| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * SMP initialisation and IPI support |
| * Based on arch/arm/kernel/smp.c |
| * |
| * Copyright (C) 2012 ARM Ltd. |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/arm_sdei.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/hotplug.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/interrupt.h> |
| #include <linux/cache.h> |
| #include <linux/profile.h> |
| #include <linux/errno.h> |
| #include <linux/mm.h> |
| #include <linux/err.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/seq_file.h> |
| #include <linux/irq.h> |
| #include <linux/irqchip/arm-gic-v3.h> |
| #include <linux/percpu.h> |
| #include <linux/clockchips.h> |
| #include <linux/completion.h> |
| #include <linux/of.h> |
| #include <linux/irq_work.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/kexec.h> |
| #include <linux/kvm_host.h> |
| |
| #include <asm/alternative.h> |
| #include <asm/atomic.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cpu.h> |
| #include <asm/cputype.h> |
| #include <asm/cpu_ops.h> |
| #include <asm/daifflags.h> |
| #include <asm/kvm_mmu.h> |
| #include <asm/mmu_context.h> |
| #include <asm/numa.h> |
| #include <asm/processor.h> |
| #include <asm/smp_plat.h> |
| #include <asm/sections.h> |
| #include <asm/tlbflush.h> |
| #include <asm/ptrace.h> |
| #include <asm/virt.h> |
| |
| #define CREATE_TRACE_POINTS |
| #include <trace/events/ipi.h> |
| #undef CREATE_TRACE_POINTS |
| #include <trace/hooks/debug.h> |
| |
| DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number); |
| EXPORT_PER_CPU_SYMBOL(cpu_number); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_raise); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_entry); |
| EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_exit); |
| |
| /* |
| * as from 2.5, kernels no longer have an init_tasks structure |
| * so we need some other way of telling a new secondary core |
| * where to place its SVC stack |
| */ |
| struct secondary_data secondary_data; |
| /* Number of CPUs which aren't online, but looping in kernel text. */ |
| static int cpus_stuck_in_kernel; |
| |
| enum ipi_msg_type { |
| IPI_RESCHEDULE, |
| IPI_CALL_FUNC, |
| IPI_CPU_STOP, |
| IPI_CPU_CRASH_STOP, |
| IPI_TIMER, |
| IPI_IRQ_WORK, |
| IPI_WAKEUP, |
| NR_IPI |
| }; |
| |
| static int ipi_irq_base __read_mostly; |
| static int nr_ipi __read_mostly = NR_IPI; |
| static struct irq_desc *ipi_desc[NR_IPI] __read_mostly; |
| |
| static void ipi_setup(int cpu); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void ipi_teardown(int cpu); |
| static int op_cpu_kill(unsigned int cpu); |
| #else |
| static inline int op_cpu_kill(unsigned int cpu) |
| { |
| return -ENOSYS; |
| } |
| #endif |
| |
| |
| /* |
| * Boot a secondary CPU, and assign it the specified idle task. |
| * This also gives us the initial stack to use for this CPU. |
| */ |
| static int boot_secondary(unsigned int cpu, struct task_struct *idle) |
| { |
| const struct cpu_operations *ops = get_cpu_ops(cpu); |
| |
| if (ops->cpu_boot) |
| return ops->cpu_boot(cpu); |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static DECLARE_COMPLETION(cpu_running); |
| |
| int __cpu_up(unsigned int cpu, struct task_struct *idle) |
| { |
| int ret; |
| long status; |
| |
| /* |
| * We need to tell the secondary core where to find its stack and the |
| * page tables. |
| */ |
| secondary_data.task = idle; |
| secondary_data.stack = task_stack_page(idle) + THREAD_SIZE; |
| update_cpu_boot_status(CPU_MMU_OFF); |
| dcache_clean_inval_poc((unsigned long)&secondary_data, |
| (unsigned long)&secondary_data + |
| sizeof(secondary_data)); |
| |
| /* Now bring the CPU into our world */ |
