
static struct ps_device *dualsense_create(struct hid_device *hdev)
{
struct dualsense *ds;
struct ps_device *ps_dev;
uint8_t max_output_report_size;
int i, ret;
static const struct ps_led_info player_leds_info[] = {
{ LED_FUNCTION_PLAYER1, "white", 1, dualsense_player_led_get_brightness,
dualsense_player_led_set_brightness },
{ LED_FUNCTION_PLAYER2, "white", 1, dualsense_player_led_get_brightness,
dualsense_player_led_set_brightness },
{ LED_FUNCTION_PLAYER3, "white", 1, dualsense_player_led_get_brightness,
dualsense_player_led_set_brightness },
{ LED_FUNCTION_PLAYER4, "white", 1, dualsense_player_led_get_brightness,
dualsense_player_led_set_brightness },
{ LED_FUNCTION_PLAYER5, "white", 1, dualsense_player_led_get_brightness,
dualsense_player_led_set_brightness }
};
ds = devm_kzalloc(&hdev->dev, sizeof(*ds), GFP_KERNEL);
if (!ds)
return ERR_PTR(-ENOMEM);
/*
* Patch version to allow userspace to distinguish between
* hid-generic vs hid-playstation axis and button mapping.
*/
hdev->version |= HID_PLAYSTATION_VERSION_PATCH;
ps_dev = &ds->base;
ps_dev->hdev = hdev;
spin_lock_init(&ps_dev->lock);
ps_dev->battery_capacity = 100; /* initial value until parse_report. */
ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
ps_dev->parse_report = dualsense_parse_report;
ps_dev->remove = dualsense_remove;
INIT_WORK(&ds->output_worker, dualsense_output_worker);
ds->output_worker_initialized = true;
hid_set_drvdata(hdev, ds);
max_output_report_size = sizeof(struct dualsense_output_report_bt);
ds->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL);
if (!ds->output_report_dmabuf)
return ERR_PTR(-ENOMEM);
ret = dualsense_get_mac_address(ds);
if (ret) {
hid_err(hdev, "Failed to get MAC address from DualSense\n");
return ERR_PTR(ret);
}
snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds->base.mac_address);
ret = dualsense_get_firmware_info(ds);
if (ret) {
hid_err(hdev, "Failed to get firmware info from DualSense\n");
return ERR_PTR(ret);
}
/* Original DualSense firmware simulated classic controller rumble through
* its new haptics hardware. It felt different from classic rumble users
* were used to. Since then new firmwares were introduced to change behavior
* and make this new 'v2' behavior default on PlayStation and other platforms.
* The original DualSense requires a new enough firmware as bundled with PS5
* software released in 2021. DualSense edge supports it out of the box.
* Both devices also support the old mode, but it is not really used.
*/
if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER) {
/* Feature version 2.21 introduced new vibration method. */
ds->use_vibration_v2 = ds->update_version >= DS_FEATURE_VERSION(2, 21);
} else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) {
ds->use_vibration_v2 = true;
}
ret = ps_devices_list_add(ps_dev);
if (ret)
return ERR_PTR(ret);
ret = dualsense_get_calibration_data(ds);
if (ret) {
hid_err(hdev, "Failed to get calibration data from DualSense\n");
goto err;
}
ds->gamepad = ps_gamepad_create(hdev, dualsense_play_effect);
if (IS_ERR(ds->gamepad)) {
ret = PTR_ERR(ds->gamepad);
goto err;
}
/* Use gamepad input device name as primary device name for e.g. LEDs */
ps_dev->input_dev_name = dev_name(&ds->gamepad->dev);
ds->sensors = ps_sensors_create(hdev, DS_ACC_RANGE, DS_ACC_RES_PER_G,
DS_GYRO_RANGE, DS_GYRO_RES_PER_DEG_S);
if (IS_ERR(ds->sensors)) {
ret = PTR_ERR(ds->sensors);
goto err;
}
ds->touchpad = ps_touchpad_create(hdev, DS_TOUCHPAD_WIDTH, DS_TOUCHPAD_HEIGHT, 2);
if (IS_ERR(ds->touchpad)) {
ret = PTR_ERR(ds->touchpad);
goto err;
}
ret = ps_device_register_battery(ps_dev);
if (ret)
goto err;
/*
* The hardware may have control over the LEDs (e.g. in Bluetooth on startup).
* Reset the LEDs (lightbar, mute, player leds), so we can control them
* from software.
*/
ret = dualsense_reset_leds(ds);
if (ret)
goto err;
ret = ps_lightbar_register(ps_dev, &ds->lightbar, dualsense_lightbar_set_brightness);
if (ret)
goto err;
/* Set default lightbar color. */
dualsense_set_lightbar(ds, 0, 0, 128); /* blue */
for (i = 0; i < ARRAY_SIZE(player_leds_info); i++) {
const struct ps_led_info *led_info = &player_leds_info[i];
ret = ps_led_register(ps_dev, &ds->player_leds[i], led_info);
if (ret < 0)
goto err;
}
ret = ps_device_set_player_id(ps_dev);
if (ret) {
hid_err(hdev, "Failed to assign player id for DualSense: %d\n", ret);
goto err;
}
/* Set player LEDs to our player id. */
dualsense_set_player_leds(ds);
/*
* Reporting hardware and firmware is important as there are frequent updates, which
* can change behavior.
