| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Test cases for KFENCE memory safety error detector. Since the interface with |
| * which KFENCE's reports are obtained is via the console, this is the output we |
| * should verify. For each test case checks the presence (or absence) of |
| * generated reports. Relies on 'console' tracepoint to capture reports as they |
| * appear in the kernel log. |
| * |
| * Copyright (C) 2020, Google LLC. |
| * Author: Alexander Potapenko <glider@google.com> |
| * Marco Elver <elver@google.com> |
| */ |
| |
| #include <kunit/test.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/kfence.h> |
| #include <linux/mm.h> |
| #include <linux/random.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include <linux/tracepoint.h> |
| #include <trace/events/printk.h> |
| |
| #include "kfence.h" |
| |
| /* Report as observed from console. */ |
| static struct { |
| spinlock_t lock; |
| int nlines; |
| char lines[2][256]; |
| } observed = { |
| .lock = __SPIN_LOCK_UNLOCKED(observed.lock), |
| }; |
| |
| /* Probe for console output: obtains observed lines of interest. */ |
| static void probe_console(void *ignore, const char *buf, size_t len) |
| { |
| unsigned long flags; |
| int nlines; |
| |
| spin_lock_irqsave(&observed.lock, flags); |
| nlines = observed.nlines; |
| |
| if (strnstr(buf, "BUG: KFENCE: ", len) && strnstr(buf, "test_", len)) { |
| /* |
| * KFENCE report and related to the test. |
| * |
| * The provided @buf is not NUL-terminated; copy no more than |
| * @len bytes and let strscpy() add the missing NUL-terminator. |
| */ |
| strscpy(observed.lines[0], buf, min(len + 1, sizeof(observed.lines[0]))); |
| nlines = 1; |
| } else if (nlines == 1 && (strnstr(buf, "at 0x", len) || strnstr(buf, "of 0x", len))) { |
| strscpy(observed.lines[nlines++], buf, min(len + 1, sizeof(observed.lines[0]))); |
| } |
| |
| WRITE_ONCE(observed.nlines, nlines); /* Publish new nlines. */ |
| spin_unlock_irqrestore(&observed.lock, flags); |
| } |
| |
| /* Check if a report related to the test exists. */ |
| static bool report_available(void) |
| { |
| return READ_ONCE(observed.nlines) == ARRAY_SIZE(observed.lines); |
| } |
| |
| /* Information we expect in a report. */ |
| struct expect_report { |
| enum kfence_error_type type; /* The type or error. */ |
| void *fn; /* Function pointer to expected function where access occurred. */ |
| char *addr; /* Address at which the bad access occurred. */ |
| bool is_write; /* Is access a write. */ |
| }; |
| |
| static const char *get_access_type(const struct expect_report *r) |
| { |
| return r->is_write ? "write" : "read"; |
| } |
| |
| /* Check observed report matches information in @r. */ |
| static bool report_matches(const struct expect_report *r) |
| { |
| bool ret = false; |
| unsigned long flags; |
| typeof(observed.lines) expect; |
| const char *end; |
| char *cur; |
| |
| /* Doubled-checked locking. */ |
| if (!report_available()) |
| return false; |
| |
| /* Generate expected report contents. */ |
| |
| /* Title */ |
| cur = expect[0]; |
| end = &expect[0][sizeof(expect[0]) - 1]; |
| switch (r->type) { |
| case KFENCE_ERROR_OOB: |
| cur += scnprintf(cur, end - cur, "BUG: KFENCE: out-of-bounds %s", |
| get_access_type(r)); |
| break; |
| case KFENCE_ERROR_UAF: |
