| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * CQHCI crypto engine (inline encryption) support |
| * |
| * Copyright 2020 Google LLC |
| */ |
| |
| #include <linux/blk-crypto.h> |
| #include <linux/keyslot-manager.h> |
| #include <linux/mmc/host.h> |
| |
| #include "cqhci-crypto.h" |
| |
| /* Map from blk-crypto modes to CQHCI crypto algorithm IDs and key sizes */ |
| static const struct cqhci_crypto_alg_entry { |
| enum cqhci_crypto_alg alg; |
| enum cqhci_crypto_key_size key_size; |
| } cqhci_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = { |
| [BLK_ENCRYPTION_MODE_AES_256_XTS] = { |
| .alg = CQHCI_CRYPTO_ALG_AES_XTS, |
| .key_size = CQHCI_CRYPTO_KEY_SIZE_256, |
| }, |
| }; |
| |
| static inline struct cqhci_host * |
| cqhci_host_from_ksm(struct blk_keyslot_manager *ksm) |
| { |
| struct mmc_host *mmc = container_of(ksm, struct mmc_host, ksm); |
| |
| return mmc->cqe_private; |
| } |
| |
| static int cqhci_crypto_program_key(struct cqhci_host *cq_host, |
| const union cqhci_crypto_cfg_entry *cfg, |
| int slot) |
| { |
| u32 slot_offset = cq_host->crypto_cfg_register + slot * sizeof(*cfg); |
| int i; |
| |
| if (cq_host->ops->program_key) |
| return cq_host->ops->program_key(cq_host, cfg, slot); |
| |
| /* Clear CFGE */ |
| cqhci_writel(cq_host, 0, slot_offset + 16 * sizeof(cfg->reg_val[0])); |
| |
| /* Write the key */ |
| for (i = 0; i < 16; i++) { |
| cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[i]), |
| slot_offset + i * sizeof(cfg->reg_val[0])); |
| } |
| /* Write dword 17 */ |
| cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[17]), |
| slot_offset + 17 * sizeof(cfg->reg_val[0])); |
| /* Write dword 16, which includes the new value of CFGE */ |
| cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[16]), |
| slot_offset + 16 * sizeof(cfg->reg_val[0])); |
| return 0; |
| } |
| |
| static int cqhci_crypto_keyslot_program(struct blk_keyslot_manager *ksm, |
| const struct blk_crypto_key *key, |
| unsigned int slot) |
| |
| { |
| struct cqhci_host *cq_host = cqhci_host_from_ksm(ksm); |
| const union cqhci_crypto_cap_entry *ccap_array = |
| cq_host->crypto_cap_array; |
| const struct cqhci_crypto_alg_entry *alg = |
| &cqhci_crypto_algs[key->crypto_cfg.crypto_mode]; |
| u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512; |
| int i; |
| int cap_idx = -1; |
| union cqhci_crypto_cfg_entry cfg = {}; |
| int err; |
| |
| BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0); |
| for (i = 0; i < cq_host->crypto_capabilities.num_crypto_cap; i++) { |
| if (ccap_array[i].algorithm_id == alg->alg && |
| ccap_array[i].key_size == alg->key_size && |
| (ccap_array[i].sdus_mask & data_unit_mask)) { |
| cap_idx = i; |
| break; |
| } |
| } |
| if (WARN_ON(cap_idx < 0)) |
| return -EOPNOTSUPP; |
| |
| cfg.data_unit_size = data_unit_mask; |
| cfg.crypto_cap_idx = cap_idx; |
| cfg.config_enable = CQHCI_CRYPTO_CONFIGURATION_ENABLE; |
| |
| if (ccap_array[cap_idx].algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS) { |
| /* In XTS mode, the blk_crypto_key's size is already doubled */ |
| memcpy(cfg.crypto_key, key->raw, key->size/2); |
| memcpy(cfg.crypto_key + CQHCI_CRYPTO_KEY_MAX_SIZE/2, |
| key->raw + key->size/2, key->size/2); |
| } else { |
| memcpy(cfg.crypto_key, key->raw, key->size); |
| } |
| |
| err = cqhci_crypto_program_key(cq_host, &cfg, slot); |
| |
| memzero_explicit(&cfg, sizeof(cfg)); |
| return err; |
| } |
| |
| static int cqhci_crypto_clear_keyslot(struct cqhci_host *cq_host, int slot) |
| { |
| /* |
| * Clear the crypto cfg on the device. Clearing CFGE |
| * might not be sufficient, so just clear the entire cfg. |
| */ |
| union cqhci_crypto_cfg_entry cfg = {}; |
| |
| return cqhci_crypto_program_key(cq_host, &cfg, slot); |
| } |
| |
| static int cqhci_crypto_keyslot_evict(struct blk_keyslot_manager *ksm, |
| const struct blk_crypto_key *key, |
| unsigned int slot) |
| { |
| struct cqhci_host *cq_host = cqhci_host_from_ksm(ksm); |
| |