| ret = boot_secondary(cpu, idle); |
| if (ret) { |
| pr_err("CPU%u: failed to boot: %d\n", cpu, ret); |
| return ret; |
| } |
| |
| /* |
| * CPU was successfully started, wait for it to come online or |
| * time out. |
| */ |
| wait_for_completion_timeout(&cpu_running, |
| msecs_to_jiffies(5000)); |
| if (cpu_online(cpu)) |
| return 0; |
| |
| pr_crit("CPU%u: failed to come online\n", cpu); |
| secondary_data.task = NULL; |
| secondary_data.stack = NULL; |
| dcache_clean_inval_poc((unsigned long)&secondary_data, |
| (unsigned long)&secondary_data + |
| sizeof(secondary_data)); |
| status = READ_ONCE(secondary_data.status); |
| if (status == CPU_MMU_OFF) |
| status = READ_ONCE(__early_cpu_boot_status); |
| |
| switch (status & CPU_BOOT_STATUS_MASK) { |
| default: |
| pr_err("CPU%u: failed in unknown state : 0x%lx\n", |
| cpu, status); |
| cpus_stuck_in_kernel++; |
| break; |
| case CPU_KILL_ME: |
| if (!op_cpu_kill(cpu)) { |
| pr_crit("CPU%u: died during early boot\n", cpu); |
| break; |
| } |
| pr_crit("CPU%u: may not have shut down cleanly\n", cpu); |
| fallthrough; |
| case CPU_STUCK_IN_KERNEL: |
| pr_crit("CPU%u: is stuck in kernel\n", cpu); |
| if (status & CPU_STUCK_REASON_52_BIT_VA) |
| pr_crit("CPU%u: does not support 52-bit VAs\n", cpu); |
| if (status & CPU_STUCK_REASON_NO_GRAN) { |
| pr_crit("CPU%u: does not support %luK granule\n", |
| cpu, PAGE_SIZE / SZ_1K); |
| } |
| cpus_stuck_in_kernel++; |
| break; |
| case CPU_PANIC_KERNEL: |
| panic("CPU%u detected unsupported configuration\n", cpu); |
| } |
| |
| return -EIO; |
| } |
| |
| static void init_gic_priority_masking(void) |
| { |
| u32 cpuflags; |
| |
| if (WARN_ON(!gic_enable_sre())) |
| return; |
| |
| cpuflags = read_sysreg(daif); |
| |
| WARN_ON(!(cpuflags & PSR_I_BIT)); |
| |
| gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET); |
| } |
| |
| /* |
| * This is the secondary CPU boot entry. We're using this CPUs |
| * idle thread stack, but a set of temporary page tables. |
| */ |
| asmlinkage notrace void secondary_start_kernel(void) |
| { |
| u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; |
| struct mm_struct *mm = &init_mm; |
| const struct cpu_operations *ops; |
| unsigned int cpu; |
| |
| cpu = task_cpu(current); |
| set_my_cpu_offset(per_cpu_offset(cpu)); |
| |
| /* |
| * All kernel threads share the same mm context; grab a |
| * reference and switch to it. |
| */ |
| mmgrab(mm); |
| current->active_mm = mm; |
| |
| /* |
| * TTBR0 is only used for the identity mapping at this stage. Make it |
| * point to zero page to avoid speculatively fetching new entries. |
| */ |
| cpu_uninstall_idmap(); |
| |
| if (system_uses_irq_prio_masking()) |
| init_gic_priority_masking(); |
| |
| rcu_cpu_starting(cpu); |
| trace_hardirqs_off(); |
| |
| /* |
| * If the system has established the capabilities, make sure |
| * this CPU ticks all of those. If it doesn't, the CPU will |
| * fail to come online. |
| */ |
| check_local_cpu_capabilities(); |
| |
| ops = get_cpu_ops(cpu); |
| if (ops->cpu_postboot) |
| ops->cpu_postboot(); |
| |
| /* |
| * Log the CPU info before it is marked online and might get read. |
| */ |
| cpuinfo_store_cpu(); |
| |
| /* |
| * Enable GIC and timers. |
| */ |
| notify_cpu_starting(cpu); |
| |
| ipi_setup(cpu); |
| |
| store_cpu_topology(cpu); |
| numa_add_cpu(cpu); |
| |
| /* |
| * OK, now it's safe to let the boot CPU continue. Wait for |
| * the CPU migration code to notice that the CPU is online |
| * before we continue. |
| */ |
| pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n", |
| cpu, (unsigned long)mpidr, |
| read_cpuid_id()); |
| update_cpu_boot_status(CPU_BOOT_SUCCESS); |
| set_cpu_online(cpu, true); |
| complete(&cpu_running); |
| |