| cur += scnprintf(cur, end - cur, "BUG: KFENCE: use-after-free %s", |
| get_access_type(r)); |
| break; |
| case KFENCE_ERROR_CORRUPTION: |
| cur += scnprintf(cur, end - cur, "BUG: KFENCE: memory corruption"); |
| break; |
| case KFENCE_ERROR_INVALID: |
| cur += scnprintf(cur, end - cur, "BUG: KFENCE: invalid %s", |
| get_access_type(r)); |
| break; |
| case KFENCE_ERROR_INVALID_FREE: |
| cur += scnprintf(cur, end - cur, "BUG: KFENCE: invalid free"); |
| break; |
| } |
| |
| scnprintf(cur, end - cur, " in %pS", r->fn); |
| /* The exact offset won't match, remove it; also strip module name. */ |
| cur = strchr(expect[0], '+'); |
| if (cur) |
| *cur = '\0'; |
| |
| /* Access information */ |
| cur = expect[1]; |
| end = &expect[1][sizeof(expect[1]) - 1]; |
| |
| switch (r->type) { |
| case KFENCE_ERROR_OOB: |
| cur += scnprintf(cur, end - cur, "Out-of-bounds %s at", get_access_type(r)); |
| break; |
| case KFENCE_ERROR_UAF: |
| cur += scnprintf(cur, end - cur, "Use-after-free %s at", get_access_type(r)); |
| break; |
| case KFENCE_ERROR_CORRUPTION: |
| cur += scnprintf(cur, end - cur, "Corrupted memory at"); |
| break; |
| case KFENCE_ERROR_INVALID: |
| cur += scnprintf(cur, end - cur, "Invalid %s at", get_access_type(r)); |
| break; |
| case KFENCE_ERROR_INVALID_FREE: |
| cur += scnprintf(cur, end - cur, "Invalid free of"); |
| break; |
| } |
| |
| cur += scnprintf(cur, end - cur, " 0x%p", (void *)r->addr); |
| |
| spin_lock_irqsave(&observed.lock, flags); |
| if (!report_available()) |
| goto out; /* A new report is being captured. */ |
| |
| /* Finally match expected output to what we actually observed. */ |
| ret = strstr(observed.lines[0], expect[0]) && strstr(observed.lines[1], expect[1]); |
| out: |
| spin_unlock_irqrestore(&observed.lock, flags); |
| return ret; |
| } |
| |
| /* ===== Test cases ===== */ |
| |
| #define TEST_PRIV_WANT_MEMCACHE ((void *)1) |
| |
| /* Cache used by tests; if NULL, allocate from kmalloc instead. */ |
| static struct kmem_cache *test_cache; |
| |
| static size_t setup_test_cache(struct kunit *test, size_t size, slab_flags_t flags, |
| void (*ctor)(void *)) |
| { |
| if (test->priv != TEST_PRIV_WANT_MEMCACHE) |
| return size; |
| |
| kunit_info(test, "%s: size=%zu, ctor=%ps\n", __func__, size, ctor); |
| |
| /* |
| * Use SLAB_NOLEAKTRACE to prevent merging with existing caches. Any |
| * other flag in SLAB_NEVER_MERGE also works. Use SLAB_ACCOUNT to |
| * allocate via memcg, if enabled. |
| */ |
| flags |= SLAB_NOLEAKTRACE | SLAB_ACCOUNT; |
| test_cache = kmem_cache_create("test", size, 1, flags, ctor); |
| KUNIT_ASSERT_TRUE_MSG(test, test_cache, "could not create cache"); |
| |
| return size; |
| } |
| |
| static void test_cache_destroy(void) |
| { |
| if (!test_cache) |
| return; |
| |
| kmem_cache_destroy(test_cache); |
| test_cache = NULL; |
| } |
| |
| static inline size_t kmalloc_cache_alignment(size_t size) |
| { |
| return kmalloc_caches[kmalloc_type(GFP_KERNEL)][kmalloc_index(size)]->align; |
| } |
| |
| /* Must always inline to match stack trace against caller. */ |
| static __always_inline void test_free(void *ptr) |
| { |
| if (test_cache) |
| kmem_cache_free(test_cache, ptr); |
| else |
| kfree(ptr); |
| } |
| |
| /* |
| * If this should be a KFENCE allocation, and on which side the allocation and |
| * the closest guard page should be. |
