blob: 34d58567b78d195ca312efc154590efcbc67bc0f [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*/
#define pr_fmt(fmt) "GICv3: " fmt
#include <linux/acpi.h>
#include <linux/cpu.h>
#include <linux/cpu_pm.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/percpu.h>
#include <linux/refcount.h>
#include <linux/slab.h>
#include <linux/irqchip.h>
#include <linux/irqchip/arm-gic-common.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/irqchip/irq-partition-percpu.h>
#include <asm/cputype.h>
#include <asm/exception.h>
#include <asm/smp_plat.h>
#include <asm/virt.h>
#include "irq-gic-common.h"
#define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80)
#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0)
#define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1)
#define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1)
struct redist_region {
void __iomem *redist_base;
phys_addr_t phys_base;
bool single_redist;
};
struct gic_chip_data {
struct fwnode_handle *fwnode;
void __iomem *dist_base;
struct redist_region *redist_regions;
struct rdists rdists;
struct irq_domain *domain;
u64 redist_stride;
u32 nr_redist_regions;
u64 flags;
bool has_rss;
unsigned int ppi_nr;
struct partition_desc **ppi_descs;
};
static struct gic_chip_data gic_data __read_mostly;
static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
#define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
#define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
#define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
/*
* The behaviours of RPR and PMR registers differ depending on the value of
* SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
* distributor and redistributors depends on whether security is enabled in the
* GIC.
*
* When security is enabled, non-secure priority values from the (re)distributor
* are presented to the GIC CPUIF as follow:
* (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
*
* If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
* EL1 are subject to a similar operation thus matching the priorities presented
* from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
* these values are unchanged by the GIC.
*
* see GICv3/GICv4 Architecture Specification (IHI0069D):
* - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
* priorities.
* - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
* interrupt.
*/
static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
/*
* Global static key controlling whether an update to PMR allowing more
* interrupts requires to be propagated to the redistributor (DSB SY).
* And this needs to be exported for modules to be able to enable
* interrupts...
*/
DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
EXPORT_SYMBOL(gic_pmr_sync);
DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
EXPORT_SYMBOL(gic_nonsecure_priorities);
/*
* When the Non-secure world has access to group 0 interrupts (as a
* consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
* return the Distributor's view of the interrupt priority.
*
* When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
* written by software is moved to the Non-secure range by the Distributor.
*
* If both are true (which is when gic_nonsecure_priorities gets enabled),
* we need to shift down the priority programmed by software to match it
* against the value returned by ICC_RPR_EL1.
*/
#define GICD_INT_RPR_PRI(priority) \
({ \
u32 __priority = (priority); \
if (static_branch_unlikely(&gic_nonsecure_priorities)) \
__priority = 0x80 | (__priority >> 1); \
\
__priority; \
})
/* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
static refcount_t *ppi_nmi_refs;
static struct gic_kvm_info gic_v3_kvm_info __initdata;
static DEFINE_PER_CPU(bool, has_rss);
#define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4)
#define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist))
#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
#define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K)
/* Our default, arbitrary priority value. Linux only uses one anyway. */
#define DEFAULT_PMR_VALUE 0xf0
enum gic_intid_range {
SGI_RANGE,
PPI_RANGE,
SPI_RANGE,
EPPI_RANGE,
ESPI_RANGE,
LPI_RANGE,
__INVALID_RANGE__
};
static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
{
switch (hwirq) {
case 0 ... 15:
return SGI_RANGE;
case 16 ... 31:
return PPI_RANGE;
case 32 ... 1019:
return SPI_RANGE;
case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
return EPPI_RANGE;
case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
return ESPI_RANGE;
case 8192 ... GENMASK(23, 0):
return LPI_RANGE;
default:
return __INVALID_RANGE__;
}
}
static enum gic_intid_range get_intid_range(struct irq_data *d)
{
return __get_intid_range(d->hwirq);
}
static inline unsigned int gic_irq(struct irq_data *d)
{
return d->hwirq;
}
static inline bool gic_irq_in_rdist(struct irq_data *d)
{
switch (get_intid_range(d)) {
case SGI_RANGE:
case PPI_RANGE:
case EPPI_RANGE:
return true;
default:
return false;
}
}
static inline void __iomem *gic_dist_base(struct irq_data *d)
{
switch (get_intid_range(d)) {
case SGI_RANGE:
case PPI_RANGE:
case EPPI_RANGE:
/* SGI+PPI -> SGI_base for this CPU */
return gic_data_rdist_sgi_base();
case SPI_RANGE:
case ESPI_RANGE:
/* SPI -> dist_base */
return gic_data.dist_base;
default:
return NULL;
}
}
static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
{
u32 count = 1000000; /* 1s! */
while (readl_relaxed(base + GICD_CTLR) & bit) {
count--;
if (!count) {
pr_err_ratelimited("RWP timeout, gone fishing\n");
return;
}
cpu_relax();
udelay(1);
}
}
/* Wait for completion of a distributor change */
static void gic_dist_wait_for_rwp(void)
{
gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
}
/* Wait for completion of a redistributor change */
static void gic_redist_wait_for_rwp(void)
{
gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
}
#ifdef CONFIG_ARM64
static u64 __maybe_unused gic_read_iar(void)
{
if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
return gic_read_iar_cavium_thunderx();
else
return gic_read_iar_common();
}
#endif
static void gic_enable_redist(bool enable)
{
void __iomem *rbase;
u32 count = 1000000; /* 1s! */
u32 val;
if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
return;
rbase = gic_data_rdist_rd_base();
val = readl_relaxed(rbase + GICR_WAKER);
if (enable)
/* Wake up this CPU redistributor */
val &= ~GICR_WAKER_ProcessorSleep;
else
val |= GICR_WAKER_ProcessorSleep;
writel_relaxed(val, rbase + GICR_WAKER);
if (!enable) { /* Check that GICR_WAKER is writeable */
val = readl_relaxed(rbase + GICR_WAKER);
if (!(val & GICR_WAKER_ProcessorSleep))
return; /* No PM support in this redistributor */
}
while (--count) {
val = readl_relaxed(rbase + GICR_WAKER);
if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
break;
cpu_relax();
udelay(1);
}
if (!count)
pr_err_ratelimited("redistributor failed to %s...\n",
enable ? "wakeup" : "sleep");
}
/*
* Routines to disable, enable, EOI and route interrupts
*/
static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
{
switch (get_intid_range(d)) {
case SGI_RANGE:
case PPI_RANGE:
case SPI_RANGE:
*index = d->hwirq;
return offset;
case EPPI_RANGE:
/*
* Contrary to the ESPI range, the EPPI range is contiguous
* to the PPI range in the registers, so let's adjust the
* displacement accordingly. Consistency is overrated.