| local_daif_restore(DAIF_PROCCTX); |
| |
| /* |
| * OK, it's off to the idle thread for us |
| */ |
| cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static int op_cpu_disable(unsigned int cpu) |
| { |
| const struct cpu_operations *ops = get_cpu_ops(cpu); |
| |
| /* |
| * If we don't have a cpu_die method, abort before we reach the point |
| * of no return. CPU0 may not have an cpu_ops, so test for it. |
| */ |
| if (!ops || !ops->cpu_die) |
| return -EOPNOTSUPP; |
| |
| /* |
| * We may need to abort a hot unplug for some other mechanism-specific |
| * reason. |
| */ |
| if (ops->cpu_disable) |
| return ops->cpu_disable(cpu); |
| |
| return 0; |
| } |
| |
| /* |
| * __cpu_disable runs on the processor to be shutdown. |
| */ |
| int __cpu_disable(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| int ret; |
| |
| ret = op_cpu_disable(cpu); |
| if (ret) |
| return ret; |
| |
| remove_cpu_topology(cpu); |
| numa_remove_cpu(cpu); |
| |
| /* |
| * Take this CPU offline. Once we clear this, we can't return, |
| * and we must not schedule until we're ready to give up the cpu. |
| */ |
| set_cpu_online(cpu, false); |
| ipi_teardown(cpu); |
| |
| /* |
| * OK - migrate IRQs away from this CPU |
| */ |
| irq_migrate_all_off_this_cpu(); |
| |
| return 0; |
| } |
| |
| static int op_cpu_kill(unsigned int cpu) |
| { |
| const struct cpu_operations *ops = get_cpu_ops(cpu); |
| |
| /* |
| * If we have no means of synchronising with the dying CPU, then assume |
| * that it is really dead. We can only wait for an arbitrary length of |
| * time and hope that it's dead, so let's skip the wait and just hope. |
| */ |
| if (!ops->cpu_kill) |
| return 0; |
| |
| return ops->cpu_kill(cpu); |
| } |
| |
| /* |
| * called on the thread which is asking for a CPU to be shutdown - |
| * waits until shutdown has completed, or it is timed out. |
| */ |
| void __cpu_die(unsigned int cpu) |
| { |
| int err; |
| |
| if (!cpu_wait_death(cpu, 5)) { |
| pr_crit("CPU%u: cpu didn't die\n", cpu); |
| return; |
| } |
| pr_debug("CPU%u: shutdown\n", cpu); |
| |
| /* |
| * Now that the dying CPU is beyond the point of no return w.r.t. |
| * in-kernel synchronisation, try to get the firwmare to help us to |
| * verify that it has really left the kernel before we consider |
| * clobbering anything it might still be using. |
| */ |
| err = op_cpu_kill(cpu); |
| if (err) |
| pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err); |
| } |
| |
| /* |
| * Called from the idle thread for the CPU which has been shutdown. |
| * |
| */ |
| void cpu_die(void) |
| { |
| unsigned int cpu = smp_processor_id(); |
| const struct cpu_operations *ops = get_cpu_ops(cpu); |
| |
| idle_task_exit(); |
| |
| local_daif_mask(); |
| |
| /* Tell __cpu_die() that this CPU is now safe to dispose of */ |
| (void)cpu_report_death(); |
| |
| /* |
| * Actually shutdown the CPU. This must never fail. The specific hotplug |
| * mechanism must perform all required cache maintenance to ensure that |
| * no dirty lines are lost in the process of shutting down the CPU. |
| */ |
| ops->cpu_die(cpu); |
| |
| BUG(); |
| } |
| #endif |
| |
| static void __cpu_try_die(int cpu) |
| { |
| #ifdef CONFIG_HOTPLUG_CPU |
| const struct cpu_operations *ops = get_cpu_ops(cpu); |
| |
| if (ops && ops->cpu_die) |
| ops->cpu_die(cpu); |
| #endif |
| } |
| |
| /* |
| * Kill the calling secondary CPU, early in bringup before it is turned |
| * online. |
| */ |
| void cpu_die_early(void) |
| { |
| int cpu = smp_processor_id(); |
| |
| pr_crit("CPU%d: will not boot\n", cpu); |
| |
| /* Mark this CPU absent */ |
| set_cpu_present(cpu, 0); |
| rcu_report_dead(cpu); |
| |
| if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) { |
