blob: d01b9245f811cbf1d4c85d5252374efdeeb4525a [file] [log] [blame] [edit]
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
* Copyright (c) 2019-2020 Marvell International Ltd.
*/
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include "qed.h"
#include "qed_cxt.h"
#include "qed_dev_api.h"
#include "qed_hsi.h"
#include "qed_iro_hsi.h"
#include "qed_hw.h"
#include "qed_int.h"
#include "qed_iscsi.h"
#include "qed_mcp.h"
#include "qed_ooo.h"
#include "qed_reg_addr.h"
#include "qed_sp.h"
#include "qed_sriov.h"
#include "qed_rdma.h"
/***************************************************************************
* Structures & Definitions
***************************************************************************/
#define SPQ_HIGH_PRI_RESERVE_DEFAULT (1)
#define SPQ_BLOCK_DELAY_MAX_ITER (10)
#define SPQ_BLOCK_DELAY_US (10)
#define SPQ_BLOCK_SLEEP_MAX_ITER (1000)
#define SPQ_BLOCK_SLEEP_MS (5)
/***************************************************************************
* Blocking Imp. (BLOCK/EBLOCK mode)
***************************************************************************/
static void qed_spq_blocking_cb(struct qed_hwfn *p_hwfn,
void *cookie,
union event_ring_data *data, u8 fw_return_code)
{
struct qed_spq_comp_done *comp_done;
comp_done = (struct qed_spq_comp_done *)cookie;
comp_done->fw_return_code = fw_return_code;
/* Make sure completion done is visible on waiting thread */
smp_store_release(&comp_done->done, 0x1);
}
static int __qed_spq_block(struct qed_hwfn *p_hwfn,
struct qed_spq_entry *p_ent,
u8 *p_fw_ret, bool sleep_between_iter)
{
struct qed_spq_comp_done *comp_done;
u32 iter_cnt;
comp_done = (struct qed_spq_comp_done *)p_ent->comp_cb.cookie;
iter_cnt = sleep_between_iter ? SPQ_BLOCK_SLEEP_MAX_ITER
: SPQ_BLOCK_DELAY_MAX_ITER;
while (iter_cnt--) {
/* Validate we receive completion update */
if (smp_load_acquire(&comp_done->done) == 1) { /* ^^^ */
if (p_fw_ret)
*p_fw_ret = comp_done->fw_return_code;
return 0;
}
if (sleep_between_iter)
msleep(SPQ_BLOCK_SLEEP_MS);
else
udelay(SPQ_BLOCK_DELAY_US);
}
return -EBUSY;
}
static int qed_spq_block(struct qed_hwfn *p_hwfn,
struct qed_spq_entry *p_ent,
u8 *p_fw_ret, bool skip_quick_poll)
{
struct qed_spq_comp_done *comp_done;
struct qed_ptt *p_ptt;
int rc;
/* A relatively short polling period w/o sleeping, to allow the FW to
* complete the ramrod and thus possibly to avoid the following sleeps.
*/
if (!skip_quick_poll) {
rc = __qed_spq_block(p_hwfn, p_ent, p_fw_ret, false);
if (!rc)
return 0;
}
/* Move to polling with a sleeping period between iterations */
rc = __qed_spq_block(p_hwfn, p_ent, p_fw_ret, true);
if (!rc)
return 0;
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt) {
DP_NOTICE(p_hwfn, "ptt, failed to acquire\n");
return -EAGAIN;
}
DP_INFO(p_hwfn, "Ramrod is stuck, requesting MCP drain\n");
rc = qed_mcp_drain(p_hwfn, p_ptt);
qed_ptt_release(p_hwfn, p_ptt);
if (rc) {
DP_NOTICE(p_hwfn, "MCP drain failed\n");
goto err;
}
/* Retry after drain */
rc = __qed_spq_block(p_hwfn, p_ent, p_fw_ret, true);
if (!rc)
return 0;
comp_done = (struct qed_spq_comp_done *)p_ent->comp_cb.cookie;
if (comp_done->done == 1) {
if (p_fw_ret)
*p_fw_ret = comp_done->fw_return_code;
return 0;
}
err:
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EBUSY;
qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_RAMROD_FAIL,
"Ramrod is stuck [CID %08x %s:%02x %s:%02x echo %04x]\n",