| */ |
| enum allocation_policy { |
| ALLOCATE_ANY, /* KFENCE, any side. */ |
| ALLOCATE_LEFT, /* KFENCE, left side of page. */ |
| ALLOCATE_RIGHT, /* KFENCE, right side of page. */ |
| ALLOCATE_NONE, /* No KFENCE allocation. */ |
| }; |
| |
| /* |
| * Try to get a guarded allocation from KFENCE. Uses either kmalloc() or the |
| * current test_cache if set up. |
| */ |
| static void *test_alloc(struct kunit *test, size_t size, gfp_t gfp, enum allocation_policy policy) |
| { |
| void *alloc; |
| unsigned long timeout, resched_after; |
| const char *policy_name; |
| |
| switch (policy) { |
| case ALLOCATE_ANY: |
| policy_name = "any"; |
| break; |
| case ALLOCATE_LEFT: |
| policy_name = "left"; |
| break; |
| case ALLOCATE_RIGHT: |
| policy_name = "right"; |
| break; |
| case ALLOCATE_NONE: |
| policy_name = "none"; |
| break; |
| } |
| |
| kunit_info(test, "%s: size=%zu, gfp=%x, policy=%s, cache=%i\n", __func__, size, gfp, |
| policy_name, !!test_cache); |
| |
| /* |
| * 100x the sample interval should be more than enough to ensure we get |
| * a KFENCE allocation eventually. |
| */ |
| timeout = jiffies + msecs_to_jiffies(100 * CONFIG_KFENCE_SAMPLE_INTERVAL); |
| /* |
| * Especially for non-preemption kernels, ensure the allocation-gate |
| * timer can catch up: after @resched_after, every failed allocation |
| * attempt yields, to ensure the allocation-gate timer is scheduled. |
| */ |
| resched_after = jiffies + msecs_to_jiffies(CONFIG_KFENCE_SAMPLE_INTERVAL); |
| do { |
| if (test_cache) |
| alloc = kmem_cache_alloc(test_cache, gfp); |
| else |
| alloc = kmalloc(size, gfp); |
| |
| if (is_kfence_address(alloc)) { |
| struct page *page = virt_to_head_page(alloc); |
| struct kmem_cache *s = test_cache ?: kmalloc_caches[kmalloc_type(GFP_KERNEL)][kmalloc_index(size)]; |
| |
| /* |
| * Verify that various helpers return the right values |
| * even for KFENCE objects; these are required so that |
| * memcg accounting works correctly. |
| */ |
| KUNIT_EXPECT_EQ(test, obj_to_index(s, page, alloc), 0U); |
| KUNIT_EXPECT_EQ(test, objs_per_slab_page(s, page), 1); |
| |
| if (policy == ALLOCATE_ANY) |
| return alloc; |
| if (policy == ALLOCATE_LEFT && IS_ALIGNED((unsigned long)alloc, PAGE_SIZE)) |
| return alloc; |
| if (policy == ALLOCATE_RIGHT && |
| !IS_ALIGNED((unsigned long)alloc, PAGE_SIZE)) |
| return alloc; |
| } else if (policy == ALLOCATE_NONE) |
| return alloc; |
| |
| test_free(alloc); |
| |
| if (time_after(jiffies, resched_after)) |
| cond_resched(); |
| } while (time_before(jiffies, timeout)); |
| |
| KUNIT_ASSERT_TRUE_MSG(test, false, "failed to allocate from KFENCE"); |
| return NULL; /* Unreachable. */ |
| } |
| |
| static void test_out_of_bounds_read(struct kunit *test) |
| { |
| size_t size = 32; |
| struct expect_report expect = { |
| .type = KFENCE_ERROR_OOB, |
| .fn = test_out_of_bounds_read, |
| .is_write = false, |
| }; |
| char *buf; |
| |
| setup_test_cache(test, size, 0, NULL); |
| |
| /* |
| * If we don't have our own cache, adjust based on alignment, so that we |
| * actually access guard pages on either side. |
| */ |
| if (!test_cache) |
| size = kmalloc_cache_alignment(size); |
| |
| /* Test both sides. */ |
| |
| buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT); |
| expect.addr = buf - 1; |