| update_cpu_boot_status(CPU_KILL_ME); |
| __cpu_try_die(cpu); |
| } |
| |
| update_cpu_boot_status(CPU_STUCK_IN_KERNEL); |
| |
| cpu_park_loop(); |
| } |
| |
| static void __init hyp_mode_check(void) |
| { |
| if (is_hyp_mode_available()) |
| pr_info("CPU: All CPU(s) started at EL2\n"); |
| else if (is_hyp_mode_mismatched()) |
| WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC, |
| "CPU: CPUs started in inconsistent modes"); |
| else |
| pr_info("CPU: All CPU(s) started at EL1\n"); |
| if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) { |
| kvm_compute_layout(); |
| kvm_apply_hyp_relocations(); |
| } |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| pr_info("SMP: Total of %d processors activated.\n", num_online_cpus()); |
| setup_cpu_features(); |
| hyp_mode_check(); |
| apply_alternatives_all(); |
| mark_linear_text_alias_ro(); |
| } |
| |
| void __init smp_prepare_boot_cpu(void) |
| { |
| set_my_cpu_offset(per_cpu_offset(smp_processor_id())); |
| cpuinfo_store_boot_cpu(); |
| |
| /* |
| * We now know enough about the boot CPU to apply the |
| * alternatives that cannot wait until interrupt handling |
| * and/or scheduling is enabled. |
| */ |
| apply_boot_alternatives(); |
| |
| /* Conditionally switch to GIC PMR for interrupt masking */ |
| if (system_uses_irq_prio_masking()) |
| init_gic_priority_masking(); |
| |
| kasan_init_hw_tags(); |
| } |
| |
| static u64 __init of_get_cpu_mpidr(struct device_node *dn) |
| { |
| const __be32 *cell; |
| u64 hwid; |
| |
| /* |
| * A cpu node with missing "reg" property is |
| * considered invalid to build a cpu_logical_map |
| * entry. |
| */ |
| cell = of_get_property(dn, "reg", NULL); |
| if (!cell) { |
| pr_err("%pOF: missing reg property\n", dn); |
| return INVALID_HWID; |
| } |
| |
| hwid = of_read_number(cell, of_n_addr_cells(dn)); |
| /* |
| * Non affinity bits must be set to 0 in the DT |
| */ |
| if (hwid & ~MPIDR_HWID_BITMASK) { |
| pr_err("%pOF: invalid reg property\n", dn); |
| return INVALID_HWID; |
| } |
| return hwid; |
| } |
| |
| /* |
| * Duplicate MPIDRs are a recipe for disaster. Scan all initialized |
| * entries and check for duplicates. If any is found just ignore the |
| * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid |
| * matching valid MPIDR values. |
| */ |
| static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid) |
| { |
| unsigned int i; |
| |
| for (i = 1; (i < cpu) && (i < NR_CPUS); i++) |
| if (cpu_logical_map(i) == hwid) |
| return true; |
| return false; |
| } |
| |
| /* |
| * Initialize cpu operations for a logical cpu and |
| * set it in the possible mask on success |
| */ |
| static int __init smp_cpu_setup(int cpu) |
| { |
| const struct cpu_operations *ops; |
| |
| if (init_cpu_ops(cpu)) |
| return -ENODEV; |
| |
| ops = get_cpu_ops(cpu); |
| if (ops->cpu_init(cpu)) |
| return -ENODEV; |
| |
| set_cpu_possible(cpu, true); |
| |
| return 0; |
| } |
| |
| static bool bootcpu_valid __initdata; |
| static unsigned int cpu_count = 1; |
| |
| #ifdef CONFIG_ACPI |
| static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS]; |
| |
| struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu) |
| { |
| return &cpu_madt_gicc[cpu]; |
| } |
| |
| /* |
| * acpi_map_gic_cpu_interface - parse processor MADT entry |
| * |
| * Carry out sanity checks on MADT processor entry and initialize |
| * cpu_logical_map on success |
| */ |
| static void __init |
| acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor) |
| { |
| u64 hwid = processor->arm_mpidr; |
| |
| if (!(processor->flags & ACPI_MADT_ENABLED)) { |
| pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid); |
| return; |
| } |
| |
| if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) { |
| pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid); |
| return; |
| } |
| |
| if (is_mpidr_duplicate(cpu_count, hwid)) { |
| pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid); |
| return; |
| } |
| |
| /* Check if GICC structure of boot CPU is available in the MADT */ |
| if (cpu_logical_map(0) == hwid) { |
| if (bootcpu_valid) { |
| pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n", |
| hwid); |
| return; |
| } |
| bootcpu_valid = true; |
| cpu_madt_gicc[0] = *processor; |
| return; |
| } |
| |
| if (cpu_count >= NR_CPUS) |
| return; |
| |
| /* map the logical cpu id to cpu MPIDR */ |
| set_cpu_logical_map(cpu_count, hwid); |
| |
| cpu_madt_gicc[cpu_count] = *processor; |
| |
| /* |
| * Set-up the ACPI parking protocol cpu entries |
| * while initializing the cpu_logical_map to |
| * avoid parsing MADT entries multiple times for |
| * nothing (ie a valid cpu_logical_map entry should |
| * contain a valid parking protocol data set to |
| * initialize the cpu if the parking protocol is |
| * the only available enable method). |
| */ |
| acpi_set_mailbox_entry(cpu_count, processor); |
| |
| cpu_count++; |
| } |
| |
| static int __init |
| acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header, |
| const unsigned long end) |
| { |
| struct acpi_madt_generic_interrupt *processor; |
| |
| processor = (struct acpi_madt_generic_interrupt *)header; |
| if (BAD_MADT_GICC_ENTRY(processor, end)) |
| return -EINVAL; |
| |
| acpi_table_print_madt_entry(&header->common); |
| |
| acpi_map_gic_cpu_interface(processor); |
| |
| return 0; |
| } |
| |
| static void __init acpi_parse_and_init_cpus(void) |
| { |
| int i; |
| |
| /* |
| * do a walk of MADT to determine how many CPUs |
| * we have including disabled CPUs, and get information |
| * we need for SMP init. |
| */ |
| acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, |
| acpi_parse_gic_cpu_interface, 0); |
| |
| /* |
| * In ACPI, SMP and CPU NUMA information is provided in separate |
| * static tables, namely the MADT and the SRAT. |
| * |
| * Thus, it is simpler to first create the cpu logical map through |
| * an MADT walk and then map the logical cpus to their node ids |
| * as separate steps. |
| */ |
| acpi_map_cpus_to_nodes(); |
| |
| for (i = 0; i < nr_cpu_ids; i++) |
| early_map_cpu_to_node(i, acpi_numa_get_nid(i)); |
| } |
| #else |
| #define acpi_parse_and_init_cpus(...) do { } while (0) |
| #endif |
| |
| /* |
| * Enumerate the possible CPU set from the device tree and build the |
| * cpu logical map array containing MPIDR values related to logical |
| * cpus. Assumes that cpu_logical_map(0) has already been initialized. |
| */ |
| static void __init of_parse_and_init_cpus(void) |
| { |
| struct device_node *dn; |
| |
| for_each_of_cpu_node(dn) { |
| u64 hwid = of_get_cpu_mpidr(dn); |
| |
| if (hwid == INVALID_HWID) |
| goto next; |
| |
| if (is_mpidr_duplicate(cpu_count, hwid)) { |
| pr_err("%pOF: duplicate cpu reg properties in the DT\n", |
| dn); |
| goto next; |
| } |
| |
| /* |
| * The numbering scheme requires that the boot CPU |
| * must be assigned logical id 0. Record it so that |
| * the logical map built from DT is validated and can |
| * be used. |
| */ |
| if (hwid == cpu_logical_map(0)) { |
| if (bootcpu_valid) { |
| pr_err("%pOF: duplicate boot cpu reg property in DT\n", |
| dn); |
| goto next; |
| } |
| |
| bootcpu_valid = true; |
| early_map_cpu_to_node(0, of_node_to_nid(dn)); |
| |
| /* |
| * cpu_logical_map has already been |
| * initialized and the boot cpu doesn't need |
| * the enable-method so continue without |
| * incrementing cpu. |
| */ |
| continue; |
| } |
| |
| if (cpu_count >= NR_CPUS) |
| goto next; |