le32_to_cpu(p_ent->elem.hdr.cid),
qed_get_ramrod_cmd_id_str(p_ent->elem.hdr.protocol_id,
p_ent->elem.hdr.cmd_id),
p_ent->elem.hdr.cmd_id,
qed_get_protocol_type_str(p_ent->elem.hdr.protocol_id),
p_ent->elem.hdr.protocol_id,
le16_to_cpu(p_ent->elem.hdr.echo));
qed_ptt_release(p_hwfn, p_ptt);
return -EBUSY;
}
/***************************************************************************
* SPQ entries inner API
***************************************************************************/
static int qed_spq_fill_entry(struct qed_hwfn *p_hwfn,
struct qed_spq_entry *p_ent)
{
p_ent->flags = 0;
switch (p_ent->comp_mode) {
case QED_SPQ_MODE_EBLOCK:
case QED_SPQ_MODE_BLOCK:
p_ent->comp_cb.function = qed_spq_blocking_cb;
break;
case QED_SPQ_MODE_CB:
break;
default:
DP_NOTICE(p_hwfn, "Unknown SPQE completion mode %d\n",
p_ent->comp_mode);
return -EINVAL;
}
DP_VERBOSE(p_hwfn,
QED_MSG_SPQ,
"Ramrod hdr: [CID 0x%08x %s:0x%02x %s:0x%02x] Data ptr: [%08x:%08x] Cmpltion Mode: %s\n",
p_ent->elem.hdr.cid,
qed_get_ramrod_cmd_id_str(p_ent->elem.hdr.protocol_id,
p_ent->elem.hdr.cmd_id),
p_ent->elem.hdr.cmd_id,
qed_get_protocol_type_str(p_ent->elem.hdr.protocol_id),
p_ent->elem.hdr.protocol_id,
p_ent->elem.data_ptr.hi, p_ent->elem.data_ptr.lo,
D_TRINE(p_ent->comp_mode, QED_SPQ_MODE_EBLOCK,
QED_SPQ_MODE_BLOCK, "MODE_EBLOCK", "MODE_BLOCK",
"MODE_CB"));
return 0;
}
/***************************************************************************
* HSI access
***************************************************************************/
static void qed_spq_hw_initialize(struct qed_hwfn *p_hwfn,
struct qed_spq *p_spq)
{
struct core_conn_context *p_cxt;
struct qed_cxt_info cxt_info;
u16 physical_q;
int rc;
cxt_info.iid = p_spq->cid;
rc = qed_cxt_get_cid_info(p_hwfn, &cxt_info);
if (rc < 0) {
DP_NOTICE(p_hwfn, "Cannot find context info for cid=%d\n",
p_spq->cid);
return;
}
p_cxt = cxt_info.p_cxt;
SET_FIELD(p_cxt->xstorm_ag_context.flags10,
XSTORM_CORE_CONN_AG_CTX_DQ_CF_EN, 1);
SET_FIELD(p_cxt->xstorm_ag_context.flags1,
XSTORM_CORE_CONN_AG_CTX_DQ_CF_ACTIVE, 1);
SET_FIELD(p_cxt->xstorm_ag_context.flags9,
XSTORM_CORE_CONN_AG_CTX_CONSOLID_PROD_CF_EN, 1);
/* QM physical queue */
physical_q = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB);
p_cxt->xstorm_ag_context.physical_q0 = cpu_to_le16(physical_q);
p_cxt->xstorm_st_context.spq_base_addr.lo =
DMA_LO_LE(p_spq->chain.p_phys_addr);
p_cxt->xstorm_st_context.spq_base_addr.hi =
DMA_HI_LE(p_spq->chain.p_phys_addr);
}
static int qed_spq_hw_post(struct qed_hwfn *p_hwfn,
struct qed_spq *p_spq, struct qed_spq_entry *p_ent)
{
struct qed_chain *p_chain = &p_hwfn->p_spq->chain;
struct core_db_data *p_db_data = &p_spq->db_data;
u16 echo = qed_chain_get_prod_idx(p_chain);
struct slow_path_element *elem;
p_ent->elem.hdr.echo = cpu_to_le16(echo);
elem = qed_chain_produce(p_chain);
if (!elem) {
DP_NOTICE(p_hwfn, "Failed to produce from SPQ chain\n");
return -EINVAL;
}
*elem = p_ent->elem; /* struct assignment */
/* send a doorbell on the slow hwfn session */
p_db_data->spq_prod = cpu_to_le16(qed_chain_get_prod_idx(p_chain));
/* make sure the SPQE is updated before the doorbell */
wmb();
DOORBELL(p_hwfn, p_spq->db_addr_offset, *(u32 *)p_db_data);
/* make sure doorbell is rang */
wmb();
DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
"Doorbelled [0x%08x, CID 0x%08x] with Flags: %02x agg_params: %02x, prod: %04x\n",
p_spq->db_addr_offset,
p_spq->cid,