| READ_ONCE(*expect.addr); |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| test_free(buf); |
| |
| buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); |
| expect.addr = buf + size; |
| READ_ONCE(*expect.addr); |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| test_free(buf); |
| } |
| |
| static void test_out_of_bounds_write(struct kunit *test) |
| { |
| size_t size = 32; |
| struct expect_report expect = { |
| .type = KFENCE_ERROR_OOB, |
| .fn = test_out_of_bounds_write, |
| .is_write = true, |
| }; |
| char *buf; |
| |
| setup_test_cache(test, size, 0, NULL); |
| buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT); |
| expect.addr = buf - 1; |
| WRITE_ONCE(*expect.addr, 42); |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| test_free(buf); |
| } |
| |
| static void test_use_after_free_read(struct kunit *test) |
| { |
| const size_t size = 32; |
| struct expect_report expect = { |
| .type = KFENCE_ERROR_UAF, |
| .fn = test_use_after_free_read, |
| .is_write = false, |
| }; |
| |
| setup_test_cache(test, size, 0, NULL); |
| expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); |
| test_free(expect.addr); |
| READ_ONCE(*expect.addr); |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| } |
| |
| static void test_double_free(struct kunit *test) |
| { |
| const size_t size = 32; |
| struct expect_report expect = { |
| .type = KFENCE_ERROR_INVALID_FREE, |
| .fn = test_double_free, |
| }; |
| |
| setup_test_cache(test, size, 0, NULL); |
| expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); |
| test_free(expect.addr); |
| test_free(expect.addr); /* Double-free. */ |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| } |
| |
| static void test_invalid_addr_free(struct kunit *test) |
| { |
| const size_t size = 32; |
| struct expect_report expect = { |
| .type = KFENCE_ERROR_INVALID_FREE, |
| .fn = test_invalid_addr_free, |
| }; |
| char *buf; |
| |
| setup_test_cache(test, size, 0, NULL); |
| buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); |
| expect.addr = buf + 1; /* Free on invalid address. */ |
| test_free(expect.addr); /* Invalid address free. */ |
| test_free(buf); /* No error. */ |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| } |
| |
| static void test_corruption(struct kunit *test) |
| { |
| size_t size = 32; |
| struct expect_report expect = { |
| .type = KFENCE_ERROR_CORRUPTION, |
| .fn = test_corruption, |
| }; |
| char *buf; |
| |
| setup_test_cache(test, size, 0, NULL); |
| |
| /* Test both sides. */ |
| |
| buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT); |
| expect.addr = buf + size; |
| WRITE_ONCE(*expect.addr, 42); |
| test_free(buf); |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| |
| buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); |
| expect.addr = buf - 1; |
| WRITE_ONCE(*expect.addr, 42); |
| test_free(buf); |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| } |
| |
| /* |
| * KFENCE is unable to detect an OOB if the allocation's alignment requirements |
| * leave a gap between the object and the guard page. Specifically, an |
| * allocation of e.g. 73 bytes is aligned on 8 and 128 bytes for SLUB or SLAB |
| * respectively. Therefore it is impossible for the allocated object to |
| * contiguously line up with the right guard page. |
| * |