*/
hid_info(hdev, "Registered DualSense controller hw_version=0x%08x fw_version=0x%08x\n",
ds->base.hw_version, ds->base.fw_version);
return &ds->base;
err:
ps_devices_list_remove(ps_dev);
return ERR_PTR(ret);
}
static void dualshock4_dongle_calibration_work(struct work_struct *work)
{
struct dualshock4 *ds4 = container_of(work, struct dualshock4, dongle_hotplug_worker);
unsigned long flags;
enum dualshock4_dongle_state dongle_state;
int ret;
ret = dualshock4_get_calibration_data(ds4);
if (ret < 0) {
/* This call is very unlikely to fail for the dongle. When it
* fails we are probably in a very bad state, so mark the
* dongle as disabled. We will re-enable the dongle if a new
* DS4 hotplug is detect from sony_raw_event as any issues
* are likely resolved then (the dongle is quite stupid).
*/
hid_err(ds4->base.hdev, "DualShock 4 USB dongle: calibration failed, disabling device\n");
dongle_state = DONGLE_DISABLED;
} else {
hid_info(ds4->base.hdev, "DualShock 4 USB dongle: calibration completed\n");
dongle_state = DONGLE_CONNECTED;
}
spin_lock_irqsave(&ds4->base.lock, flags);
ds4->dongle_state = dongle_state;
spin_unlock_irqrestore(&ds4->base.lock, flags);
}
static int dualshock4_get_calibration_data(struct dualshock4 *ds4)
{
struct hid_device *hdev = ds4->base.hdev;
short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus;
short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus;
short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus;
short gyro_speed_plus, gyro_speed_minus;
short acc_x_plus, acc_x_minus;
short acc_y_plus, acc_y_minus;
short acc_z_plus, acc_z_minus;
int speed_2x;
int range_2g;
int ret = 0;
int i;
uint8_t *buf;
if (ds4->base.hdev->bus == BUS_USB) {
int retries;
buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* We should normally receive the feature report data we asked
* for, but hidraw applications such as Steam can issue feature
* reports as well. In particular for Dongle reconnects, Steam
* and this function are competing resulting in often receiving
* data for a different HID report, so retry a few times.
*/
for (retries = 0; retries < 3; retries++) {
ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION, buf,
DS4_FEATURE_REPORT_CALIBRATION_SIZE, true);
if (ret) {
if (retries < 2) {
hid_warn(hdev, "Retrying DualShock 4 get calibration report (0x02) request\n");
continue;
}
hid_err(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret);
ret = -EILSEQ;
goto err_free;
} else {
break;
}
}
} else { /* Bluetooth */
buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION_BT, buf,
DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, true);
if (ret) {
hid_err(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret);
goto err_free;
}
}
gyro_pitch_bias = get_unaligned_le16(&buf[1]);
gyro_yaw_bias = get_unaligned_le16(&buf[3]);
gyro_roll_bias = get_unaligned_le16(&buf[5]);
if (ds4->base.hdev->bus == BUS_USB) {
gyro_pitch_plus = get_unaligned_le16(&buf[7]);
gyro_pitch_minus = get_unaligned_le16(&buf[9]);
gyro_yaw_plus = get_unaligned_le16(&buf[11]);
gyro_yaw_minus = get_unaligned_le16(&buf[13]);
gyro_roll_plus = get_unaligned_le16(&buf[15]);
gyro_roll_minus = get_unaligned_le16(&buf[17]);
} else {
/* BT + Dongle */
gyro_pitch_plus = get_unaligned_le16(&buf[7]);
gyro_yaw_plus = get_unaligned_le16(&buf[9]);
gyro_roll_plus = get_unaligned_le16(&buf[11]);
gyro_pitch_minus = get_unaligned_le16(&buf[13]);
gyro_yaw_minus = get_unaligned_le16(&buf[15]);
gyro_roll_minus = get_unaligned_le16(&buf[17]);
}
gyro_speed_plus = get_unaligned_le16(&buf[19]);
gyro_speed_minus = get_unaligned_le16(&buf[21]);
acc_x_plus = get_unaligned_le16(&buf[23]);
acc_x_minus = get_unaligned_le16(&buf[25]);
acc_y_plus = get_unaligned_le16(&buf[27]);
acc_y_minus = get_unaligned_le16(&buf[29]);
acc_z_plus = get_unaligned_le16(&buf[31]);
acc_z_minus = get_unaligned_le16(&buf[33]);
/*
* Set gyroscope calibration and normalization parameters.
* Data values will be normalized to 1/DS4_GYRO_RES_PER_DEG_S degree/s.
*/
speed_2x = (gyro_speed_plus + gyro_speed_minus);
ds4->gyro_calib_data[0].abs_code = ABS_RX;
ds4->gyro_calib_data[0].bias = 0;
ds4->gyro_calib_data[0].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
ds4->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) +
abs(gyro_pitch_minus - gyro_pitch_bias);
ds4->gyro_calib_data[1].abs_code = ABS_RY;
ds4->gyro_calib_data[1].bias = 0;
ds4->gyro_calib_data[1].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
ds4->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) +
abs(gyro_yaw_minus - gyro_yaw_bias);
ds4->gyro_calib_data[2].abs_code = ABS_RZ;
ds4->gyro_calib_data[2].bias = 0;
ds4->gyro_calib_data[2].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
ds4->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) +
abs(gyro_roll_minus - gyro_roll_bias);
/*
* Sanity check gyro calibration data. This is needed to prevent crashes
* during report handling of virtual, clone or broken devices not implementing
* calibration data properly.