p_db_data->params,
p_db_data->agg_flags, qed_chain_get_prod_idx(p_chain));
return 0;
}
/***************************************************************************
* Asynchronous events
***************************************************************************/
static int
qed_async_event_completion(struct qed_hwfn *p_hwfn,
struct event_ring_entry *p_eqe)
{
qed_spq_async_comp_cb cb;
if (!p_hwfn->p_spq)
return -EINVAL;
if (p_eqe->protocol_id >= MAX_PROTOCOL_TYPE) {
DP_ERR(p_hwfn, "Wrong protocol: %s:%d\n",
qed_get_protocol_type_str(p_eqe->protocol_id),
p_eqe->protocol_id);
return -EINVAL;
}
cb = p_hwfn->p_spq->async_comp_cb[p_eqe->protocol_id];
if (cb) {
return cb(p_hwfn, p_eqe->opcode, p_eqe->echo,
&p_eqe->data, p_eqe->fw_return_code);
} else {
DP_NOTICE(p_hwfn,
"Unknown Async completion for %s:%d\n",
qed_get_protocol_type_str(p_eqe->protocol_id),
p_eqe->protocol_id);
return -EINVAL;
}
}
int
qed_spq_register_async_cb(struct qed_hwfn *p_hwfn,
enum protocol_type protocol_id,
qed_spq_async_comp_cb cb)
{
if (!p_hwfn->p_spq || (protocol_id >= MAX_PROTOCOL_TYPE))
return -EINVAL;
p_hwfn->p_spq->async_comp_cb[protocol_id] = cb;
return 0;
}
void
qed_spq_unregister_async_cb(struct qed_hwfn *p_hwfn,
enum protocol_type protocol_id)
{
if (!p_hwfn->p_spq || (protocol_id >= MAX_PROTOCOL_TYPE))
return;
p_hwfn->p_spq->async_comp_cb[protocol_id] = NULL;
}
/***************************************************************************
* EQ API
***************************************************************************/
void qed_eq_prod_update(struct qed_hwfn *p_hwfn, u16 prod)
{
u32 addr = GET_GTT_REG_ADDR(GTT_BAR0_MAP_REG_USDM_RAM,
USTORM_EQE_CONS, p_hwfn->rel_pf_id);
REG_WR16(p_hwfn, addr, prod);
}
int qed_eq_completion(struct qed_hwfn *p_hwfn, void *cookie)
{
struct qed_eq *p_eq = cookie;
struct qed_chain *p_chain = &p_eq->chain;
int rc = 0;
/* take a snapshot of the FW consumer */
u16 fw_cons_idx = le16_to_cpu(*p_eq->p_fw_cons);
DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "fw_cons_idx %x\n", fw_cons_idx);
/* Need to guarantee the fw_cons index we use points to a usuable
* element (to comply with our chain), so our macros would comply
*/
if ((fw_cons_idx & qed_chain_get_usable_per_page(p_chain)) ==
qed_chain_get_usable_per_page(p_chain))
fw_cons_idx += qed_chain_get_unusable_per_page(p_chain);
/* Complete current segment of eq entries */
while (fw_cons_idx != qed_chain_get_cons_idx(p_chain)) {
struct event_ring_entry *p_eqe = qed_chain_consume(p_chain);
if (!p_eqe) {
rc = -EINVAL;
break;
}
DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
"op %x prot %x res0 %x echo %x fwret %x flags %x\n",
p_eqe->opcode,
p_eqe->protocol_id,
p_eqe->reserved0,
le16_to_cpu(p_eqe->echo),
p_eqe->fw_return_code,
p_eqe->flags);
if (GET_FIELD(p_eqe->flags, EVENT_RING_ENTRY_ASYNC)) {
if (qed_async_event_completion(p_hwfn, p_eqe))
rc = -EINVAL;
} else if (qed_spq_completion(p_hwfn,
p_eqe->echo,
p_eqe->fw_return_code,
&p_eqe->data)) {
rc = -EINVAL;
}
qed_chain_recycle_consumed(p_chain);
}
qed_eq_prod_update(p_hwfn, qed_chain_get_prod_idx(p_chain));
/* Attempt to post pending requests */
spin_lock_bh(&p_hwfn->p_spq->lock);
rc = qed_spq_pend_post(p_hwfn);
spin_unlock_bh(&p_hwfn->p_spq->lock);
return rc;
}
int qed_eq_alloc(struct qed_hwfn *p_hwfn, u16 num_elem)
{
struct qed_chain_init_params params = {
.mode = QED_CHAIN_MODE_PBL,
.intended_use = QED_CHAIN_USE_TO_PRODUCE,