| * However, we test that an access to memory beyond the gap results in KFENCE |
| * detecting an OOB access. |
| */ |
| static void test_kmalloc_aligned_oob_read(struct kunit *test) |
| { |
| const size_t size = 73; |
| const size_t align = kmalloc_cache_alignment(size); |
| struct expect_report expect = { |
| .type = KFENCE_ERROR_OOB, |
| .fn = test_kmalloc_aligned_oob_read, |
| .is_write = false, |
| }; |
| char *buf; |
| |
| buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); |
| |
| /* |
| * The object is offset to the right, so there won't be an OOB to the |
| * left of it. |
| */ |
| READ_ONCE(*(buf - 1)); |
| KUNIT_EXPECT_FALSE(test, report_available()); |
| |
| /* |
| * @buf must be aligned on @align, therefore buf + size belongs to the |
| * same page -> no OOB. |
| */ |
| READ_ONCE(*(buf + size)); |
| KUNIT_EXPECT_FALSE(test, report_available()); |
| |
| /* Overflowing by @align bytes will result in an OOB. */ |
| expect.addr = buf + size + align; |
| READ_ONCE(*expect.addr); |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| |
| test_free(buf); |
| } |
| |
| static void test_kmalloc_aligned_oob_write(struct kunit *test) |
| { |
| const size_t size = 73; |
| struct expect_report expect = { |
| .type = KFENCE_ERROR_CORRUPTION, |
| .fn = test_kmalloc_aligned_oob_write, |
| }; |
| char *buf; |
| |
| buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT); |
| /* |
| * The object is offset to the right, so we won't get a page |
| * fault immediately after it. |
| */ |
| expect.addr = buf + size; |
| WRITE_ONCE(*expect.addr, READ_ONCE(*expect.addr) + 1); |
| KUNIT_EXPECT_FALSE(test, report_available()); |
| test_free(buf); |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| } |
| |
| /* Test cache shrinking and destroying with KFENCE. */ |
| static void test_shrink_memcache(struct kunit *test) |
| { |
| const size_t size = 32; |
| void *buf; |
| |
| setup_test_cache(test, size, 0, NULL); |
| KUNIT_EXPECT_TRUE(test, test_cache); |
| buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); |
| kmem_cache_shrink(test_cache); |
| test_free(buf); |
| |
| KUNIT_EXPECT_FALSE(test, report_available()); |
| } |
| |
| static void ctor_set_x(void *obj) |
| { |
| /* Every object has at least 8 bytes. */ |
| memset(obj, 'x', 8); |
| } |
| |
| /* Ensure that SL*B does not modify KFENCE objects on bulk free. */ |
| static void test_free_bulk(struct kunit *test) |
| { |
| int iter; |
| |
| for (iter = 0; iter < 5; iter++) { |
| const size_t size = setup_test_cache(test, 8 + prandom_u32_max(300), 0, |
| (iter & 1) ? ctor_set_x : NULL); |
| void *objects[] = { |
| test_alloc(test, size, GFP_KERNEL, ALLOCATE_RIGHT), |
| test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE), |
| test_alloc(test, size, GFP_KERNEL, ALLOCATE_LEFT), |
| test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE), |
| test_alloc(test, size, GFP_KERNEL, ALLOCATE_NONE), |
| }; |
| |
| kmem_cache_free_bulk(test_cache, ARRAY_SIZE(objects), objects); |
| KUNIT_ASSERT_FALSE(test, report_available()); |
| test_cache_destroy(); |
| } |
| } |
| |
| /* Test init-on-free works. */ |
| static void test_init_on_free(struct kunit *test) |
| { |
| const size_t size = 32; |
| struct expect_report expect = { |
| .type = KFENCE_ERROR_UAF, |
| .fn = test_init_on_free, |
| .is_write = false, |
| }; |
| int i; |
| |