*/
*index = d->hwirq - EPPI_BASE_INTID + 32;
return offset;
case ESPI_RANGE:
*index = d->hwirq - ESPI_BASE_INTID;
switch (offset) {
case GICD_ISENABLER:
return GICD_ISENABLERnE;
case GICD_ICENABLER:
return GICD_ICENABLERnE;
case GICD_ISPENDR:
return GICD_ISPENDRnE;
case GICD_ICPENDR:
return GICD_ICPENDRnE;
case GICD_ISACTIVER:
return GICD_ISACTIVERnE;
case GICD_ICACTIVER:
return GICD_ICACTIVERnE;
case GICD_IPRIORITYR:
return GICD_IPRIORITYRnE;
case GICD_ICFGR:
return GICD_ICFGRnE;
case GICD_IROUTER:
return GICD_IROUTERnE;
default:
break;
}
break;
default:
break;
}
WARN_ON(1);
*index = d->hwirq;
return offset;
}
static int gic_peek_irq(struct irq_data *d, u32 offset)
{
void __iomem *base;
u32 index, mask;
offset = convert_offset_index(d, offset, &index);
mask = 1 << (index % 32);
if (gic_irq_in_rdist(d))
base = gic_data_rdist_sgi_base();
else
base = gic_data.dist_base;
return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
}
static void gic_poke_irq(struct irq_data *d, u32 offset)
{
void __iomem *base;
u32 index, mask;
offset = convert_offset_index(d, offset, &index);
mask = 1 << (index % 32);
if (gic_irq_in_rdist(d))
base = gic_data_rdist_sgi_base();
else
base = gic_data.dist_base;
writel_relaxed(mask, base + offset + (index / 32) * 4);
}
static void gic_mask_irq(struct irq_data *d)
{
gic_poke_irq(d, GICD_ICENABLER);
if (gic_irq_in_rdist(d))
gic_redist_wait_for_rwp();
else
gic_dist_wait_for_rwp();
}
static void gic_eoimode1_mask_irq(struct irq_data *d)
{
gic_mask_irq(d);
/*
* When masking a forwarded interrupt, make sure it is
* deactivated as well.
*
* This ensures that an interrupt that is getting
* disabled/masked will not get "stuck", because there is
* noone to deactivate it (guest is being terminated).
*/
if (irqd_is_forwarded_to_vcpu(d))
gic_poke_irq(d, GICD_ICACTIVER);
}
static void gic_unmask_irq(struct irq_data *d)
{
gic_poke_irq(d, GICD_ISENABLER);
}
static inline bool gic_supports_nmi(void)
{
return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
static_branch_likely(&supports_pseudo_nmis);
}
static int gic_irq_set_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which, bool val)
{
u32 reg;
if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
return -EINVAL;
switch (which) {
case IRQCHIP_STATE_PENDING:
reg = val ? GICD_ISPENDR : GICD_ICPENDR;
break;
case IRQCHIP_STATE_ACTIVE:
reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
break;
case IRQCHIP_STATE_MASKED:
if (val) {
gic_mask_irq(d);
return 0;
}
reg = GICD_ISENABLER;
break;
default:
return -EINVAL;
}
gic_poke_irq(d, reg);
return 0;
}
static int gic_irq_get_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which, bool *val)
{
if (d->hwirq >= 8192) /* PPI/SPI only */
return -EINVAL;
switch (which) {
case IRQCHIP_STATE_PENDING:
*val = gic_peek_irq(d, GICD_ISPENDR);
break;
case IRQCHIP_STATE_ACTIVE:
*val = gic_peek_irq(d, GICD_ISACTIVER);
break;
case IRQCHIP_STATE_MASKED:
*val = !gic_peek_irq(d, GICD_ISENABLER);
break;
default:
return -EINVAL;
}
return 0;
}
static void gic_irq_set_prio(struct irq_data *d, u8 prio)
{
void __iomem *base = gic_dist_base(d);
u32 offset, index;
offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
writeb_relaxed(prio, base + offset + index);
}
static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
{
switch (__get_intid_range(hwirq)) {
case PPI_RANGE:
return hwirq - 16;
case EPPI_RANGE:
return hwirq - EPPI_BASE_INTID + 16;
default:
unreachable();
}
}
static u32 gic_get_ppi_index(struct irq_data *d)
{
return __gic_get_ppi_index(d->hwirq);
}
static int gic_irq_nmi_setup(struct irq_data *d)
{
struct irq_desc *desc = irq_to_desc(d->irq);
if (!gic_supports_nmi())
return -EINVAL;
if (gic_peek_irq(d, GICD_ISENABLER)) {
pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
return -EINVAL;
}
/*
* A secondary irq_chip should be in charge of LPI request,
* it should not be possible to get there
*/
if (WARN_ON(gic_irq(d) >= 8192))
return -EINVAL;
/* desc lock should already be held */
if (gic_irq_in_rdist(d)) {
u32 idx = gic_get_ppi_index(d);
/* Setting up PPI as NMI, only switch handler for first NMI */
if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
refcount_set(&ppi_nmi_refs[idx], 1);
desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
}
} else {
desc->handle_irq = handle_fasteoi_nmi;
}
gic_irq_set_prio(d, GICD_INT_NMI_PRI);
return 0;
}
static void gic_irq_nmi_teardown(struct irq_data *d)
{
struct irq_desc *desc = irq_to_desc(d->irq);
if (WARN_ON(!gic_supports_nmi()))
return;
if (gic_peek_irq(d, GICD_ISENABLER)) {
pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
return;
}
/*
* A secondary irq_chip should be in charge of LPI request,
* it should not be possible to get there
*/
if (WARN_ON(gic_irq(d) >= 8192))
return;
/* desc lock should already be held */
if (gic_irq_in_rdist(d)) {
u32 idx = gic_get_ppi_index(d);
/* Tearing down NMI, only switch handler for last NMI */
if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
desc->handle_irq = handle_percpu_devid_irq;
} else {
desc->handle_irq = handle_fasteoi_irq;
}
gic_irq_set_prio(d, GICD_INT_DEF_PRI);
}
static void gic_eoi_irq(struct irq_data *d)
{
write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
isb();
}
static void gic_eoimode1_eoi_irq(struct irq_data *d)
{
/*
* No need to deactivate an LPI, or an interrupt that
* is is getting forwarded to a vcpu.
*/
if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
return;
gic_write_dir(gic_irq(d));
}
static int gic_set_type(struct irq_data *d, unsigned int type)
{
enum gic_intid_range range;
unsigned int irq = gic_irq(d);
void __iomem *base;
u32 offset, index;
int ret;
range = get_intid_range(d);
/* Interrupt configuration for SGIs can't be changed */
if (range == SGI_RANGE)
return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
/* SPIs have restrictions on the supported types */
if ((range == SPI_RANGE || range == ESPI_RANGE) &&
type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
return -EINVAL;
if (gic_irq_in_rdist(d))
base = gic_data_rdist_sgi_base();
else
base = gic_data.dist_base;
offset = convert_offset_index(d, GICD_ICFGR, &index);
ret = gic_configure_irq(index, type, base + offset, NULL);
if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
/* Misconfigured PPIs are usually not fatal */
pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
ret = 0;
}
return ret;
}
static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
{
if (get_intid_range(d) == SGI_RANGE)
return -EINVAL;
if (vcpu)
irqd_set_forwarded_to_vcpu(d);
else
irqd_clr_forwarded_to_vcpu(d);
return 0;
}
static u64 gic_mpidr_to_affinity(unsigned long mpidr)
{
u64 aff;
aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
MPIDR_AFFINITY_LEVEL(mpidr, 0));
return aff;
}
static void gic_deactivate_unhandled(u32 irqnr)
{
if (static_branch_likely(&supports_deactivate_key)) {
if (irqnr < 8192)
gic_write_dir(irqnr);
} else {
write_gicreg(irqnr, ICC_EOIR1_EL1);
isb();
}
}
/*
* Follow a read of the IAR with any HW maintenance that needs to happen prior
* to invoking the relevant IRQ handler. We must do two things:
*
* (1) Ensure instruction ordering between a read of IAR and subsequent
* instructions in the IRQ handler using an ISB.