*/
for (i = 0; i < ARRAY_SIZE(ds4->gyro_calib_data); i++) {
if (ds4->gyro_calib_data[i].sens_denom == 0) {
hid_warn(hdev, "Invalid gyro calibration data for axis (%d), disabling calibration.",
ds4->gyro_calib_data[i].abs_code);
ds4->gyro_calib_data[i].bias = 0;
ds4->gyro_calib_data[i].sens_numer = DS4_GYRO_RANGE;
ds4->gyro_calib_data[i].sens_denom = S16_MAX;
}
}
/*
* Set accelerometer calibration and normalization parameters.
* Data values will be normalized to 1/DS4_ACC_RES_PER_G g.
*/
range_2g = acc_x_plus - acc_x_minus;
ds4->accel_calib_data[0].abs_code = ABS_X;
ds4->accel_calib_data[0].bias = acc_x_plus - range_2g / 2;
ds4->accel_calib_data[0].sens_numer = 2*DS4_ACC_RES_PER_G;
ds4->accel_calib_data[0].sens_denom = range_2g;
range_2g = acc_y_plus - acc_y_minus;
ds4->accel_calib_data[1].abs_code = ABS_Y;
ds4->accel_calib_data[1].bias = acc_y_plus - range_2g / 2;
ds4->accel_calib_data[1].sens_numer = 2*DS4_ACC_RES_PER_G;
ds4->accel_calib_data[1].sens_denom = range_2g;
range_2g = acc_z_plus - acc_z_minus;
ds4->accel_calib_data[2].abs_code = ABS_Z;
ds4->accel_calib_data[2].bias = acc_z_plus - range_2g / 2;
ds4->accel_calib_data[2].sens_numer = 2*DS4_ACC_RES_PER_G;
ds4->accel_calib_data[2].sens_denom = range_2g;
/*
* Sanity check accelerometer calibration data. This is needed to prevent crashes
* during report handling of virtual, clone or broken devices not implementing calibration
* data properly.
*/
for (i = 0; i < ARRAY_SIZE(ds4->accel_calib_data); i++) {
if (ds4->accel_calib_data[i].sens_denom == 0) {
hid_warn(hdev, "Invalid accelerometer calibration data for axis (%d), disabling calibration.",
ds4->accel_calib_data[i].abs_code);
ds4->accel_calib_data[i].bias = 0;
ds4->accel_calib_data[i].sens_numer = DS4_ACC_RANGE;
ds4->accel_calib_data[i].sens_denom = S16_MAX;
}
}
err_free:
kfree(buf);
return ret;
}
static int dualshock4_get_firmware_info(struct dualshock4 *ds4)
{
uint8_t *buf;
int ret;
buf = kzalloc(DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* Note USB and BT support the same feature report, but this report
* lacks CRC support, so must be disabled in ps_get_report.
*/
ret = ps_get_report(ds4->base.hdev, DS4_FEATURE_REPORT_FIRMWARE_INFO, buf,
DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, false);
if (ret) {
hid_err(ds4->base.hdev, "Failed to retrieve DualShock4 firmware info: %d\n", ret);
goto err_free;
}
ds4->base.hw_version = get_unaligned_le16(&buf[35]);
ds4->base.fw_version = get_unaligned_le16(&buf[41]);
err_free:
kfree(buf);
return ret;
}
static int dualshock4_get_mac_address(struct dualshock4 *ds4)
{
struct hid_device *hdev = ds4->base.hdev;
uint8_t *buf;
int ret = 0;
if (hdev->bus == BUS_USB) {
buf = kzalloc(DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = ps_get_report(hdev, DS4_FEATURE_REPORT_PAIRING_INFO, buf,
DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, false);
if (ret) {
hid_err(hdev, "Failed to retrieve DualShock4 pairing info: %d\n", ret);
goto err_free;
}
memcpy(ds4->base.mac_address, &buf[1], sizeof(ds4->base.mac_address));
} else {
/* Rely on HIDP for Bluetooth */
if (strlen(hdev->uniq) != 17)
return -EINVAL;
ret = sscanf(hdev->uniq, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx",
&ds4->base.mac_address[5], &ds4->base.mac_address[4],
&ds4->base.mac_address[3], &ds4->base.mac_address[2],
&ds4->base.mac_address[1], &ds4->base.mac_address[0]);
if (ret != sizeof(ds4->base.mac_address))
return -EINVAL;
return 0;
}
err_free:
kfree(buf);
return ret;
}
static enum led_brightness dualshock4_led_get_brightness(struct led_classdev *led)
{
struct hid_device *hdev = to_hid_device(led->dev->parent);
struct dualshock4 *ds4 = hid_get_drvdata(hdev);
unsigned int led_index;
led_index = led - ds4->lightbar_leds;
switch (led_index) {
case 0:
return ds4->lightbar_red;
case 1:
return ds4->lightbar_green;
case 2:
return ds4->lightbar_blue;
case 3:
return ds4->lightbar_enabled;
}
return -1;
}
static int dualshock4_led_set_blink(struct led_classdev *led, unsigned long *delay_on,
unsigned long *delay_off)
{
struct hid_device *hdev = to_hid_device(led->dev->parent);
struct dualshock4 *ds4 = hid_get_drvdata(hdev);
unsigned long flags;
spin_lock_irqsave(&ds4->base.lock, flags);
if (!*delay_on && !*delay_off) {
/* Default to 1 Hz (50 centiseconds on, 50 centiseconds off). */
ds4->lightbar_blink_on = 50;
ds4->lightbar_blink_off = 50;
} else {
/* Blink delays in centiseconds. */
ds4->lightbar_blink_on = min_t(unsigned long, *delay_on/10, DS4_LIGHTBAR_MAX_BLINK);
ds4->lightbar_blink_off = min_t(unsigned long, *delay_off/10, DS4_LIGHTBAR_MAX_BLINK);
}
ds4->update_lightbar_blink = true;
spin_unlock_irqrestore(&ds4->base.lock, flags);
dualshock4_schedule_work(ds4);
*delay_on = ds4->lightbar_blink_on;
*delay_off = ds4->lightbar_blink_off;
return 0;
}
static int dualshock4_led_set_brightness(struct led_classdev *led, enum led_brightness value)
{
struct hid_device *hdev = to_hid_device(led->dev->parent);
struct dualshock4 *ds4 = hid_get_drvdata(hdev);
unsigned long flags;
unsigned int led_index;
spin_lock_irqsave(&ds4->base.lock, flags);
led_index = led - ds4->lightbar_leds;
switch (led_index) {
case 0:
ds4->lightbar_red = value;
break;
case 1:
ds4->lightbar_green = value;
break;
case 2:
ds4->lightbar_blue = value;
break;
case 3:
ds4->lightbar_enabled = !!value;
}
ds4->update_lightbar = true;
spin_unlock_irqrestore(&ds4->base.lock, flags);
dualshock4_schedule_work(ds4);
return 0;
}
static void dualshock4_init_output_report(struct dualshock4 *ds4,
struct dualshock4_output_report *rp, void *buf)
{
struct hid_device *hdev = ds4->base.hdev;
if (hdev->bus == BUS_BLUETOOTH) {
struct dualshock4_output_report_bt *bt = buf;
memset(bt, 0, sizeof(*bt));
bt->report_id = DS4_OUTPUT_REPORT_BT;
rp->data = buf;
rp->len = sizeof(*bt);
rp->bt = bt;
rp->usb = NULL;
rp->common = &bt->common;
} else { /* USB */
struct dualshock4_output_report_usb *usb = buf;
memset(usb, 0, sizeof(*usb));
usb->report_id = DS4_OUTPUT_REPORT_USB;
rp->data = buf;
rp->len = sizeof(*usb);
rp->bt = NULL;
rp->usb = usb;
rp->common = &usb->common;
}
}
static void dualshock4_output_worker(struct work_struct *work)
{
struct dualshock4 *ds4 = container_of(work, struct dualshock4, output_worker);
struct dualshock4_output_report report;
struct dualshock4_output_report_common *common;
unsigned long flags;
dualshock4_init_output_report(ds4, &report, ds4->output_report_dmabuf);
common = report.common;
spin_lock_irqsave(&ds4->base.lock, flags);
if (ds4->update_rumble) {
/* Select classic rumble style haptics and enable it. */
common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_MOTOR;
common->motor_left = ds4->motor_left;
common->motor_right = ds4->motor_right;
ds4->update_rumble = false;
}
if (ds4->update_lightbar) {
common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED;
/* Comptabile behavior with hid-sony, which used a dummy global LED to
* allow enabling/disabling the lightbar. The global LED maps to
* lightbar_enabled.
*/
common->lightbar_red = ds4->lightbar_enabled ? ds4->lightbar_red : 0;
common->lightbar_green = ds4->lightbar_enabled ? ds4->lightbar_green : 0;
common->lightbar_blue = ds4->lightbar_enabled ? ds4->lightbar_blue : 0;
ds4->update_lightbar = false;
}
if (ds4->update_lightbar_blink) {
common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED_BLINK;
common->lightbar_blink_on = ds4->lightbar_blink_on;
common->lightbar_blink_off = ds4->lightbar_blink_off;
ds4->update_lightbar_blink = false;
}
spin_unlock_irqrestore(&ds4->base.lock, flags);
/* Bluetooth packets need additional flags as well as a CRC in the last 4 bytes. */
if (report.bt) {
uint32_t crc;
uint8_t seed = PS_OUTPUT_CRC32_SEED;
/* Hardware control flags need to set to let the device know
* there is HID data as well as CRC.