| |
| pr_debug("cpu logical map 0x%llx\n", hwid); |
| set_cpu_logical_map(cpu_count, hwid); |
| |
| early_map_cpu_to_node(cpu_count, of_node_to_nid(dn)); |
| next: |
| cpu_count++; |
| } |
| } |
| |
| /* |
| * Enumerate the possible CPU set from the device tree or ACPI and build the |
| * cpu logical map array containing MPIDR values related to logical |
| * cpus. Assumes that cpu_logical_map(0) has already been initialized. |
| */ |
| void __init smp_init_cpus(void) |
| { |
| int i; |
| |
| if (acpi_disabled) |
| of_parse_and_init_cpus(); |
| else |
| acpi_parse_and_init_cpus(); |
| |
| if (cpu_count > nr_cpu_ids) |
| pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n", |
| cpu_count, nr_cpu_ids); |
| |
| if (!bootcpu_valid) { |
| pr_err("missing boot CPU MPIDR, not enabling secondaries\n"); |
| return; |
| } |
| |
| /* |
| * We need to set the cpu_logical_map entries before enabling |
| * the cpus so that cpu processor description entries (DT cpu nodes |
| * and ACPI MADT entries) can be retrieved by matching the cpu hwid |
| * with entries in cpu_logical_map while initializing the cpus. |
| * If the cpu set-up fails, invalidate the cpu_logical_map entry. |
| */ |
| for (i = 1; i < nr_cpu_ids; i++) { |
| if (cpu_logical_map(i) != INVALID_HWID) { |
| if (smp_cpu_setup(i)) |
| set_cpu_logical_map(i, INVALID_HWID); |
| } |
| } |
| } |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| const struct cpu_operations *ops; |
| int err; |
| unsigned int cpu; |
| unsigned int this_cpu; |
| |
| init_cpu_topology(); |
| |
| this_cpu = smp_processor_id(); |
| store_cpu_topology(this_cpu); |
| numa_store_cpu_info(this_cpu); |
| numa_add_cpu(this_cpu); |
| |
| /* |
| * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set |
| * secondary CPUs present. |
| */ |
| if (max_cpus == 0) |
| return; |
| |
| /* |
| * Initialise the present map (which describes the set of CPUs |
| * actually populated at the present time) and release the |
| * secondaries from the bootloader. |
| */ |
| for_each_possible_cpu(cpu) { |
| |
| per_cpu(cpu_number, cpu) = cpu; |
| |
| if (cpu == smp_processor_id()) |
| continue; |
| |
| ops = get_cpu_ops(cpu); |
| if (!ops) |
| continue; |
| |
| err = ops->cpu_prepare(cpu); |
| if (err) |
| continue; |
| |
| set_cpu_present(cpu, true); |
| numa_store_cpu_info(cpu); |
| } |
| } |
| |
| static const char *ipi_types[NR_IPI] __tracepoint_string = { |
| #define S(x,s) [x] = s |
| S(IPI_RESCHEDULE, "Rescheduling interrupts"), |
| S(IPI_CALL_FUNC, "Function call interrupts"), |
| S(IPI_CPU_STOP, "CPU stop interrupts"), |
| S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"), |
| S(IPI_TIMER, "Timer broadcast interrupts"), |
| S(IPI_IRQ_WORK, "IRQ work interrupts"), |
| S(IPI_WAKEUP, "CPU wake-up interrupts"), |
| }; |
| |
| static void smp_cross_call(const struct cpumask *target, unsigned int ipinr); |
| |
| unsigned long irq_err_count; |
| |
| int arch_show_interrupts(struct seq_file *p, int prec) |
| { |
| unsigned int cpu, i; |
| |
| for (i = 0; i < NR_IPI; i++) { |
| unsigned int irq = irq_desc_get_irq(ipi_desc[i]); |
| seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, |
| prec >= 4 ? " " : ""); |
| for_each_online_cpu(cpu) |
| seq_printf(p, "%10u ", kstat_irqs_cpu(irq, cpu)); |
| seq_printf(p, " %s\n", ipi_types[i]); |
| } |
| |
| seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count); |
| return 0; |
| } |
| |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask) |
| { |
| smp_cross_call(mask, IPI_CALL_FUNC); |
| } |
| |
| void arch_send_call_function_single_ipi(int cpu) |
| { |
| smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC); |
| } |
| |
| #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL |
| void arch_send_wakeup_ipi_mask(const struct cpumask *mask) |
| { |
| smp_cross_call(mask, IPI_WAKEUP); |
| } |
| #endif |
| |
| #ifdef CONFIG_IRQ_WORK |
| void arch_irq_work_raise(void) |
| { |
| smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK); |
| } |
| #endif |
| |
| static void local_cpu_stop(void) |
| { |
| set_cpu_online(smp_processor_id(), false); |
| |
| local_daif_mask(); |
| sdei_mask_local_cpu(); |
| cpu_park_loop(); |
| } |
| |
| /* |
| * We need to implement panic_smp_self_stop() for parallel panic() calls, so |
| * that cpu_online_mask gets correctly updated and smp_send_stop() can skip |
| * CPUs that have already stopped themselves. |
| */ |
| void panic_smp_self_stop(void) |
| { |
| local_cpu_stop(); |
| } |
| |
| #ifdef CONFIG_KEXEC_CORE |
| static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0); |
| #endif |
| |
| static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs) |
| { |
| #ifdef CONFIG_KEXEC_CORE |
| crash_save_cpu(regs, cpu); |
| |
| atomic_dec(&waiting_for_crash_ipi); |
| |
| local_irq_disable(); |
| sdei_mask_local_cpu(); |
| |
| if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) |
| __cpu_try_die(cpu); |
| |
| /* just in case */ |
| cpu_park_loop(); |
| #endif |
| } |
| |
| /* |
| * Main handler for inter-processor interrupts |
| */ |
| static void do_handle_IPI(int ipinr) |
| { |
| unsigned int cpu = smp_processor_id(); |
| |
| if ((unsigned)ipinr < NR_IPI) |
| trace_ipi_entry_rcuidle(ipi_types[ipinr]); |
| |
| switch (ipinr) { |
| case IPI_RESCHEDULE: |
| scheduler_ipi(); |
| break; |
| |
| case IPI_CALL_FUNC: |
| generic_smp_call_function_interrupt(); |
| break; |
| |
| case IPI_CPU_STOP: |
| trace_android_vh_ipi_stop_rcuidle(get_irq_regs()); |
| local_cpu_stop(); |
| break; |
| |
| case IPI_CPU_CRASH_STOP: |
| if (IS_ENABLED(CONFIG_KEXEC_CORE)) { |
| ipi_cpu_crash_stop(cpu, get_irq_regs()); |
| |
| unreachable(); |
| } |
| break; |
| |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| case IPI_TIMER: |
| tick_receive_broadcast(); |
| break; |
| #endif |
| |
| #ifdef CONFIG_IRQ_WORK |
| case IPI_IRQ_WORK: |
| irq_work_run(); |
| break; |
| #endif |
| |
| #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL |
| case IPI_WAKEUP: |
| WARN_ONCE(!acpi_parking_protocol_valid(cpu), |
| "CPU%u: Wake-up IPI outside the ACPI parking protocol\n", |
| cpu); |
| break; |
| #endif |
| |
| default: |
| pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr); |
| break; |
| } |
| |
| if ((unsigned)ipinr < NR_IPI) |
| trace_ipi_exit_rcuidle(ipi_types[ipinr]); |
| } |
| |
| static irqreturn_t ipi_handler(int irq, void *data) |
| { |
| do_handle_IPI(irq - ipi_irq_base); |
| return IRQ_HANDLED; |
| } |
| |
| static void smp_cross_call(const struct cpumask *target, unsigned int ipinr) |
| { |
| trace_ipi_raise(target, ipi_types[ipinr]); |
| __ipi_send_mask(ipi_desc[ipinr], target); |
| } |
| |
| static void ipi_setup(int cpu) |
| { |
| int i; |
| |
| if (WARN_ON_ONCE(!ipi_irq_base)) |
| return; |
| |
| for (i = 0; i < nr_ipi; i++) |
| enable_percpu_irq(ipi_irq_base + i, 0); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void ipi_teardown(int cpu) |
| { |
| int i; |
| |
| if (WARN_ON_ONCE(!ipi_irq_base)) |
| return; |
| |
| for (i = 0; i < nr_ipi; i++) |
| disable_percpu_irq(ipi_irq_base + i); |
| } |
| #endif |
| |
| void __init set_smp_ipi_range(int ipi_base, int n) |
| { |
| int i; |
| |
| WARN_ON(n < NR_IPI); |
| nr_ipi = min(n, NR_IPI); |
| |
| for (i = 0; i < nr_ipi; i++) { |
| int err; |
| |
| err = request_percpu_irq(ipi_base + i, ipi_handler, |
| "IPI", &cpu_number); |
| WARN_ON(err); |
| |
| ipi_desc[i] = irq_to_desc(ipi_base + i); |
| irq_set_status_flags(ipi_base + i, IRQ_HIDDEN); |