| if (!IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON)) |
| return; |
| /* Assume it hasn't been disabled on command line. */ |
| |
| setup_test_cache(test, size, 0, NULL); |
| expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); |
| for (i = 0; i < size; i++) |
| expect.addr[i] = i + 1; |
| test_free(expect.addr); |
| |
| for (i = 0; i < size; i++) { |
| /* |
| * This may fail if the page was recycled by KFENCE and then |
| * written to again -- this however, is near impossible with a |
| * default config. |
| */ |
| KUNIT_EXPECT_EQ(test, expect.addr[i], (char)0); |
| |
| if (!i) /* Only check first access to not fail test if page is ever re-protected. */ |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| } |
| } |
| |
| /* Ensure that constructors work properly. */ |
| static void test_memcache_ctor(struct kunit *test) |
| { |
| const size_t size = 32; |
| char *buf; |
| int i; |
| |
| setup_test_cache(test, size, 0, ctor_set_x); |
| buf = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); |
| |
| for (i = 0; i < 8; i++) |
| KUNIT_EXPECT_EQ(test, buf[i], (char)'x'); |
| |
| test_free(buf); |
| |
| KUNIT_EXPECT_FALSE(test, report_available()); |
| } |
| |
| /* Test that memory is zeroed if requested. */ |
| static void test_gfpzero(struct kunit *test) |
| { |
| const size_t size = PAGE_SIZE; /* PAGE_SIZE so we can use ALLOCATE_ANY. */ |
| char *buf1, *buf2; |
| int i; |
| |
| if (CONFIG_KFENCE_SAMPLE_INTERVAL > 100) { |
| kunit_warn(test, "skipping ... would take too long\n"); |
| return; |
| } |
| |
| setup_test_cache(test, size, 0, NULL); |
| buf1 = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); |
| for (i = 0; i < size; i++) |
| buf1[i] = i + 1; |
| test_free(buf1); |
| |
| /* Try to get same address again -- this can take a while. */ |
| for (i = 0;; i++) { |
| buf2 = test_alloc(test, size, GFP_KERNEL | __GFP_ZERO, ALLOCATE_ANY); |
| if (buf1 == buf2) |
| break; |
| test_free(buf2); |
| |
| if (i == CONFIG_KFENCE_NUM_OBJECTS) { |
| kunit_warn(test, "giving up ... cannot get same object back\n"); |
| return; |
| } |
| } |
| |
| for (i = 0; i < size; i++) |
| KUNIT_EXPECT_EQ(test, buf2[i], (char)0); |
| |
| test_free(buf2); |
| |
| KUNIT_EXPECT_FALSE(test, report_available()); |
| } |
| |
| static void test_invalid_access(struct kunit *test) |
| { |
| const struct expect_report expect = { |
| .type = KFENCE_ERROR_INVALID, |
| .fn = test_invalid_access, |
| .addr = &__kfence_pool[10], |
| .is_write = false, |
| }; |
| |
| READ_ONCE(__kfence_pool[10]); |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| } |
| |
| /* Test SLAB_TYPESAFE_BY_RCU works. */ |
| static void test_memcache_typesafe_by_rcu(struct kunit *test) |
| { |
| const size_t size = 32; |
| struct expect_report expect = { |
| .type = KFENCE_ERROR_UAF, |
| .fn = test_memcache_typesafe_by_rcu, |
| .is_write = false, |
| }; |
| |
| setup_test_cache(test, size, SLAB_TYPESAFE_BY_RCU, NULL); |
| KUNIT_EXPECT_TRUE(test, test_cache); /* Want memcache. */ |
| |
| expect.addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY); |
| *expect.addr = 42; |
| |
| rcu_read_lock(); |
| test_free(expect.addr); |
| KUNIT_EXPECT_EQ(test, *expect.addr, (char)42); |
| /* |
| * Up to this point, memory should not have been freed yet, and |
| * therefore there should be no KFENCE report from the above access. |