| return cqhci_crypto_clear_keyslot(cq_host, slot); |
| } |
| |
| /* |
| * The keyslot management operations for CQHCI crypto. |
| * |
| * Note that the block layer ensures that these are never called while the host |
| * controller is runtime-suspended. However, the CQE won't necessarily be |
| * "enabled" when these are called, i.e. CQHCI_ENABLE might not be set in the |
| * CQHCI_CFG register. But the hardware allows that. |
| */ |
| static const struct blk_ksm_ll_ops cqhci_ksm_ops = { |
| .keyslot_program = cqhci_crypto_keyslot_program, |
| .keyslot_evict = cqhci_crypto_keyslot_evict, |
| }; |
| |
| static enum blk_crypto_mode_num |
| cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(cqhci_crypto_algs); i++) { |
| BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0); |
| if (cqhci_crypto_algs[i].alg == cap.algorithm_id && |
| cqhci_crypto_algs[i].key_size == cap.key_size) |
| return i; |
| } |
| return BLK_ENCRYPTION_MODE_INVALID; |
| } |
| |
| /** |
| * cqhci_crypto_init - initialize CQHCI crypto support |
| * @cq_host: a cqhci host |
| * |
| * If the driver previously set MMC_CAP2_CRYPTO and the CQE declares |
| * CQHCI_CAP_CS, initialize the crypto support. This involves reading the |
| * crypto capability registers, initializing the keyslot manager, clearing all |
| * keyslots, and enabling 128-bit task descriptors. |
| * |
| * Return: 0 if crypto was initialized or isn't supported; whether |
| * MMC_CAP2_CRYPTO remains set indicates which one of those cases it is. |
| * Also can return a negative errno value on unexpected error. |
| */ |
| int cqhci_crypto_init(struct cqhci_host *cq_host) |
| { |
| struct mmc_host *mmc = cq_host->mmc; |
| struct device *dev = mmc_dev(mmc); |
| struct blk_keyslot_manager *ksm = &mmc->ksm; |
| unsigned int num_keyslots; |
| unsigned int cap_idx; |
| enum blk_crypto_mode_num blk_mode_num; |
| unsigned int slot; |
| int err = 0; |
| |
| if (!(mmc->caps2 & MMC_CAP2_CRYPTO) || |
| !(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS)) |
| goto out; |
| |
| cq_host->crypto_capabilities.reg_val = |
| cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP)); |
| |
| cq_host->crypto_cfg_register = |
| (u32)cq_host->crypto_capabilities.config_array_ptr * 0x100; |
| |
| cq_host->crypto_cap_array = |
| devm_kcalloc(dev, cq_host->crypto_capabilities.num_crypto_cap, |
| sizeof(cq_host->crypto_cap_array[0]), GFP_KERNEL); |
| if (!cq_host->crypto_cap_array) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| /* |
| * CCAP.CFGC is off by one, so the actual number of crypto |
| * configurations (a.k.a. keyslots) is CCAP.CFGC + 1. |
| */ |
| num_keyslots = cq_host->crypto_capabilities.config_count + 1; |
| |
| err = devm_blk_ksm_init(dev, ksm, num_keyslots); |
| if (err) |
| goto out; |
| |
| ksm->ksm_ll_ops = cqhci_ksm_ops; |
| ksm->dev = dev; |
| |
| /* Unfortunately, CQHCI crypto only supports 32 DUN bits. */ |
| ksm->max_dun_bytes_supported = 4; |
| |
| /* |
| * Cache all the crypto capabilities and advertise the supported crypto |
| * modes and data unit sizes to the block layer. |
| */ |
| for (cap_idx = 0; cap_idx < cq_host->crypto_capabilities.num_crypto_cap; |
| cap_idx++) { |
| cq_host->crypto_cap_array[cap_idx].reg_val = |
| cpu_to_le32(cqhci_readl(cq_host, |
| CQHCI_CRYPTOCAP + |
| cap_idx * sizeof(__le32))); |
| blk_mode_num = cqhci_find_blk_crypto_mode( |
| cq_host->crypto_cap_array[cap_idx]); |
| if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID) |
| continue; |
| ksm->crypto_modes_supported[blk_mode_num] |= |
| cq_host->crypto_cap_array[cap_idx].sdus_mask * 512; |
| } |
| |
| /* Clear all the keyslots so that we start in a known state. */ |
| for (slot = 0; slot < num_keyslots; slot++) |
| cqhci_crypto_clear_keyslot(cq_host, slot); |
| |
| /* CQHCI crypto requires the use of 128-bit task descriptors. */ |
| cq_host->caps |= CQHCI_TASK_DESC_SZ_128; |
| |
| return 0; |
| |
| out: |
| mmc->caps2 &= ~MMC_CAP2_CRYPTO; |
| return err; |
| } |