*/
report.bt->hw_control = DS4_OUTPUT_HWCTL_HID | DS4_OUTPUT_HWCTL_CRC32;
if (ds4->update_bt_poll_interval) {
report.bt->hw_control |= ds4->bt_poll_interval;
ds4->update_bt_poll_interval = false;
}
crc = crc32_le(0xFFFFFFFF, &seed, 1);
crc = ~crc32_le(crc, report.data, report.len - 4);
report.bt->crc32 = cpu_to_le32(crc);
}
hid_hw_output_report(ds4->base.hdev, report.data, report.len);
}
static int dualshock4_parse_report(struct ps_device *ps_dev, struct hid_report *report,
u8 *data, int size)
{
struct hid_device *hdev = ps_dev->hdev;
struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
struct dualshock4_input_report_common *ds4_report;
struct dualshock4_touch_report *touch_reports;
uint8_t battery_capacity, num_touch_reports, value;
int battery_status, i, j;
uint16_t sensor_timestamp;
unsigned long flags;
/*
* DualShock4 in USB uses the full HID report for reportID 1, but
* Bluetooth uses a minimal HID report for reportID 1 and reports
* the full report using reportID 17.
*/
if (hdev->bus == BUS_USB && report->id == DS4_INPUT_REPORT_USB &&
size == DS4_INPUT_REPORT_USB_SIZE) {
struct dualshock4_input_report_usb *usb = (struct dualshock4_input_report_usb *)data;
ds4_report = &usb->common;
num_touch_reports = usb->num_touch_reports;
touch_reports = usb->touch_reports;
} else if (hdev->bus == BUS_BLUETOOTH && report->id == DS4_INPUT_REPORT_BT &&
size == DS4_INPUT_REPORT_BT_SIZE) {
struct dualshock4_input_report_bt *bt = (struct dualshock4_input_report_bt *)data;
uint32_t report_crc = get_unaligned_le32(&bt->crc32);
/* Last 4 bytes of input report contains CRC. */
if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) {
hid_err(hdev, "DualShock4 input CRC's check failed\n");
return -EILSEQ;
}
ds4_report = &bt->common;
num_touch_reports = bt->num_touch_reports;
touch_reports = bt->touch_reports;
} else {
hid_err(hdev, "Unhandled reportID=%d\n", report->id);
return -1;
}
input_report_abs(ds4->gamepad, ABS_X, ds4_report->x);
input_report_abs(ds4->gamepad, ABS_Y, ds4_report->y);
input_report_abs(ds4->gamepad, ABS_RX, ds4_report->rx);
input_report_abs(ds4->gamepad, ABS_RY, ds4_report->ry);
input_report_abs(ds4->gamepad, ABS_Z, ds4_report->z);
input_report_abs(ds4->gamepad, ABS_RZ, ds4_report->rz);
value = ds4_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH;
if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping))
value = 8; /* center */
input_report_abs(ds4->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x);
input_report_abs(ds4->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y);
input_report_key(ds4->gamepad, BTN_WEST, ds4_report->buttons[0] & DS_BUTTONS0_SQUARE);
input_report_key(ds4->gamepad, BTN_SOUTH, ds4_report->buttons[0] & DS_BUTTONS0_CROSS);
input_report_key(ds4->gamepad, BTN_EAST, ds4_report->buttons[0] & DS_BUTTONS0_CIRCLE);
input_report_key(ds4->gamepad, BTN_NORTH, ds4_report->buttons[0] & DS_BUTTONS0_TRIANGLE);
input_report_key(ds4->gamepad, BTN_TL, ds4_report->buttons[1] & DS_BUTTONS1_L1);
input_report_key(ds4->gamepad, BTN_TR, ds4_report->buttons[1] & DS_BUTTONS1_R1);
input_report_key(ds4->gamepad, BTN_TL2, ds4_report->buttons[1] & DS_BUTTONS1_L2);
input_report_key(ds4->gamepad, BTN_TR2, ds4_report->buttons[1] & DS_BUTTONS1_R2);
input_report_key(ds4->gamepad, BTN_SELECT, ds4_report->buttons[1] & DS_BUTTONS1_CREATE);
input_report_key(ds4->gamepad, BTN_START, ds4_report->buttons[1] & DS_BUTTONS1_OPTIONS);
input_report_key(ds4->gamepad, BTN_THUMBL, ds4_report->buttons[1] & DS_BUTTONS1_L3);
input_report_key(ds4->gamepad, BTN_THUMBR, ds4_report->buttons[1] & DS_BUTTONS1_R3);
input_report_key(ds4->gamepad, BTN_MODE, ds4_report->buttons[2] & DS_BUTTONS2_PS_HOME);
input_sync(ds4->gamepad);
/* Parse and calibrate gyroscope data. */
for (i = 0; i < ARRAY_SIZE(ds4_report->gyro); i++) {
int raw_data = (short)le16_to_cpu(ds4_report->gyro[i]);
int calib_data = mult_frac(ds4->gyro_calib_data[i].sens_numer,
raw_data, ds4->gyro_calib_data[i].sens_denom);
input_report_abs(ds4->sensors, ds4->gyro_calib_data[i].abs_code, calib_data);
}
/* Parse and calibrate accelerometer data. */
for (i = 0; i < ARRAY_SIZE(ds4_report->accel); i++) {
int raw_data = (short)le16_to_cpu(ds4_report->accel[i]);
int calib_data = mult_frac(ds4->accel_calib_data[i].sens_numer,
raw_data - ds4->accel_calib_data[i].bias,