| |
| /* The recheduling IPI is special... */ |
| if (i == IPI_RESCHEDULE) |
| __irq_modify_status(ipi_base + i, 0, IRQ_RAW, ~0); |
| } |
| |
| ipi_irq_base = ipi_base; |
| |
| /* Setup the boot CPU immediately */ |
| ipi_setup(smp_processor_id()); |
| } |
| |
| void smp_send_reschedule(int cpu) |
| { |
| smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); |
| } |
| |
| #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| void tick_broadcast(const struct cpumask *mask) |
| { |
| smp_cross_call(mask, IPI_TIMER); |
| } |
| #endif |
| |
| /* |
| * The number of CPUs online, not counting this CPU (which may not be |
| * fully online and so not counted in num_online_cpus()). |
| */ |
| static inline unsigned int num_other_online_cpus(void) |
| { |
| unsigned int this_cpu_online = cpu_online(smp_processor_id()); |
| |
| return num_online_cpus() - this_cpu_online; |
| } |
| |
| void smp_send_stop(void) |
| { |
| unsigned long timeout; |
| |
| if (num_other_online_cpus()) { |
| cpumask_t mask; |
| |
| cpumask_copy(&mask, cpu_online_mask); |
| cpumask_clear_cpu(smp_processor_id(), &mask); |
| |
| if (system_state <= SYSTEM_RUNNING) |
| pr_crit("SMP: stopping secondary CPUs\n"); |
| smp_cross_call(&mask, IPI_CPU_STOP); |
| } |
| |
| /* Wait up to one second for other CPUs to stop */ |
| timeout = USEC_PER_SEC; |
| while (num_other_online_cpus() && timeout--) |
| udelay(1); |
| |
| if (num_other_online_cpus()) |
| pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", |
| cpumask_pr_args(cpu_online_mask)); |
| |
| sdei_mask_local_cpu(); |
| } |
| |
| #ifdef CONFIG_KEXEC_CORE |
| void crash_smp_send_stop(void) |
| { |
| static int cpus_stopped; |
| cpumask_t mask; |
| unsigned long timeout; |
| |
| /* |
| * This function can be called twice in panic path, but obviously |
| * we execute this only once. |
| */ |
| if (cpus_stopped) |
| return; |
| |
| cpus_stopped = 1; |
| |
| /* |
| * If this cpu is the only one alive at this point in time, online or |
| * not, there are no stop messages to be sent around, so just back out. |
| */ |
| if (num_other_online_cpus() == 0) { |
| sdei_mask_local_cpu(); |
| return; |
| } |
| |
| cpumask_copy(&mask, cpu_online_mask); |
| cpumask_clear_cpu(smp_processor_id(), &mask); |
| |
| atomic_set(&waiting_for_crash_ipi, num_other_online_cpus()); |
| |
| pr_crit("SMP: stopping secondary CPUs\n"); |
| smp_cross_call(&mask, IPI_CPU_CRASH_STOP); |
| |
| /* Wait up to one second for other CPUs to stop */ |
| timeout = USEC_PER_SEC; |
| while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--) |
| udelay(1); |
| |
| if (atomic_read(&waiting_for_crash_ipi) > 0) |
| pr_warn("SMP: failed to stop secondary CPUs %*pbl\n", |
| cpumask_pr_args(&mask)); |
| |
| sdei_mask_local_cpu(); |
| } |
| |
| bool smp_crash_stop_failed(void) |
| { |
| return (atomic_read(&waiting_for_crash_ipi) > 0); |
| } |
| #endif |
| |
| /* |
| * not supported here |
| */ |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return -EINVAL; |
| } |
| |
| static bool have_cpu_die(void) |
| { |
| #ifdef CONFIG_HOTPLUG_CPU |
| int any_cpu = raw_smp_processor_id(); |
| const struct cpu_operations *ops = get_cpu_ops(any_cpu); |
| |
| if (ops && ops->cpu_die) |
| return true; |
| #endif |
| return false; |
| } |
| |
| bool cpus_are_stuck_in_kernel(void) |
| { |
| bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die()); |
| |
| return !!cpus_stuck_in_kernel || smp_spin_tables || |
| is_protected_kvm_enabled(); |
| } |
| |
| int nr_ipi_get(void) |
| { |
| return nr_ipi; |
| } |
| EXPORT_SYMBOL_GPL(nr_ipi_get); |
| |
| struct irq_desc **ipi_desc_get(void) |
| { |
| return ipi_desc; |
| } |
| EXPORT_SYMBOL_GPL(ipi_desc_get); |