| */ |
| rcu_read_unlock(); |
| |
| /* Above access to @expect.addr should not have generated a report! */ |
| KUNIT_EXPECT_FALSE(test, report_available()); |
| |
| /* Only after rcu_barrier() is the memory guaranteed to be freed. */ |
| rcu_barrier(); |
| |
| /* Expect use-after-free. */ |
| KUNIT_EXPECT_EQ(test, *expect.addr, (char)42); |
| KUNIT_EXPECT_TRUE(test, report_matches(&expect)); |
| } |
| |
| /* Test krealloc(). */ |
| static void test_krealloc(struct kunit *test) |
| { |
| const size_t size = 32; |
| const struct expect_report expect = { |
| .type = KFENCE_ERROR_UAF, |
| .fn = test_krealloc, |
| .addr = test_alloc(test, size, GFP_KERNEL, ALLOCATE_ANY), |
| .is_write = false, |
| }; |
| char *buf = expect.addr; |
| int i; |
| |
| KUNIT_EXPECT_FALSE(test, test_cache); |
| KUNIT_EXPECT_EQ(test, ksize(buf), size); /* Precise size match after KFENCE alloc. */ |
| for (i = 0; i < size; i++) |
| buf[i] = i + 1; |
| |
| /* Check that we successfully change the size. */ |
| buf = krealloc(buf, size * 3, GFP_KERNEL); /* Grow. */ |
| /* Note: Might no longer be a KFENCE alloc. */ |
| KUNIT_EXPECT_GE(test, ksize(buf), size * 3); |
| for (i = 0; i < size; i++) |
| KUNIT_EXPECT_EQ(test, buf[i], (char)(i + 1)); |
| for (; i < size * 3; i++) /* Fill to extra bytes. */ |
| buf[i] = i + 1; |
| |
| buf = krealloc(buf, size * 2, GFP_KERNEL); /* Shrink. */ |
| KUNIT_EXPECT_GE(test, ksize(buf), size * 2); |
| for (i = 0; i < size * 2; i++) |
| KUNIT_EXPECT_EQ(test, buf[i], (char)(i + 1)); |
| |
| buf = krealloc(buf, 0, GFP_KERNEL); /* Free. */ |
| KUNIT_EXPECT_EQ(test, (unsigned long)buf, (unsigned long)ZERO_SIZE_PTR); |
| KUNIT_ASSERT_FALSE(test, report_available()); /* No reports yet! */ |
| |
| READ_ONCE(*expect.addr); /* Ensure krealloc() actually freed earlier KFENCE object. */ |
| KUNIT_ASSERT_TRUE(test, report_matches(&expect)); |
| } |
| |
| /* Test that some objects from a bulk allocation belong to KFENCE pool. */ |
| static void test_memcache_alloc_bulk(struct kunit *test) |
| { |
| const size_t size = 32; |
| bool pass = false; |
| unsigned long timeout; |
| |
| setup_test_cache(test, size, 0, NULL); |
| KUNIT_EXPECT_TRUE(test, test_cache); /* Want memcache. */ |
| /* |
| * 100x the sample interval should be more than enough to ensure we get |
| * a KFENCE allocation eventually. |
| */ |
| timeout = jiffies + msecs_to_jiffies(100 * CONFIG_KFENCE_SAMPLE_INTERVAL); |
| do { |
| void *objects[100]; |
| int i, num = kmem_cache_alloc_bulk(test_cache, GFP_ATOMIC, ARRAY_SIZE(objects), |
| objects); |
| if (!num) |
| continue; |
| for (i = 0; i < ARRAY_SIZE(objects); i++) { |
| if (is_kfence_address(objects[i])) { |
| pass = true; |
| break; |
| } |
| } |
| kmem_cache_free_bulk(test_cache, num, objects); |
| /* |
| * kmem_cache_alloc_bulk() disables interrupts, and calling it |
| * in a tight loop may not give KFENCE a chance to switch the |
| * static branch. Call cond_resched() to let KFENCE chime in. |
| */ |
| cond_resched(); |
| } while (!pass && time_before(jiffies, timeout)); |
| |
| KUNIT_EXPECT_TRUE(test, pass); |
| KUNIT_EXPECT_FALSE(test, report_available()); |
| } |
| |
| /* |
| * KUnit does not provide a way to provide arguments to tests, and we encode |
| * additional info in the name. Set up 2 tests per test case, one using the |