.cnt_type = QED_CHAIN_CNT_TYPE_U16,
.num_elems = num_elem,
.elem_size = sizeof(union event_ring_element),
};
struct qed_eq *p_eq;
int ret;
/* Allocate EQ struct */
p_eq = kzalloc(sizeof(*p_eq), GFP_KERNEL);
if (!p_eq)
return -ENOMEM;
ret = qed_chain_alloc(p_hwfn->cdev, &p_eq->chain, &params);
if (ret) {
DP_NOTICE(p_hwfn, "Failed to allocate EQ chain\n");
goto eq_allocate_fail;
}
/* register EQ completion on the SP SB */
qed_int_register_cb(p_hwfn, qed_eq_completion,
p_eq, &p_eq->eq_sb_index, &p_eq->p_fw_cons);
p_hwfn->p_eq = p_eq;
return 0;
eq_allocate_fail:
kfree(p_eq);
return ret;
}
void qed_eq_setup(struct qed_hwfn *p_hwfn)
{
qed_chain_reset(&p_hwfn->p_eq->chain);
}
void qed_eq_free(struct qed_hwfn *p_hwfn)
{
if (!p_hwfn->p_eq)
return;
qed_chain_free(p_hwfn->cdev, &p_hwfn->p_eq->chain);
kfree(p_hwfn->p_eq);
p_hwfn->p_eq = NULL;
}
/***************************************************************************
* CQE API - manipulate EQ functionality
***************************************************************************/
static int qed_cqe_completion(struct qed_hwfn *p_hwfn,
struct eth_slow_path_rx_cqe *cqe,
enum protocol_type protocol)
{
if (IS_VF(p_hwfn->cdev))
return 0;
/* @@@tmp - it's possible we'll eventually want to handle some
* actual commands that can arrive here, but for now this is only
* used to complete the ramrod using the echo value on the cqe
*/
return qed_spq_completion(p_hwfn, cqe->echo, 0, NULL);
}
int qed_eth_cqe_completion(struct qed_hwfn *p_hwfn,
struct eth_slow_path_rx_cqe *cqe)
{
int rc;
rc = qed_cqe_completion(p_hwfn, cqe, PROTOCOLID_ETH);
if (rc)
DP_NOTICE(p_hwfn,
"Failed to handle RXQ CQE [cmd 0x%02x]\n",
cqe->ramrod_cmd_id);
return rc;
}
/***************************************************************************
* Slow hwfn Queue (spq)
***************************************************************************/
void qed_spq_setup(struct qed_hwfn *p_hwfn)
{
struct qed_spq *p_spq = p_hwfn->p_spq;
struct qed_spq_entry *p_virt = NULL;
struct core_db_data *p_db_data;
void __iomem *db_addr;
dma_addr_t p_phys = 0;
u32 i, capacity;
int rc;
INIT_LIST_HEAD(&p_spq->pending);
INIT_LIST_HEAD(&p_spq->completion_pending);
INIT_LIST_HEAD(&p_spq->free_pool);
INIT_LIST_HEAD(&p_spq->unlimited_pending);
spin_lock_init(&p_spq->lock);
/* SPQ empty pool */
p_phys = p_spq->p_phys + offsetof(struct qed_spq_entry, ramrod);
p_virt = p_spq->p_virt;
capacity = qed_chain_get_capacity(&p_spq->chain);
for (i = 0; i < capacity; i++) {
DMA_REGPAIR_LE(p_virt->elem.data_ptr, p_phys);
list_add_tail(&p_virt->list, &p_spq->free_pool);
p_virt++;
p_phys += sizeof(struct qed_spq_entry);
}
/* Statistics */
p_spq->normal_count = 0;
p_spq->comp_count = 0;
p_spq->comp_sent_count = 0;
p_spq->unlimited_pending_count = 0;
bitmap_zero(p_spq->p_comp_bitmap, SPQ_RING_SIZE);
p_spq->comp_bitmap_idx = 0;
/* SPQ cid, cannot fail */
qed_cxt_acquire_cid(p_hwfn, PROTOCOLID_CORE, &p_spq->cid);
qed_spq_hw_initialize(p_hwfn, p_spq);
/* reset the chain itself */
qed_chain_reset(&p_spq->chain);
/* Initialize the address/data of the SPQ doorbell */
p_spq->db_addr_offset = qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY);
p_db_data = &p_spq->db_data;
memset(p_db_data, 0, sizeof(*p_db_data));
SET_FIELD(p_db_data->params, CORE_DB_DATA_DEST, DB_DEST_XCM);
SET_FIELD(p_db_data->params, CORE_DB_DATA_AGG_CMD, DB_AGG_CMD_MAX);
SET_FIELD(p_db_data->params, CORE_DB_DATA_AGG_VAL_SEL,