ds4->accel_calib_data[i].sens_denom);
input_report_abs(ds4->sensors, ds4->accel_calib_data[i].abs_code, calib_data);
}
/* Convert timestamp (in 5.33us unit) to timestamp_us */
sensor_timestamp = le16_to_cpu(ds4_report->sensor_timestamp);
if (!ds4->sensor_timestamp_initialized) {
ds4->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp*16, 3);
ds4->sensor_timestamp_initialized = true;
} else {
uint16_t delta;
if (ds4->prev_sensor_timestamp > sensor_timestamp)
delta = (U16_MAX - ds4->prev_sensor_timestamp + sensor_timestamp + 1);
else
delta = sensor_timestamp - ds4->prev_sensor_timestamp;
ds4->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta*16, 3);
}
ds4->prev_sensor_timestamp = sensor_timestamp;
input_event(ds4->sensors, EV_MSC, MSC_TIMESTAMP, ds4->sensor_timestamp_us);
input_sync(ds4->sensors);
for (i = 0; i < num_touch_reports; i++) {
struct dualshock4_touch_report *touch_report = &touch_reports[i];
for (j = 0; j < ARRAY_SIZE(touch_report->points); j++) {
struct dualshock4_touch_point *point = &touch_report->points[j];
bool active = (point->contact & DS4_TOUCH_POINT_INACTIVE) ? false : true;
input_mt_slot(ds4->touchpad, j);
input_mt_report_slot_state(ds4->touchpad, MT_TOOL_FINGER, active);
if (active) {
int x = (point->x_hi << 8) | point->x_lo;
int y = (point->y_hi << 4) | point->y_lo;
input_report_abs(ds4->touchpad, ABS_MT_POSITION_X, x);
input_report_abs(ds4->touchpad, ABS_MT_POSITION_Y, y);
}
}
input_mt_sync_frame(ds4->touchpad);
input_sync(ds4->touchpad);
}
input_report_key(ds4->touchpad, BTN_LEFT, ds4_report->buttons[2] & DS_BUTTONS2_TOUCHPAD);
/*
* Interpretation of the battery_capacity data depends on the cable state.
* When no cable is connected (bit4 is 0):
* - 0:10: percentage in units of 10%.
* When a cable is plugged in:
* - 0-10: percentage in units of 10%.
* - 11: battery is full
* - 14: not charging due to Voltage or temperature error
* - 15: charge error
*/
if (ds4_report->status[0] & DS4_STATUS0_CABLE_STATE) {
uint8_t battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY;
if (battery_data < 10) {
/* Take the mid-point for each battery capacity value,
* because on the hardware side 0 = 0-9%, 1=10-19%, etc.
* This matches official platform behavior, which does
* the same.
*/
battery_capacity = battery_data * 10 + 5;
battery_status = POWER_SUPPLY_STATUS_CHARGING;
} else if (battery_data == 10) {
battery_capacity = 100;
battery_status = POWER_SUPPLY_STATUS_CHARGING;
} else if (battery_data == DS4_BATTERY_STATUS_FULL) {
battery_capacity = 100;
battery_status = POWER_SUPPLY_STATUS_FULL;
} else { /* 14, 15 and undefined values */
battery_capacity = 0;
battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
}
} else {
uint8_t battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY;
if (battery_data < 10)
battery_capacity = battery_data * 10 + 5;
else /* 10 */
battery_capacity = 100;
battery_status = POWER_SUPPLY_STATUS_DISCHARGING;
}
spin_lock_irqsave(&ps_dev->lock, flags);
ps_dev->battery_capacity = battery_capacity;
ps_dev->battery_status = battery_status;
spin_unlock_irqrestore(&ps_dev->lock, flags);
return 0;
}
static int dualshock4_dongle_parse_report(struct ps_device *ps_dev, struct hid_report *report,
u8 *data, int size)
{
struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
bool connected = false;
/* The dongle reports data using the main USB report (0x1) no matter whether a controller
* is connected with mostly zeros. The report does contain dongle status, which we use to
* determine if a controller is connected and if so we forward to the regular DualShock4
* parsing code.
*/
if (data[0] == DS4_INPUT_REPORT_USB && size == DS4_INPUT_REPORT_USB_SIZE) {
struct dualshock4_input_report_common *ds4_report = (struct dualshock4_input_report_common *)&data[1];
unsigned long flags;
connected = ds4_report->status[1] & DS4_STATUS1_DONGLE_STATE ? false : true;
if (ds4->dongle_state == DONGLE_DISCONNECTED && connected) {
hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller connected\n");
dualshock4_set_default_lightbar_colors(ds4);
spin_lock_irqsave(&ps_dev->lock, flags);
ds4->dongle_state = DONGLE_CALIBRATING;
spin_unlock_irqrestore(&ps_dev->lock, flags);
schedule_work(&ds4->dongle_hotplug_worker);
/* Don't process the report since we don't have
* calibration data, but let hidraw have it anyway.