*
* It is possible for the IAR to report an IRQ which was signalled *after*
* the CPU took an IRQ exception as multiple interrupts can race to be
* recognized by the GIC, earlier interrupts could be withdrawn, and/or
* later interrupts could be prioritized by the GIC.
*
* For devices which are tightly coupled to the CPU, such as PMUs, a
* context synchronization event is necessary to ensure that system
* register state is not stale, as these may have been indirectly written
* *after* exception entry.
*
* (2) Deactivate the interrupt when EOI mode 1 is in use.
*/
static inline void gic_complete_ack(u32 irqnr)
{
if (static_branch_likely(&supports_deactivate_key))
write_gicreg(irqnr, ICC_EOIR1_EL1);
isb();
}
static bool gic_rpr_is_nmi_prio(void)
{
if (!gic_supports_nmi())
return false;
return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
}
static bool gic_irqnr_is_special(u32 irqnr)
{
return irqnr >= 1020 && irqnr <= 1023;
}
static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
{
if (gic_irqnr_is_special(irqnr))
return;
gic_complete_ack(irqnr);
if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
gic_deactivate_unhandled(irqnr);
}
}
static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
{
if (gic_irqnr_is_special(irqnr))
return;
gic_complete_ack(irqnr);
if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
gic_deactivate_unhandled(irqnr);
}
}
/*
* An exception has been taken from a context with IRQs enabled, and this could
* be an IRQ or an NMI.
*
* The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
* DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
* after handling any NMI but before handling any IRQ.
*
* The entry code has performed IRQ entry, and if an NMI is detected we must
* perform NMI entry/exit around invoking the handler.
*/
static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
{
bool is_nmi;
u32 irqnr;
irqnr = gic_read_iar();
is_nmi = gic_rpr_is_nmi_prio();
if (is_nmi) {
nmi_enter();
__gic_handle_nmi(irqnr, regs);
nmi_exit();
}
if (gic_prio_masking_enabled()) {
gic_pmr_mask_irqs();
gic_arch_enable_irqs();
}
if (!is_nmi)
__gic_handle_irq(irqnr, regs);
}
/*
* An exception has been taken from a context with IRQs disabled, which can only
* be an NMI.
*
* The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
* DAIF.IF (and ICC_PMR_EL1) unchanged.
*
* The entry code has performed NMI entry.
*/
static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
{
u64 pmr;
u32 irqnr;
/*
* We were in a context with IRQs disabled. However, the
* entry code has set PMR to a value that allows any
* interrupt to be acknowledged, and not just NMIs. This can
* lead to surprising effects if the NMI has been retired in
* the meantime, and that there is an IRQ pending. The IRQ
* would then be taken in NMI context, something that nobody
* wants to debug twice.
*
* Until we sort this, drop PMR again to a level that will
* actually only allow NMIs before reading IAR, and then
* restore it to what it was.
*/
pmr = gic_read_pmr();
gic_pmr_mask_irqs();
isb();
irqnr = gic_read_iar();
gic_write_pmr(pmr);
__gic_handle_nmi(irqnr, regs);
}
static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
__gic_handle_irq_from_irqsoff(regs);
else
__gic_handle_irq_from_irqson(regs);
}
static u32 gic_get_pribits(void)
{
u32 pribits;
pribits = gic_read_ctlr();
pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
pribits++;
return pribits;
}
static bool gic_has_group0(void)
{
u32 val;
u32 old_pmr;
old_pmr = gic_read_pmr();
/*
* Let's find out if Group0 is under control of EL3 or not by
* setting the highest possible, non-zero priority in PMR.
*
* If SCR_EL3.FIQ is set, the priority gets shifted down in
* order for the CPU interface to set bit 7, and keep the
* actual priority in the non-secure range. In the process, it
* looses the least significant bit and the actual priority
* becomes 0x80. Reading it back returns 0, indicating that
* we're don't have access to Group0.
*/
gic_write_pmr(BIT(8 - gic_get_pribits()));
val = gic_read_pmr();
gic_write_pmr(old_pmr);
return val != 0;
}
static void __init gic_dist_init(void)
{
unsigned int i;
u64 affinity;
void __iomem *base = gic_data.dist_base;
u32 val;
/* Disable the distributor */
writel_relaxed(0, base + GICD_CTLR);
gic_dist_wait_for_rwp();
/*
* Configure SPIs as non-secure Group-1. This will only matter
* if the GIC only has a single security state. This will not
* do the right thing if the kernel is running in secure mode,
* but that's not the intended use case anyway.
*/
for (i = 32; i < GIC_LINE_NR; i += 32)
writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
/* Extended SPI range, not handled by the GICv2/GICv3 common code */
for (i = 0; i < GIC_ESPI_NR; i += 32) {
writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
}
for (i = 0; i < GIC_ESPI_NR; i += 32)
writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
for (i = 0; i < GIC_ESPI_NR; i += 16)
writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
for (i = 0; i < GIC_ESPI_NR; i += 4)
writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
/* Now do the common stuff */
gic_dist_config(base, GIC_LINE_NR, NULL);
val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
pr_info("Enabling SGIs without active state\n");
val |= GICD_CTLR_nASSGIreq;
}
/* Enable distributor with ARE, Group1, and wait for it to drain */
writel_relaxed(val, base + GICD_CTLR);
gic_dist_wait_for_rwp();
/*
* Set all global interrupts to the boot CPU only. ARE must be
* enabled.
*/
affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
for (i = 32; i < GIC_LINE_NR; i++)
gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
for (i = 0; i < GIC_ESPI_NR; i++)
gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
}
static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
{
int ret = -ENODEV;
int i;
for (i = 0; i < gic_data.nr_redist_regions; i++) {
void __iomem *ptr = gic_data.redist_regions[i].redist_base;
u64 typer;
u32 reg;
reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
if (reg != GIC_PIDR2_ARCH_GICv3 &&
reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
pr_warn("No redistributor present @%p\n", ptr);
break;
}
do {
typer = gic_read_typer(ptr + GICR_TYPER);
ret = fn(gic_data.redist_regions + i, ptr);
if (!ret)
return 0;
if (gic_data.redist_regions[i].single_redist)
break;
if (gic_data.redist_stride) {
ptr += gic_data.redist_stride;
} else {
ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
if (typer & GICR_TYPER_VLPIS)
ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
}
} while (!(typer & GICR_TYPER_LAST));
}
return ret ? -ENODEV : 0;
}
static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
{
unsigned long mpidr = cpu_logical_map(smp_processor_id());
u64 typer;
u32 aff;
/*
* Convert affinity to a 32bit value that can be matched to
* GICR_TYPER bits [63:32].