DQ_XCM_CORE_SPQ_PROD_CMD);
p_db_data->agg_flags = DQ_XCM_CORE_DQ_CF_CMD;
/* Register the SPQ doorbell with the doorbell recovery mechanism */
db_addr = (void __iomem *)((u8 __iomem *)p_hwfn->doorbells +
p_spq->db_addr_offset);
rc = qed_db_recovery_add(p_hwfn->cdev, db_addr, &p_spq->db_data,
DB_REC_WIDTH_32B, DB_REC_KERNEL);
if (rc)
DP_INFO(p_hwfn,
"Failed to register the SPQ doorbell with the doorbell recovery mechanism\n");
}
int qed_spq_alloc(struct qed_hwfn *p_hwfn)
{
struct qed_chain_init_params params = {
.mode = QED_CHAIN_MODE_SINGLE,
.intended_use = QED_CHAIN_USE_TO_PRODUCE,
.cnt_type = QED_CHAIN_CNT_TYPE_U16,
.elem_size = sizeof(struct slow_path_element),
};
struct qed_dev *cdev = p_hwfn->cdev;
struct qed_spq_entry *p_virt = NULL;
struct qed_spq *p_spq = NULL;
dma_addr_t p_phys = 0;
u32 capacity;
int ret;
/* SPQ struct */
p_spq = kzalloc(sizeof(*p_spq), GFP_KERNEL);
if (!p_spq)
return -ENOMEM;
/* SPQ ring */
ret = qed_chain_alloc(cdev, &p_spq->chain, &params);
if (ret) {
DP_NOTICE(p_hwfn, "Failed to allocate SPQ chain\n");
goto spq_chain_alloc_fail;
}
/* allocate and fill the SPQ elements (incl. ramrod data list) */
capacity = qed_chain_get_capacity(&p_spq->chain);
ret = -ENOMEM;
p_virt = dma_alloc_coherent(&cdev->pdev->dev,
capacity * sizeof(struct qed_spq_entry),
&p_phys, GFP_KERNEL);
if (!p_virt)
goto spq_alloc_fail;
p_spq->p_virt = p_virt;
p_spq->p_phys = p_phys;
p_hwfn->p_spq = p_spq;
return 0;
spq_alloc_fail:
qed_chain_free(cdev, &p_spq->chain);
spq_chain_alloc_fail:
kfree(p_spq);
return ret;
}
void qed_spq_free(struct qed_hwfn *p_hwfn)
{
struct qed_spq *p_spq = p_hwfn->p_spq;
void __iomem *db_addr;
u32 capacity;
if (!p_spq)
return;
/* Delete the SPQ doorbell from the doorbell recovery mechanism */
db_addr = (void __iomem *)((u8 __iomem *)p_hwfn->doorbells +
p_spq->db_addr_offset);
qed_db_recovery_del(p_hwfn->cdev, db_addr, &p_spq->db_data);
if (p_spq->p_virt) {
capacity = qed_chain_get_capacity(&p_spq->chain);
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
capacity *
sizeof(struct qed_spq_entry),
p_spq->p_virt, p_spq->p_phys);
}
qed_chain_free(p_hwfn->cdev, &p_spq->chain);
kfree(p_spq);
p_hwfn->p_spq = NULL;
}
int qed_spq_get_entry(struct qed_hwfn *p_hwfn, struct qed_spq_entry **pp_ent)
{
struct qed_spq *p_spq = p_hwfn->p_spq;
struct qed_spq_entry *p_ent = NULL;
int rc = 0;
spin_lock_bh(&p_spq->lock);
if (list_empty(&p_spq->free_pool)) {
p_ent = kzalloc(sizeof(*p_ent), GFP_ATOMIC);
if (!p_ent) {
DP_NOTICE(p_hwfn,
"Failed to allocate an SPQ entry for a pending ramrod\n");
rc = -ENOMEM;
goto out_unlock;
}
p_ent->queue = &p_spq->unlimited_pending;
} else {
p_ent = list_first_entry(&p_spq->free_pool,
struct qed_spq_entry, list);
list_del(&p_ent->list);
p_ent->queue = &p_spq->pending;
}
*pp_ent = p_ent;
out_unlock:
spin_unlock_bh(&p_spq->lock);
return rc;
}
/* Locked variant; Should be called while the SPQ lock is taken */
static void __qed_spq_return_entry(struct qed_hwfn *p_hwfn,
struct qed_spq_entry *p_ent)
{
list_add_tail(&p_ent->list, &p_hwfn->p_spq->free_pool);
}
void qed_spq_return_entry(struct qed_hwfn *p_hwfn, struct qed_spq_entry *p_ent)
{
spin_lock_bh(&p_hwfn->p_spq->lock);
__qed_spq_return_entry(p_hwfn, p_ent);
spin_unlock_bh(&p_hwfn->p_spq->lock);
}
/**
* qed_spq_add_entry() - Add a new entry to the pending list.
* Should be used while lock is being held.
*
* @p_hwfn: HW device data.