*/
return 0;
} else if ((ds4->dongle_state == DONGLE_CONNECTED ||
ds4->dongle_state == DONGLE_DISABLED) && !connected) {
hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller disconnected\n");
spin_lock_irqsave(&ps_dev->lock, flags);
ds4->dongle_state = DONGLE_DISCONNECTED;
spin_unlock_irqrestore(&ps_dev->lock, flags);
/* Return 0, so hidraw can get the report. */
return 0;
} else if (ds4->dongle_state == DONGLE_CALIBRATING ||
ds4->dongle_state == DONGLE_DISABLED ||
ds4->dongle_state == DONGLE_DISCONNECTED) {
/* Return 0, so hidraw can get the report. */
return 0;
}
}
if (connected)
return dualshock4_parse_report(ps_dev, report, data, size);
return 0;
}
static int dualshock4_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect)
{
struct hid_device *hdev = input_get_drvdata(dev);
struct dualshock4 *ds4 = hid_get_drvdata(hdev);
unsigned long flags;
if (effect->type != FF_RUMBLE)
return 0;
spin_lock_irqsave(&ds4->base.lock, flags);
ds4->update_rumble = true;
ds4->motor_left = effect->u.rumble.strong_magnitude / 256;
ds4->motor_right = effect->u.rumble.weak_magnitude / 256;
spin_unlock_irqrestore(&ds4->base.lock, flags);
dualshock4_schedule_work(ds4);
return 0;
}
static void dualshock4_remove(struct ps_device *ps_dev)
{
struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
unsigned long flags;
spin_lock_irqsave(&ds4->base.lock, flags);
ds4->output_worker_initialized = false;
spin_unlock_irqrestore(&ds4->base.lock, flags);
cancel_work_sync(&ds4->output_worker);
if (ps_dev->hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE)
cancel_work_sync(&ds4->dongle_hotplug_worker);
}
static inline void dualshock4_schedule_work(struct dualshock4 *ds4)
{
unsigned long flags;
spin_lock_irqsave(&ds4->base.lock, flags);
if (ds4->output_worker_initialized)
schedule_work(&ds4->output_worker);
spin_unlock_irqrestore(&ds4->base.lock, flags);
}
static void dualshock4_set_bt_poll_interval(struct dualshock4 *ds4, uint8_t interval)
{
ds4->bt_poll_interval = interval;
ds4->update_bt_poll_interval = true;
dualshock4_schedule_work(ds4);
}
/* Set default lightbar color based on player. */
static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4)
{
/* Use same player colors as PlayStation 4.
* Array of colors is in RGB.
*/
static const int player_colors[4][3] = {
{ 0x00, 0x00, 0x40 }, /* Blue */
{ 0x40, 0x00, 0x00 }, /* Red */
{ 0x00, 0x40, 0x00 }, /* Green */
{ 0x20, 0x00, 0x20 } /* Pink */
};
uint8_t player_id = ds4->base.player_id % ARRAY_SIZE(player_colors);
ds4->lightbar_enabled = true;
ds4->lightbar_red = player_colors[player_id][0];
ds4->lightbar_green = player_colors[player_id][1];
ds4->lightbar_blue = player_colors[player_id][2];
ds4->update_lightbar = true;
dualshock4_schedule_work(ds4);
}
static struct ps_device *dualshock4_create(struct hid_device *hdev)
{
struct dualshock4 *ds4;
struct ps_device *ps_dev;
uint8_t max_output_report_size;
int i, ret;
/* The DualShock4 has an RGB lightbar, which the original hid-sony driver
* exposed as a set of 4 LEDs for the 3 color channels and a global control.
* Ideally this should have used the multi-color LED class, which didn't exist
* yet. In addition the driver used a naming scheme not compliant with the LED
* naming spec by using "<mac_address>:<color>", which contained many colons.
* We use a more compliant by using "<device_name>:<color>" name now. Ideally
* would have been "<device_name>:<color>:indicator", but that would break
* existing applications (e.g. Android). Nothing matches against MAC address.
*/
static const struct ps_led_info lightbar_leds_info[] = {
{ NULL, "red", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness },
{ NULL, "green", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness },
{ NULL, "blue", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness },
{ NULL, "global", 1, dualshock4_led_get_brightness, dualshock4_led_set_brightness,
dualshock4_led_set_blink },
};
ds4 = devm_kzalloc(&hdev->dev, sizeof(*ds4), GFP_KERNEL);
if (!ds4)
return ERR_PTR(-ENOMEM);
/*
* Patch version to allow userspace to distinguish between
* hid-generic vs hid-playstation axis and button mapping.