*/
aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
MPIDR_AFFINITY_LEVEL(mpidr, 0));
typer = gic_read_typer(ptr + GICR_TYPER);
if ((typer >> 32) == aff) {
u64 offset = ptr - region->redist_base;
raw_spin_lock_init(&gic_data_rdist()->rd_lock);
gic_data_rdist_rd_base() = ptr;
gic_data_rdist()->phys_base = region->phys_base + offset;
pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
smp_processor_id(), mpidr,
(int)(region - gic_data.redist_regions),
&gic_data_rdist()->phys_base);
return 0;
}
/* Try next one */
return 1;
}
static int gic_populate_rdist(void)
{
if (gic_iterate_rdists(__gic_populate_rdist) == 0)
return 0;
/* We couldn't even deal with ourselves... */
WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
smp_processor_id(),
(unsigned long)cpu_logical_map(smp_processor_id()));
return -ENODEV;
}
static int __gic_update_rdist_properties(struct redist_region *region,
void __iomem *ptr)
{
u64 typer = gic_read_typer(ptr + GICR_TYPER);
u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
/* Boot-time cleanup */
if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
u64 val;
/* Deactivate any present vPE */
val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
if (val & GICR_VPENDBASER_Valid)
gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
ptr + SZ_128K + GICR_VPENDBASER);
/* Mark the VPE table as invalid */
val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
val &= ~GICR_VPROPBASER_4_1_VALID;
gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
}
gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
/*
* TYPER.RVPEID implies some form of DirectLPI, no matter what the
* doc says... :-/ And CTLR.IR implies another subset of DirectLPI
* that the ITS driver can make use of for LPIs (and not VLPIs).
*
* These are 3 different ways to express the same thing, depending
* on the revision of the architecture and its relaxations over
* time. Just group them under the 'direct_lpi' banner.
*/
gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
!!(ctlr & GICR_CTLR_IR) |
gic_data.rdists.has_rvpeid);
gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
/* Detect non-sensical configurations */
if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
gic_data.rdists.has_direct_lpi = false;
gic_data.rdists.has_vlpis = false;
gic_data.rdists.has_rvpeid = false;
}
gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
return 1;
}
static void gic_update_rdist_properties(void)
{
gic_data.ppi_nr = UINT_MAX;
gic_iterate_rdists(__gic_update_rdist_properties);
if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
gic_data.ppi_nr = 0;
pr_info("GICv3 features: %d PPIs%s%s\n",
gic_data.ppi_nr,
gic_data.has_rss ? ", RSS" : "",
gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
if (gic_data.rdists.has_vlpis)
pr_info("GICv4 features: %s%s%s\n",
gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
gic_data.rdists.has_rvpeid ? "RVPEID " : "",
gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
}
/* Check whether it's single security state view */
static inline bool gic_dist_security_disabled(void)
{
return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
}
static void gic_cpu_sys_reg_init(void)
{
int i, cpu = smp_processor_id();
u64 mpidr = cpu_logical_map(cpu);
u64 need_rss = MPIDR_RS(mpidr);
bool group0;
u32 pribits;
/*
* Need to check that the SRE bit has actually been set. If
* not, it means that SRE is disabled at EL2. We're going to
* die painfully, and there is nothing we can do about it.
*
* Kindly inform the luser.
*/
if (!gic_enable_sre())
pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
pribits = gic_get_pribits();
group0 = gic_has_group0();
/* Set priority mask register */
if (!gic_prio_masking_enabled()) {
write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
} else if (gic_supports_nmi()) {
/*
* Mismatch configuration with boot CPU, the system is likely
* to die as interrupt masking will not work properly on all
* CPUs
*
* The boot CPU calls this function before enabling NMI support,
* and as a result we'll never see this warning in the boot path
* for that CPU.
*/
if (static_branch_unlikely(&gic_nonsecure_priorities))
WARN_ON(!group0 || gic_dist_security_disabled());
else
WARN_ON(group0 && !gic_dist_security_disabled());
}
/*
* Some firmwares hand over to the kernel with the BPR changed from
* its reset value (and with a value large enough to prevent
* any pre-emptive interrupts from working at all). Writing a zero
* to BPR restores is reset value.
*/
gic_write_bpr1(0);
if (static_branch_likely(&supports_deactivate_key)) {
/* EOI drops priority only (mode 1) */
gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
} else {
/* EOI deactivates interrupt too (mode 0) */
gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
}
/* Always whack Group0 before Group1 */
if (group0) {
switch(pribits) {
case 8:
case 7:
write_gicreg(0, ICC_AP0R3_EL1);
write_gicreg(0, ICC_AP0R2_EL1);
fallthrough;
case 6:
write_gicreg(0, ICC_AP0R1_EL1);
fallthrough;
case 5:
case 4:
write_gicreg(0, ICC_AP0R0_EL1);
}
isb();
}
switch(pribits) {
case 8:
case 7:
write_gicreg(0, ICC_AP1R3_EL1);
write_gicreg(0, ICC_AP1R2_EL1);
fallthrough;
case 6:
write_gicreg(0, ICC_AP1R1_EL1);
fallthrough;
case 5:
case 4:
write_gicreg(0, ICC_AP1R0_EL1);
}
isb();
/* ... and let's hit the road... */
gic_write_grpen1(1);
/* Keep the RSS capability status in per_cpu variable */
per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
/* Check all the CPUs have capable of sending SGIs to other CPUs */
for_each_online_cpu(i) {
bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
need_rss |= MPIDR_RS(cpu_logical_map(i));
if (need_rss && (!have_rss))
pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
cpu, (unsigned long)mpidr,
i, (unsigned long)cpu_logical_map(i));
}
/**
* GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
* writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
* UNPREDICTABLE choice of :
* - The write is ignored.
* - The RS field is treated as 0.
*/
if (need_rss && (!gic_data.has_rss))
pr_crit_once("RSS is required but GICD doesn't support it\n");
}
static bool gicv3_nolpi;
static int __init gicv3_nolpi_cfg(char *buf)
{
return strtobool(buf, &gicv3_nolpi);
}
early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
static int gic_dist_supports_lpis(void)
{
return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
!gicv3_nolpi);
}
static void gic_cpu_init(void)
{
void __iomem *rbase;
int i;
/* Register ourselves with the rest of the world */
if (gic_populate_rdist())
return;
gic_enable_redist(true);
WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
!(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
"Distributor has extended ranges, but CPU%d doesn't\n",
smp_processor_id());
rbase = gic_data_rdist_sgi_base();
/* Configure SGIs/PPIs as non-secure Group-1 */
for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
/* initialise system registers */
gic_cpu_sys_reg_init();
}
#ifdef CONFIG_SMP
#define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
#define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL)
static int gic_starting_cpu(unsigned int cpu)
{
gic_cpu_init();
if (gic_dist_supports_lpis())
its_cpu_init();
return 0;
}
static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
unsigned long cluster_id)
{
int next_cpu, cpu = *base_cpu;
unsigned long mpidr = cpu_logical_map(cpu);
u16 tlist = 0;
while (cpu < nr_cpu_ids) {
tlist |= 1 << (mpidr & 0xf);
next_cpu = cpumask_next(cpu, mask);
if (next_cpu >= nr_cpu_ids)
goto out;
cpu = next_cpu;
mpidr = cpu_logical_map(cpu);
if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
cpu--;
goto out;
}
}
out:
*base_cpu = cpu;
return tlist;
}
#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
{
u64 val;
val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
irq << ICC_SGI1R_SGI_ID_SHIFT |
MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
MPIDR_TO_SGI_RS(cluster_id) |
tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
gic_write_sgi1r(val);
}
static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
{
int cpu;
if (WARN_ON(d->hwirq >= 16))
return;
/*
* Ensure that stores to Normal memory are visible to the
* other CPUs before issuing the IPI.