* @p_ent: An entry to add.
* @priority: Desired priority.
*
* Adds an entry to the pending list is there is room (an empty
* element is available in the free_pool), or else places the
* entry in the unlimited_pending pool.
*
* Return: zero on success, -EINVAL on invalid @priority.
*/
static int qed_spq_add_entry(struct qed_hwfn *p_hwfn,
struct qed_spq_entry *p_ent,
enum spq_priority priority)
{
struct qed_spq *p_spq = p_hwfn->p_spq;
if (p_ent->queue == &p_spq->unlimited_pending) {
if (list_empty(&p_spq->free_pool)) {
list_add_tail(&p_ent->list, &p_spq->unlimited_pending);
p_spq->unlimited_pending_count++;
return 0;
} else {
struct qed_spq_entry *p_en2;
p_en2 = list_first_entry(&p_spq->free_pool,
struct qed_spq_entry, list);
list_del(&p_en2->list);
/* Copy the ring element physical pointer to the new
* entry, since we are about to override the entire ring
* entry and don't want to lose the pointer.
*/
p_ent->elem.data_ptr = p_en2->elem.data_ptr;
*p_en2 = *p_ent;
/* EBLOCK responsible to free the allocated p_ent */
if (p_ent->comp_mode != QED_SPQ_MODE_EBLOCK)
kfree(p_ent);
else
p_ent->post_ent = p_en2;
p_ent = p_en2;
}
}
/* entry is to be placed in 'pending' queue */
switch (priority) {
case QED_SPQ_PRIORITY_NORMAL:
list_add_tail(&p_ent->list, &p_spq->pending);
p_spq->normal_count++;
break;
case QED_SPQ_PRIORITY_HIGH:
list_add(&p_ent->list, &p_spq->pending);
p_spq->high_count++;
break;
default:
return -EINVAL;
}
return 0;
}
/***************************************************************************
* Accessor
***************************************************************************/
u32 qed_spq_get_cid(struct qed_hwfn *p_hwfn)
{
if (!p_hwfn->p_spq)
return 0xffffffff; /* illegal */
return p_hwfn->p_spq->cid;
}
/***************************************************************************
* Posting new Ramrods
***************************************************************************/
static int qed_spq_post_list(struct qed_hwfn *p_hwfn,
struct list_head *head, u32 keep_reserve)
{
struct qed_spq *p_spq = p_hwfn->p_spq;
int rc;
while (qed_chain_get_elem_left(&p_spq->chain) > keep_reserve &&
!list_empty(head)) {
struct qed_spq_entry *p_ent =
list_first_entry(head, struct qed_spq_entry, list);
list_move_tail(&p_ent->list, &p_spq->completion_pending);
p_spq->comp_sent_count++;
rc = qed_spq_hw_post(p_hwfn, p_spq, p_ent);
if (rc) {
list_del(&p_ent->list);
__qed_spq_return_entry(p_hwfn, p_ent);
return rc;
}
}
return 0;
}
int qed_spq_pend_post(struct qed_hwfn *p_hwfn)
{
struct qed_spq *p_spq = p_hwfn->p_spq;
struct qed_spq_entry *p_ent = NULL;
while (!list_empty(&p_spq->free_pool)) {
if (list_empty(&p_spq->unlimited_pending))
break;
p_ent = list_first_entry(&p_spq->unlimited_pending,
struct qed_spq_entry, list);
if (!p_ent)
return -EINVAL;
list_del(&p_ent->list);
qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority);
}
return qed_spq_post_list(p_hwfn, &p_spq->pending,
SPQ_HIGH_PRI_RESERVE_DEFAULT);
}
static void qed_spq_recov_set_ret_code(struct qed_spq_entry *p_ent,
u8 *fw_return_code)
{
if (!fw_return_code)
return;
if (p_ent->elem.hdr.protocol_id == PROTOCOLID_ROCE ||
p_ent->elem.hdr.protocol_id == PROTOCOLID_IWARP)
*fw_return_code = RDMA_RETURN_OK;
}
/* Avoid overriding of SPQ entries when getting out-of-order completions, by
* marking the completions in a bitmap and increasing the chain consumer only
* for the first successive completed entries.