*/
hdev->version |= HID_PLAYSTATION_VERSION_PATCH;
ps_dev = &ds4->base;
ps_dev->hdev = hdev;
spin_lock_init(&ps_dev->lock);
ps_dev->battery_capacity = 100; /* initial value until parse_report. */
ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
ps_dev->parse_report = dualshock4_parse_report;
ps_dev->remove = dualshock4_remove;
INIT_WORK(&ds4->output_worker, dualshock4_output_worker);
ds4->output_worker_initialized = true;
hid_set_drvdata(hdev, ds4);
max_output_report_size = sizeof(struct dualshock4_output_report_bt);
ds4->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL);
if (!ds4->output_report_dmabuf)
return ERR_PTR(-ENOMEM);
if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) {
ds4->dongle_state = DONGLE_DISCONNECTED;
INIT_WORK(&ds4->dongle_hotplug_worker, dualshock4_dongle_calibration_work);
/* Override parse report for dongle specific hotplug handling. */
ps_dev->parse_report = dualshock4_dongle_parse_report;
}
ret = dualshock4_get_mac_address(ds4);
if (ret) {
hid_err(hdev, "Failed to get MAC address from DualShock4\n");
return ERR_PTR(ret);
}
snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds4->base.mac_address);
ret = dualshock4_get_firmware_info(ds4);
if (ret) {
hid_err(hdev, "Failed to get firmware info from DualShock4\n");
return ERR_PTR(ret);
}
ret = ps_devices_list_add(ps_dev);
if (ret)
return ERR_PTR(ret);
ret = dualshock4_get_calibration_data(ds4);
if (ret) {
hid_err(hdev, "Failed to get calibration data from DualShock4\n");
goto err;
}
ds4->gamepad = ps_gamepad_create(hdev, dualshock4_play_effect);
if (IS_ERR(ds4->gamepad)) {
ret = PTR_ERR(ds4->gamepad);
goto err;
}
/* Use gamepad input device name as primary device name for e.g. LEDs */
ps_dev->input_dev_name = dev_name(&ds4->gamepad->dev);
ds4->sensors = ps_sensors_create(hdev, DS4_ACC_RANGE, DS4_ACC_RES_PER_G,
DS4_GYRO_RANGE, DS4_GYRO_RES_PER_DEG_S);
if (IS_ERR(ds4->sensors)) {
ret = PTR_ERR(ds4->sensors);
goto err;
}
ds4->touchpad = ps_touchpad_create(hdev, DS4_TOUCHPAD_WIDTH, DS4_TOUCHPAD_HEIGHT, 2);
if (IS_ERR(ds4->touchpad)) {
ret = PTR_ERR(ds4->touchpad);
goto err;
}
ret = ps_device_register_battery(ps_dev);
if (ret)
goto err;
for (i = 0; i < ARRAY_SIZE(lightbar_leds_info); i++) {
const struct ps_led_info *led_info = &lightbar_leds_info[i];
ret = ps_led_register(ps_dev, &ds4->lightbar_leds[i], led_info);
if (ret < 0)
goto err;
}
dualshock4_set_bt_poll_interval(ds4, DS4_BT_DEFAULT_POLL_INTERVAL_MS);
ret = ps_device_set_player_id(ps_dev);
if (ret) {
hid_err(hdev, "Failed to assign player id for DualShock4: %d\n", ret);
goto err;
}
dualshock4_set_default_lightbar_colors(ds4);
/*
* Reporting hardware and firmware is important as there are frequent updates, which
* can change behavior.
*/
hid_info(hdev, "Registered DualShock4 controller hw_version=0x%08x fw_version=0x%08x\n",
ds4->base.hw_version, ds4->base.fw_version);
return &ds4->base;
err:
ps_devices_list_remove(ps_dev);
return ERR_PTR(ret);
}
static int ps_raw_event(struct hid_device *hdev, struct hid_report *report,
u8 *data, int size)
{
struct ps_device *dev = hid_get_drvdata(hdev);
if (dev && dev->parse_report)
return dev->parse_report(dev, report, data, size);
return 0;
}
static int ps_probe(struct hid_device *hdev, const struct hid_device_id *id)
{
struct ps_device *dev;
int ret;
ret = hid_parse(hdev);
if (ret) {
hid_err(hdev, "Parse failed\n");
return ret;
}
ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
if (ret) {
hid_err(hdev, "Failed to start HID device\n");
return ret;
}
ret = hid_hw_open(hdev);
if (ret) {
hid_err(hdev, "Failed to open HID device\n");
goto err_stop;
}
if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER ||
hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_2 ||
hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) {
dev = dualshock4_create(hdev);
if (IS_ERR(dev)) {
hid_err(hdev, "Failed to create dualshock4.\n");
ret = PTR_ERR(dev);
goto err_close;
}
} else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER ||
hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) {
dev = dualsense_create(hdev);
if (IS_ERR(dev)) {
hid_err(hdev, "Failed to create dualsense.\n");
ret = PTR_ERR(dev);
goto err_close;
}
}
return ret;
err_close:
hid_hw_close(hdev);
err_stop:
hid_hw_stop(hdev);
return ret;
}
static void ps_remove(struct hid_device *hdev)
{
struct ps_device *dev = hid_get_drvdata(hdev);
ps_devices_list_remove(dev);
ps_device_release_player_id(dev);
if (dev->remove)
dev->remove(dev);
hid_hw_close(hdev);
hid_hw_stop(hdev);
}
static const struct hid_device_id ps_devices[] = {
/* Sony DualShock 4 controllers for PS4 */
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) },
/* Sony DualSense controllers for PS5 */
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER) },
{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) },
{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) },
{ }
};
MODULE_DEVICE_TABLE(hid, ps_devices);
static struct hid_driver ps_driver = {
.name = "playstation",
.id_table = ps_devices,
.probe = ps_probe,
.remove = ps_remove,
.raw_event = ps_raw_event,
.driver = {
.dev_groups = ps_device_groups,
},
};
static int __init ps_init(void)
{
return hid_register_driver(&ps_driver);
}
static void __exit ps_exit(void)
{
hid_unregister_driver(&ps_driver);
ida_destroy(&ps_player_id_allocator);
}
module_init(ps_init);
module_exit(ps_exit);
MODULE_AUTHOR("Sony Interactive Entertainment");
MODULE_DESCRIPTION("HID Driver for PlayStation peripherals.");
MODULE_LICENSE("GPL");