*/
dsb(ishst);
for_each_cpu(cpu, mask) {
u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
u16 tlist;
tlist = gic_compute_target_list(&cpu, mask, cluster_id);
gic_send_sgi(cluster_id, tlist, d->hwirq);
}
/* Force the above writes to ICC_SGI1R_EL1 to be executed */
isb();
}
static void __init gic_smp_init(void)
{
struct irq_fwspec sgi_fwspec = {
.fwnode = gic_data.fwnode,
.param_count = 1,
};
int base_sgi;
cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
"irqchip/arm/gicv3:starting",
gic_starting_cpu, NULL);
/* Register all 8 non-secure SGIs */
base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
NUMA_NO_NODE, &sgi_fwspec,
false, NULL);
if (WARN_ON(base_sgi <= 0))
return;
set_smp_ipi_range(base_sgi, 8);
}
static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
bool force)
{
unsigned int cpu;
u32 offset, index;
void __iomem *reg;
int enabled;
u64 val;
if (force)
cpu = cpumask_first(mask_val);
else
cpu = cpumask_any_and(mask_val, cpu_online_mask);
if (cpu >= nr_cpu_ids)
return -EINVAL;
if (gic_irq_in_rdist(d))
return -EINVAL;
/* If interrupt was enabled, disable it first */
enabled = gic_peek_irq(d, GICD_ISENABLER);
if (enabled)
gic_mask_irq(d);
offset = convert_offset_index(d, GICD_IROUTER, &index);
reg = gic_dist_base(d) + offset + (index * 8);
val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
gic_write_irouter(val, reg);
/*
* If the interrupt was enabled, enabled it again. Otherwise,
* just wait for the distributor to have digested our changes.
*/
if (enabled)
gic_unmask_irq(d);
irq_data_update_effective_affinity(d, cpumask_of(cpu));
return IRQ_SET_MASK_OK_DONE;
}
#else
#define gic_set_affinity NULL
#define gic_ipi_send_mask NULL
#define gic_smp_init() do { } while(0)
#endif
static int gic_retrigger(struct irq_data *data)
{
return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
}
#ifdef CONFIG_CPU_PM
static int gic_cpu_pm_notifier(struct notifier_block *self,
unsigned long cmd, void *v)
{
if (cmd == CPU_PM_EXIT) {
if (gic_dist_security_disabled())
gic_enable_redist(true);
gic_cpu_sys_reg_init();
} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
gic_write_grpen1(0);
gic_enable_redist(false);
}
return NOTIFY_OK;
}
static struct notifier_block gic_cpu_pm_notifier_block = {
.notifier_call = gic_cpu_pm_notifier,
};
static void gic_cpu_pm_init(void)
{
cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
}
#else
static inline void gic_cpu_pm_init(void) { }
#endif /* CONFIG_CPU_PM */
static struct irq_chip gic_chip = {
.name = "GICv3",
.irq_mask = gic_mask_irq,
.irq_unmask = gic_unmask_irq,
.irq_eoi = gic_eoi_irq,
.irq_set_type = gic_set_type,
.irq_set_affinity = gic_set_affinity,
.irq_retrigger = gic_retrigger,
.irq_get_irqchip_state = gic_irq_get_irqchip_state,
.irq_set_irqchip_state = gic_irq_set_irqchip_state,
.irq_nmi_setup = gic_irq_nmi_setup,
.irq_nmi_teardown = gic_irq_nmi_teardown,
.ipi_send_mask = gic_ipi_send_mask,
.flags = IRQCHIP_SET_TYPE_MASKED |
IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_MASK_ON_SUSPEND,
};
static struct irq_chip gic_eoimode1_chip = {
.name = "GICv3",
.irq_mask = gic_eoimode1_mask_irq,
.irq_unmask = gic_unmask_irq,
.irq_eoi = gic_eoimode1_eoi_irq,
.irq_set_type = gic_set_type,
.irq_set_affinity = gic_set_affinity,
.irq_retrigger = gic_retrigger,
.irq_get_irqchip_state = gic_irq_get_irqchip_state,
.irq_set_irqchip_state = gic_irq_set_irqchip_state,
.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
.irq_nmi_setup = gic_irq_nmi_setup,
.irq_nmi_teardown = gic_irq_nmi_teardown,
.ipi_send_mask = gic_ipi_send_mask,
.flags = IRQCHIP_SET_TYPE_MASKED |
IRQCHIP_SKIP_SET_WAKE |
IRQCHIP_MASK_ON_SUSPEND,
};
static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hw)
{
struct irq_chip *chip = &gic_chip;
struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
if (static_branch_likely(&supports_deactivate_key))
chip = &gic_eoimode1_chip;
switch (__get_intid_range(hw)) {
case SGI_RANGE:
case PPI_RANGE:
case EPPI_RANGE:
irq_set_percpu_devid(irq);
irq_domain_set_info(d, irq, hw, chip, d->host_data,
handle_percpu_devid_irq, NULL, NULL);
break;
case SPI_RANGE:
case ESPI_RANGE:
irq_domain_set_info(d, irq, hw, chip, d->host_data,
handle_fasteoi_irq, NULL, NULL);
irq_set_probe(irq);
irqd_set_single_target(irqd);
break;
case LPI_RANGE:
if (!gic_dist_supports_lpis())
return -EPERM;
irq_domain_set_info(d, irq, hw, chip, d->host_data,
handle_fasteoi_irq, NULL, NULL);
break;
default:
return -EPERM;
}
/* Prevents SW retriggers which mess up the ACK/EOI ordering */
irqd_set_handle_enforce_irqctx(irqd);
return 0;
}
static int gic_irq_domain_translate(struct irq_domain *d,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
*hwirq = fwspec->param[0];
*type = IRQ_TYPE_EDGE_RISING;
return 0;
}
if (is_of_node(fwspec->fwnode)) {
if (fwspec->param_count < 3)
return -EINVAL;
switch (fwspec->param[0]) {
case 0: /* SPI */
*hwirq = fwspec->param[1] + 32;
break;
case 1: /* PPI */
*hwirq = fwspec->param[1] + 16;
break;
case 2: /* ESPI */
*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
break;
case 3: /* EPPI */
*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
break;
case GIC_IRQ_TYPE_LPI: /* LPI */
*hwirq = fwspec->param[1];
break;
case GIC_IRQ_TYPE_PARTITION:
*hwirq = fwspec->param[1];
if (fwspec->param[1] >= 16)
*hwirq += EPPI_BASE_INTID - 16;
else
*hwirq += 16;
break;
default:
return -EINVAL;
}
*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
/*
* Make it clear that broken DTs are... broken.