*/
static void qed_spq_comp_bmap_update(struct qed_hwfn *p_hwfn, __le16 echo)
{
u16 pos = le16_to_cpu(echo) % SPQ_RING_SIZE;
struct qed_spq *p_spq = p_hwfn->p_spq;
__set_bit(pos, p_spq->p_comp_bitmap);
while (test_bit(p_spq->comp_bitmap_idx,
p_spq->p_comp_bitmap)) {
__clear_bit(p_spq->comp_bitmap_idx,
p_spq->p_comp_bitmap);
p_spq->comp_bitmap_idx++;
qed_chain_return_produced(&p_spq->chain);
}
}
int qed_spq_post(struct qed_hwfn *p_hwfn,
struct qed_spq_entry *p_ent, u8 *fw_return_code)
{
int rc = 0;
struct qed_spq *p_spq = p_hwfn ? p_hwfn->p_spq : NULL;
bool b_ret_ent = true;
bool eblock;
if (!p_hwfn)
return -EINVAL;
if (!p_ent) {
DP_NOTICE(p_hwfn, "Got a NULL pointer\n");
return -EINVAL;
}
if (p_hwfn->cdev->recov_in_prog) {
DP_VERBOSE(p_hwfn,
QED_MSG_SPQ,
"Recovery is in progress. Skip spq post [%s:%02x %s:%02x]\n",
qed_get_ramrod_cmd_id_str(p_ent->elem.hdr.protocol_id,
p_ent->elem.hdr.cmd_id),
p_ent->elem.hdr.cmd_id,
qed_get_protocol_type_str(p_ent->elem.hdr.protocol_id),
p_ent->elem.hdr.protocol_id);
/* Let the flow complete w/o any error handling */
qed_spq_recov_set_ret_code(p_ent, fw_return_code);
return 0;
}
/* Complete the entry */
rc = qed_spq_fill_entry(p_hwfn, p_ent);
spin_lock_bh(&p_spq->lock);
/* Check return value after LOCK is taken for cleaner error flow */
if (rc)
goto spq_post_fail;
/* Check if entry is in block mode before qed_spq_add_entry,
* which might kfree p_ent.
*/
eblock = (p_ent->comp_mode == QED_SPQ_MODE_EBLOCK);
/* Add the request to the pending queue */
rc = qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority);
if (rc)
goto spq_post_fail;
rc = qed_spq_pend_post(p_hwfn);
if (rc) {
/* Since it's possible that pending failed for a different
* entry [although unlikely], the failed entry was already
* dealt with; No need to return it here.
*/
b_ret_ent = false;
goto spq_post_fail;
}
spin_unlock_bh(&p_spq->lock);
if (eblock) {
/* For entries in QED BLOCK mode, the completion code cannot
* perform the necessary cleanup - if it did, we couldn't
* access p_ent here to see whether it's successful or not.
* Thus, after gaining the answer perform the cleanup here.