| * default allocator, and another using a custom memcache (suffix '-memcache'). |
| */ |
| #define KFENCE_KUNIT_CASE(test_name) \ |
| { .run_case = test_name, .name = #test_name }, \ |
| { .run_case = test_name, .name = #test_name "-memcache" } |
| |
| static struct kunit_case kfence_test_cases[] = { |
| KFENCE_KUNIT_CASE(test_out_of_bounds_read), |
| KFENCE_KUNIT_CASE(test_out_of_bounds_write), |
| KFENCE_KUNIT_CASE(test_use_after_free_read), |
| KFENCE_KUNIT_CASE(test_double_free), |
| KFENCE_KUNIT_CASE(test_invalid_addr_free), |
| KFENCE_KUNIT_CASE(test_corruption), |
| KFENCE_KUNIT_CASE(test_free_bulk), |
| KFENCE_KUNIT_CASE(test_init_on_free), |
| KUNIT_CASE(test_kmalloc_aligned_oob_read), |
| KUNIT_CASE(test_kmalloc_aligned_oob_write), |
| KUNIT_CASE(test_shrink_memcache), |
| KUNIT_CASE(test_memcache_ctor), |
| KUNIT_CASE(test_invalid_access), |
| KUNIT_CASE(test_gfpzero), |
| KUNIT_CASE(test_memcache_typesafe_by_rcu), |
| KUNIT_CASE(test_krealloc), |
| KUNIT_CASE(test_memcache_alloc_bulk), |
| {}, |
| }; |
| |
| /* ===== End test cases ===== */ |
| |
| static int test_init(struct kunit *test) |
| { |
| unsigned long flags; |
| int i; |
| |
| spin_lock_irqsave(&observed.lock, flags); |
| for (i = 0; i < ARRAY_SIZE(observed.lines); i++) |
| observed.lines[i][0] = '\0'; |
| observed.nlines = 0; |
| spin_unlock_irqrestore(&observed.lock, flags); |
| |
| /* Any test with 'memcache' in its name will want a memcache. */ |
| if (strstr(test->name, "memcache")) |
| test->priv = TEST_PRIV_WANT_MEMCACHE; |
| else |
| test->priv = NULL; |
| |
| return 0; |
| } |
| |
| static void test_exit(struct kunit *test) |
| { |
| test_cache_destroy(); |
| } |
| |
| static struct kunit_suite kfence_test_suite = { |
| .name = "kfence", |
| .test_cases = kfence_test_cases, |
| .init = test_init, |
| .exit = test_exit, |
| }; |
| static struct kunit_suite *kfence_test_suites[] = { &kfence_test_suite, NULL }; |
| |
| static void register_tracepoints(struct tracepoint *tp, void *ignore) |
| { |
| check_trace_callback_type_console(probe_console); |
| if (!strcmp(tp->name, "console")) |
| WARN_ON(tracepoint_probe_register(tp, probe_console, NULL)); |
| } |
| |
| static void unregister_tracepoints(struct tracepoint *tp, void *ignore) |
| { |
| if (!strcmp(tp->name, "console")) |
| tracepoint_probe_unregister(tp, probe_console, NULL); |
| } |
| |
| /* |
| * We only want to do tracepoints setup and teardown once, therefore we have to |
| * customize the init and exit functions and cannot rely on kunit_test_suite(). |
| */ |
| static int __init kfence_test_init(void) |
| { |
| /* |
| * Because we want to be able to build the test as a module, we need to |
| * iterate through all known tracepoints, since the static registration |
| * won't work here. |
| */ |
| for_each_kernel_tracepoint(register_tracepoints, NULL); |
| return __kunit_test_suites_init(kfence_test_suites); |
| } |
| |
| static void kfence_test_exit(void) |
| { |
| __kunit_test_suites_exit(kfence_test_suites); |
| for_each_kernel_tracepoint(unregister_tracepoints, NULL); |
| tracepoint_synchronize_unregister(); |
| } |
| |
| late_initcall(kfence_test_init); |
| module_exit(kfence_test_exit); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_AUTHOR("Alexander Potapenko <glider@google.com>, Marco Elver <elver@google.com>"); |