* Partitioned PPIs are an unfortunate exception.
*/
WARN_ON(*type == IRQ_TYPE_NONE &&
fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
return 0;
}
if (is_fwnode_irqchip(fwspec->fwnode)) {
if(fwspec->param_count != 2)
return -EINVAL;
if (fwspec->param[0] < 16) {
pr_err(FW_BUG "Illegal GSI%d translation request\n",
fwspec->param[0]);
return -EINVAL;
}
*hwirq = fwspec->param[0];
*type = fwspec->param[1];
WARN_ON(*type == IRQ_TYPE_NONE);
return 0;
}
return -EINVAL;
}
static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
int i, ret;
irq_hw_number_t hwirq;
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = arg;
ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++) {
ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
if (ret)
return ret;
}
return 0;
}
static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
int i;
for (i = 0; i < nr_irqs; i++) {
struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
irq_set_handler(virq + i, NULL);
irq_domain_reset_irq_data(d);
}
}
static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
irq_hw_number_t hwirq)
{
enum gic_intid_range range;
if (!gic_data.ppi_descs)
return false;
if (!is_of_node(fwspec->fwnode))
return false;
if (fwspec->param_count < 4 || !fwspec->param[3])
return false;
range = __get_intid_range(hwirq);
if (range != PPI_RANGE && range != EPPI_RANGE)
return false;
return true;
}
static int gic_irq_domain_select(struct irq_domain *d,
struct irq_fwspec *fwspec,
enum irq_domain_bus_token bus_token)
{
unsigned int type, ret, ppi_idx;
irq_hw_number_t hwirq;
/* Not for us */
if (fwspec->fwnode != d->fwnode)
return 0;
/* If this is not DT, then we have a single domain */
if (!is_of_node(fwspec->fwnode))
return 1;
ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type);
if (WARN_ON_ONCE(ret))
return 0;
if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
return d == gic_data.domain;
/*
* If this is a PPI and we have a 4th (non-null) parameter,
* then we need to match the partition domain.
*/
ppi_idx = __gic_get_ppi_index(hwirq);
return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]);
}
static const struct irq_domain_ops gic_irq_domain_ops = {
.translate = gic_irq_domain_translate,
.alloc = gic_irq_domain_alloc,
.free = gic_irq_domain_free,
.select = gic_irq_domain_select,
};
static int partition_domain_translate(struct irq_domain *d,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
unsigned long ppi_intid;
struct device_node *np;
unsigned int ppi_idx;
int ret;
if (!gic_data.ppi_descs)
return -ENOMEM;
np = of_find_node_by_phandle(fwspec->param[3]);
if (WARN_ON(!np))
return -EINVAL;
ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type);
if (WARN_ON_ONCE(ret))
return 0;
ppi_idx = __gic_get_ppi_index(ppi_intid);
ret = partition_translate_id(gic_data.ppi_descs[ppi_idx],
of_node_to_fwnode(np));
if (ret < 0)
return ret;
*hwirq = ret;
*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static const struct irq_domain_ops partition_domain_ops = {
.translate = partition_domain_translate,
.select = gic_irq_domain_select,
};
static bool gic_enable_quirk_msm8996(void *data)
{
struct gic_chip_data *d = data;
d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
return true;
}
static bool gic_enable_quirk_cavium_38539(void *data)
{
struct gic_chip_data *d = data;
d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
return true;
}
static bool gic_enable_quirk_hip06_07(void *data)
{
struct gic_chip_data *d = data;
/*
* HIP06 GICD_IIDR clashes with GIC-600 product number (despite
* not being an actual ARM implementation). The saving grace is
* that GIC-600 doesn't have ESPI, so nothing to do in that case.
* HIP07 doesn't even have a proper IIDR, and still pretends to
* have ESPI. In both cases, put them right.
*/
if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
/* Zero both ESPI and the RES0 field next to it... */
d->rdists.gicd_typer &= ~GENMASK(9, 8);
return true;
}
return false;
}
static const struct gic_quirk gic_quirks[] = {
{
.desc = "GICv3: Qualcomm MSM8996 broken firmware",
.compatible = "qcom,msm8996-gic-v3",
.init = gic_enable_quirk_msm8996,
},
{
.desc = "GICv3: HIP06 erratum 161010803",
.iidr = 0x0204043b,
.mask = 0xffffffff,
.init = gic_enable_quirk_hip06_07,
},
{
.desc = "GICv3: HIP07 erratum 161010803",
.iidr = 0x00000000,
.mask = 0xffffffff,
.init = gic_enable_quirk_hip06_07,
},
{
/*
* Reserved register accesses generate a Synchronous
* External Abort. This erratum applies to:
* - ThunderX: CN88xx
* - OCTEON TX: CN83xx, CN81xx
* - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
*/
.desc = "GICv3: Cavium erratum 38539",
.iidr = 0xa000034c,
.mask = 0xe8f00fff,
.init = gic_enable_quirk_cavium_38539,
},
{
}
};
static void gic_enable_nmi_support(void)
{
int i;
if (!gic_prio_masking_enabled())
return;
ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
if (!ppi_nmi_refs)
return;
for (i = 0; i < gic_data.ppi_nr; i++)
refcount_set(&ppi_nmi_refs[i], 0);
/*
* Linux itself doesn't use 1:N distribution, so has no need to
* set PMHE. The only reason to have it set is if EL3 requires it
* (and we can't change it).
*/
if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
static_branch_enable(&gic_pmr_sync);
pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
/*
* How priority values are used by the GIC depends on two things:
* the security state of the GIC (controlled by the GICD_CTRL.DS bit)
* and if Group 0 interrupts can be delivered to Linux in the non-secure
* world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
* ICC_PMR_EL1 register and the priority that software assigns to
* interrupts:
*
* GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
* -----------------------------------------------------------
* 1 | - | unchanged | unchanged
* -----------------------------------------------------------
* 0 | 1 | non-secure | non-secure
* -----------------------------------------------------------
* 0 | 0 | unchanged | non-secure
*
* where non-secure means that the value is right-shifted by one and the
* MSB bit set, to make it fit in the non-secure priority range.
*
* In the first two cases, where ICC_PMR_EL1 and the interrupt priority
* are both either modified or unchanged, we can use the same set of
* priorities.
*
* In the last case, where only the interrupt priorities are modified to
* be in the non-secure range, we use a different PMR value to mask IRQs
* and the rest of the values that we use remain unchanged.