*/
rc = qed_spq_block(p_hwfn, p_ent, fw_return_code,
p_ent->queue == &p_spq->unlimited_pending);
if (p_ent->queue == &p_spq->unlimited_pending) {
struct qed_spq_entry *p_post_ent = p_ent->post_ent;
kfree(p_ent);
/* Return the entry which was actually posted */
p_ent = p_post_ent;
}
if (rc)
goto spq_post_fail2;
/* return to pool */
qed_spq_return_entry(p_hwfn, p_ent);
}
return rc;
spq_post_fail2:
spin_lock_bh(&p_spq->lock);
list_del(&p_ent->list);
qed_spq_comp_bmap_update(p_hwfn, p_ent->elem.hdr.echo);
spq_post_fail:
/* return to the free pool */
if (b_ret_ent)
__qed_spq_return_entry(p_hwfn, p_ent);
spin_unlock_bh(&p_spq->lock);
return rc;
}
int qed_spq_completion(struct qed_hwfn *p_hwfn,
__le16 echo,
u8 fw_return_code,
union event_ring_data *p_data)
{
struct qed_spq *p_spq;
struct qed_spq_entry *p_ent = NULL;
struct qed_spq_entry *tmp;
struct qed_spq_entry *found = NULL;
if (!p_hwfn)
return -EINVAL;
p_spq = p_hwfn->p_spq;
if (!p_spq)
return -EINVAL;
spin_lock_bh(&p_spq->lock);
list_for_each_entry_safe(p_ent, tmp, &p_spq->completion_pending, list) {
if (p_ent->elem.hdr.echo == echo) {
list_del(&p_ent->list);
qed_spq_comp_bmap_update(p_hwfn, echo);
p_spq->comp_count++;
found = p_ent;
break;
}
/* This is relatively uncommon - depends on scenarios
* which have mutliple per-PF sent ramrods.
*/
DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
"Got completion for echo %04x - doesn't match echo %04x in completion pending list\n",
le16_to_cpu(echo),
le16_to_cpu(p_ent->elem.hdr.echo));
}
/* Release lock before callback, as callback may post
* an additional ramrod.
*/
spin_unlock_bh(&p_spq->lock);
if (!found) {
DP_NOTICE(p_hwfn,
"Failed to find an entry this EQE [echo %04x] completes\n",
le16_to_cpu(echo));
return -EEXIST;
}
DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
"Complete EQE [echo %04x]: func %p cookie %p)\n",
le16_to_cpu(echo),
p_ent->comp_cb.function, p_ent->comp_cb.cookie);
if (found->comp_cb.function)
found->comp_cb.function(p_hwfn, found->comp_cb.cookie, p_data,
fw_return_code);
else
DP_VERBOSE(p_hwfn,
QED_MSG_SPQ,
"Got a completion without a callback function\n");
if (found->comp_mode != QED_SPQ_MODE_EBLOCK)
/* EBLOCK is responsible for returning its own entry into the
* free list.
*/
qed_spq_return_entry(p_hwfn, found);
return 0;
}
#define QED_SPQ_CONSQ_ELEM_SIZE 0x80
int qed_consq_alloc(struct qed_hwfn *p_hwfn)
{
struct qed_chain_init_params params = {
.mode = QED_CHAIN_MODE_PBL,
.intended_use = QED_CHAIN_USE_TO_PRODUCE,
.cnt_type = QED_CHAIN_CNT_TYPE_U16,
.num_elems = QED_CHAIN_PAGE_SIZE / QED_SPQ_CONSQ_ELEM_SIZE,
.elem_size = QED_SPQ_CONSQ_ELEM_SIZE,
};
struct qed_consq *p_consq;
int ret;
/* Allocate ConsQ struct */
p_consq = kzalloc(sizeof(*p_consq), GFP_KERNEL);
if (!p_consq)
return -ENOMEM;
/* Allocate and initialize ConsQ chain */
ret = qed_chain_alloc(p_hwfn->cdev, &p_consq->chain, &params);
if (ret) {
DP_NOTICE(p_hwfn, "Failed to allocate ConsQ chain");
goto consq_alloc_fail;
}
p_hwfn->p_consq = p_consq;
return 0;
consq_alloc_fail:
kfree(p_consq);
return ret;
}
void qed_consq_setup(struct qed_hwfn *p_hwfn)
{
qed_chain_reset(&p_hwfn->p_consq->chain);
}
void qed_consq_free(struct qed_hwfn *p_hwfn)
{
if (!p_hwfn->p_consq)
return;
qed_chain_free(p_hwfn->cdev, &p_hwfn->p_consq->chain);
kfree(p_hwfn->p_consq);
p_hwfn->p_consq = NULL;
}