*/
if (gic_has_group0() && !gic_dist_security_disabled())
static_branch_enable(&gic_nonsecure_priorities);
static_branch_enable(&supports_pseudo_nmis);
if (static_branch_likely(&supports_deactivate_key))
gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
else
gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
}
static int __init gic_init_bases(void __iomem *dist_base,
struct redist_region *rdist_regs,
u32 nr_redist_regions,
u64 redist_stride,
struct fwnode_handle *handle)
{
u32 typer;
int err;
if (!is_hyp_mode_available())
static_branch_disable(&supports_deactivate_key);
if (static_branch_likely(&supports_deactivate_key))
pr_info("GIC: Using split EOI/Deactivate mode\n");
gic_data.fwnode = handle;
gic_data.dist_base = dist_base;
gic_data.redist_regions = rdist_regs;
gic_data.nr_redist_regions = nr_redist_regions;
gic_data.redist_stride = redist_stride;
/*
* Find out how many interrupts are supported.
*/
typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
gic_data.rdists.gicd_typer = typer;
gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
gic_quirks, &gic_data);
pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
/*
* ThunderX1 explodes on reading GICD_TYPER2, in violation of the
* architecture spec (which says that reserved registers are RES0).
*/
if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
&gic_data);
gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
gic_data.rdists.has_rvpeid = true;
gic_data.rdists.has_vlpis = true;
gic_data.rdists.has_direct_lpi = true;
gic_data.rdists.has_vpend_valid_dirty = true;
if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
err = -ENOMEM;
goto out_free;
}
irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
if (typer & GICD_TYPER_MBIS) {
err = mbi_init(handle, gic_data.domain);
if (err)
pr_err("Failed to initialize MBIs\n");
}
set_handle_irq(gic_handle_irq);
gic_update_rdist_properties();
gic_dist_init();
gic_cpu_init();
gic_smp_init();
gic_cpu_pm_init();
if (gic_dist_supports_lpis()) {
its_init(handle, &gic_data.rdists, gic_data.domain);
its_cpu_init();
its_lpi_memreserve_init();
} else {
if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
gicv2m_init(handle, gic_data.domain);
}
gic_enable_nmi_support();
return 0;
out_free:
if (gic_data.domain)
irq_domain_remove(gic_data.domain);
free_percpu(gic_data.rdists.rdist);
return err;
}
static int __init gic_validate_dist_version(void __iomem *dist_base)
{
u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
return -ENODEV;
return 0;
}
/* Create all possible partitions at boot time */
static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
{
struct device_node *parts_node, *child_part;
int part_idx = 0, i;
int nr_parts;
struct partition_affinity *parts;
parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
if (!parts_node)
return;
gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
if (!gic_data.ppi_descs)
goto out_put_node;
nr_parts = of_get_child_count(parts_node);
if (!nr_parts)
goto out_put_node;
parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
if (WARN_ON(!parts))
goto out_put_node;
for_each_child_of_node(parts_node, child_part) {
struct partition_affinity *part;
int n;
part = &parts[part_idx];
part->partition_id = of_node_to_fwnode(child_part);
pr_info("GIC: PPI partition %pOFn[%d] { ",
child_part, part_idx);
n = of_property_count_elems_of_size(child_part, "affinity",
sizeof(u32));
WARN_ON(n <= 0);
for (i = 0; i < n; i++) {
int err, cpu;
u32 cpu_phandle;
struct device_node *cpu_node;
err = of_property_read_u32_index(child_part, "affinity",
i, &cpu_phandle);
if (WARN_ON(err))
continue;
cpu_node = of_find_node_by_phandle(cpu_phandle);
if (WARN_ON(!cpu_node))
continue;
cpu = of_cpu_node_to_id(cpu_node);
if (WARN_ON(cpu < 0)) {
of_node_put(cpu_node);
continue;
}
pr_cont("%pOF[%d] ", cpu_node, cpu);
cpumask_set_cpu(cpu, &part->mask);
of_node_put(cpu_node);
}
pr_cont("}\n");
part_idx++;
}
for (i = 0; i < gic_data.ppi_nr; i++) {
unsigned int irq;
struct partition_desc *desc;
struct irq_fwspec ppi_fwspec = {
.fwnode = gic_data.fwnode,
.param_count = 3,
.param = {
[0] = GIC_IRQ_TYPE_PARTITION,
[1] = i,
[2] = IRQ_TYPE_NONE,
},
};
irq = irq_create_fwspec_mapping(&ppi_fwspec);
if (WARN_ON(!irq))
continue;
desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
irq, &partition_domain_ops);
if (WARN_ON(!desc))
continue;
gic_data.ppi_descs[i] = desc;
}
out_put_node:
of_node_put(parts_node);
}
static void __init gic_of_setup_kvm_info(struct device_node *node)
{
int ret;
struct resource r;
u32 gicv_idx;
gic_v3_kvm_info.type = GIC_V3;
gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
if (!gic_v3_kvm_info.maint_irq)
return;
if (of_property_read_u32(node, "#redistributor-regions",
&gicv_idx))
gicv_idx = 1;
gicv_idx += 3; /* Also skip GICD, GICC, GICH */
ret = of_address_to_resource(node, gicv_idx, &r);
if (!ret)
gic_v3_kvm_info.vcpu = r;
gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
vgic_set_kvm_info(&gic_v3_kvm_info);
}
static void gic_request_region(resource_size_t base, resource_size_t size,
const char *name)
{
if (!request_mem_region(base, size, name))
pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
name, &base);
}
static void __iomem *gic_of_iomap(struct device_node *node, int idx,
const char *name, struct resource *res)
{
void __iomem *base;
int ret;
ret = of_address_to_resource(node, idx, res);
if (ret)
return IOMEM_ERR_PTR(ret);
gic_request_region(res->start, resource_size(res), name);
base = of_iomap(node, idx);
return base ?: IOMEM_ERR_PTR(-ENOMEM);
}
static int __init gic_of_init(struct device_node *node, struct device_node *parent)
{
void __iomem *dist_base;
struct redist_region *rdist_regs;
struct resource res;
u64 redist_stride;
u32 nr_redist_regions;
int err, i;
dist_base = gic_of_iomap(node, 0, "GICD", &res);
if (IS_ERR(dist_base)) {
pr_err("%pOF: unable to map gic dist registers\n", node);
return PTR_ERR(dist_base);
}
err = gic_validate_dist_version(dist_base);
if (err) {
pr_err("%pOF: no distributor detected, giving up\n", node);
goto out_unmap_dist;
}
if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
nr_redist_regions = 1;
rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
GFP_KERNEL);
if (!rdist_regs) {
err = -ENOMEM;
goto out_unmap_dist;
}
for (i = 0; i < nr_redist_regions; i++) {
rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res);
if (IS_ERR(rdist_regs[i].redist_base)) {
pr_err("%pOF: couldn't map region %d\n", node, i);
err = -ENODEV;
goto out_unmap_rdist;
}
rdist_regs[i].phys_base = res.start;
}
if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
redist_stride = 0;
gic_enable_of_quirks(node, gic_quirks, &gic_data);
err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
redist_stride, &node->fwnode);
if (err)
goto out_unmap_rdist;
gic_populate_ppi_partitions(node);
if (static_branch_likely(&supports_deactivate_key))
gic_of_setup_kvm_info(node);
return 0;
out_unmap_rdist:
for (i = 0; i < nr_redist_regions; i++)
if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base))
iounmap(rdist_regs[i].redist_base);
kfree(rdist_regs);
out_unmap_dist:
iounmap(dist_base);
return err;
}
IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
#ifdef CONFIG_ACPI
static struct
{
void __iomem *dist_base;
struct redist_region *redist_regs;
u32 nr_redist_regions;
bool single_redist;
int enabled_rdists;
u32 maint_irq;
int maint_irq_mode;
phys_addr_t vcpu_base;
} acpi_data __initdata;
static void __init
gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
{
static int count = 0;
acpi_data.redist_regs[count].phys_base = phys_base;
acpi_data.redist_regs[count].redist_base = redist_base;
acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
count++;
}
static int __init
gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_redistributor *redist =
(struct acpi_madt_generic_redistributor *)header;
void __iomem *redist_base;
redist_base = ioremap(redist->base_address, redist->length);
if (!redist_base) {
pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
return -ENOMEM;
}
gic_request_region(redist->base_address, redist->length, "GICR");
gic_acpi_register_redist(redist->base_address, redist_base);
return 0;
}
static int __init
gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_interrupt *gicc =
(struct acpi_madt_generic_interrupt *)header;
u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
void __iomem *redist_base;
/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
if (!(gicc->flags & ACPI_MADT_ENABLED))
return 0;
redist_base = ioremap(gicc->gicr_base_address, size);
if (!redist_base)
return -ENOMEM;
gic_request_region(gicc->gicr_base_address, size, "GICR");
gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
return 0;
}
static int __init gic_acpi_collect_gicr_base(void)
{
acpi_tbl_entry_handler redist_parser;
enum acpi_madt_type type;
if (acpi_data.single_redist) {
type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
redist_parser = gic_acpi_parse_madt_gicc;
} else {
type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
redist_parser = gic_acpi_parse_madt_redist;
}
/* Collect redistributor base addresses in GICR entries */
if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
return 0;
pr_info("No valid GICR entries exist\n");
return -ENODEV;
}
static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
const unsigned long end)
{
/* Subtable presence means that redist exists, that's it */
return 0;
}
static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_interrupt *gicc =
(struct acpi_madt_generic_interrupt *)header;
/*
* If GICC is enabled and has valid gicr base address, then it means
* GICR base is presented via GICC
*/
if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
acpi_data.enabled_rdists++;
return 0;
}
/*
* It's perfectly valid firmware can pass disabled GICC entry, driver
* should not treat as errors, skip the entry instead of probe fail.
*/
if (!(gicc->flags & ACPI_MADT_ENABLED))
return 0;
return -ENODEV;
}
static int __init gic_acpi_count_gicr_regions(void)
{
int count;
/*
* Count how many redistributor regions we have. It is not allowed
* to mix redistributor description, GICR and GICC subtables have to be
* mutually exclusive.
*/
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
gic_acpi_match_gicr, 0);
if (count > 0) {
acpi_data.single_redist = false;
return count;
}
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
gic_acpi_match_gicc, 0);
if (count > 0) {
acpi_data.single_redist = true;
count = acpi_data.enabled_rdists;
}
return count;
}
static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
struct acpi_probe_entry *ape)
{
struct acpi_madt_generic_distributor *dist;
int count;
dist = (struct acpi_madt_generic_distributor *)header;
if (dist->version != ape->driver_data)
return false;
/* We need to do that exercise anyway, the sooner the better */
count = gic_acpi_count_gicr_regions();
if (count <= 0)
return false;
acpi_data.nr_redist_regions = count;
return true;
}
static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_interrupt *gicc =
(struct acpi_madt_generic_interrupt *)header;
int maint_irq_mode;
static int first_madt = true;
/* Skip unusable CPUs */
if (!(gicc->flags & ACPI_MADT_ENABLED))
return 0;
maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
if (first_madt) {
first_madt = false;
acpi_data.maint_irq = gicc->vgic_interrupt;
acpi_data.maint_irq_mode = maint_irq_mode;
acpi_data.vcpu_base = gicc->gicv_base_address;
return 0;
}
/*
* The maintenance interrupt and GICV should be the same for every CPU
*/
if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
(acpi_data.maint_irq_mode != maint_irq_mode) ||
(acpi_data.vcpu_base != gicc->gicv_base_address))
return -EINVAL;
return 0;
}
static bool __init gic_acpi_collect_virt_info(void)
{
int count;
count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
gic_acpi_parse_virt_madt_gicc, 0);
return (count > 0);
}
#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
#define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
#define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
static void __init gic_acpi_setup_kvm_info(void)
{
int irq;
if (!gic_acpi_collect_virt_info()) {
pr_warn("Unable to get hardware information used for virtualization\n");
return;
}
gic_v3_kvm_info.type = GIC_V3;
irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
acpi_data.maint_irq_mode,
ACPI_ACTIVE_HIGH);
if (irq <= 0)
return;
gic_v3_kvm_info.maint_irq = irq;
if (acpi_data.vcpu_base) {
struct resource *vcpu = &gic_v3_kvm_info.vcpu;
vcpu->flags = IORESOURCE_MEM;
vcpu->start = acpi_data.vcpu_base;
vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
}
gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
vgic_set_kvm_info(&gic_v3_kvm_info);
}
static struct fwnode_handle *gsi_domain_handle;
static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
{
return gsi_domain_handle;
}
static int __init
gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
{
struct acpi_madt_generic_distributor *dist;
size_t size;
int i, err;
/* Get distributor base address */
dist = (struct acpi_madt_generic_distributor *)header;
acpi_data.dist_base = ioremap(dist->base_address,
ACPI_GICV3_DIST_MEM_SIZE);
if (!acpi_data.dist_base) {
pr_err("Unable to map GICD registers\n");
return -ENOMEM;
}
gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
err = gic_validate_dist_version(acpi_data.dist_base);
if (err) {
pr_err("No distributor detected at @%p, giving up\n",
acpi_data.dist_base);
goto out_dist_unmap;
}
size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
if (!acpi_data.redist_regs) {
err = -ENOMEM;
goto out_dist_unmap;
}
err = gic_acpi_collect_gicr_base();
if (err)
goto out_redist_unmap;
gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
if (!gsi_domain_handle) {
err = -ENOMEM;
goto out_redist_unmap;
}
err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
acpi_data.nr_redist_regions, 0, gsi_domain_handle);
if (err)
goto out_fwhandle_free;
acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
if (static_branch_likely(&supports_deactivate_key))
gic_acpi_setup_kvm_info();
return 0;
out_fwhandle_free:
irq_domain_free_fwnode(gsi_domain_handle);
out_redist_unmap:
for (i = 0; i < acpi_data.nr_redist_regions; i++)
if (acpi_data.redist_regs[i].redist_base)
iounmap(acpi_data.redist_regs[i].redist_base);
kfree(acpi_data.redist_regs);
out_dist_unmap:
iounmap(acpi_data.dist_base);
return err;
}
IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
gic_acpi_init);
IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
gic_acpi_init);
#endif