| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  *  Kernel timekeeping code and accessor functions. Based on code from | 
 |  *  timer.c, moved in commit 8524070b7982. | 
 |  */ | 
 | #include <linux/timekeeper_internal.h> | 
 | #include <linux/module.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/sched/loadavg.h> | 
 | #include <linux/sched/clock.h> | 
 | #include <linux/syscore_ops.h> | 
 | #include <linux/clocksource.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/time.h> | 
 | #include <linux/timex.h> | 
 | #include <linux/tick.h> | 
 | #include <linux/stop_machine.h> | 
 | #include <linux/pvclock_gtod.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/audit.h> | 
 | #include <linux/random.h> | 
 |  | 
 | #include "tick-internal.h" | 
 | #include "ntp_internal.h" | 
 | #include "timekeeping_internal.h" | 
 |  | 
 | #define TK_CLEAR_NTP		(1 << 0) | 
 | #define TK_MIRROR		(1 << 1) | 
 | #define TK_CLOCK_WAS_SET	(1 << 2) | 
 |  | 
 | enum timekeeping_adv_mode { | 
 | 	/* Update timekeeper when a tick has passed */ | 
 | 	TK_ADV_TICK, | 
 |  | 
 | 	/* Update timekeeper on a direct frequency change */ | 
 | 	TK_ADV_FREQ | 
 | }; | 
 |  | 
 | DEFINE_RAW_SPINLOCK(timekeeper_lock); | 
 |  | 
 | /* | 
 |  * The most important data for readout fits into a single 64 byte | 
 |  * cache line. | 
 |  */ | 
 | static struct { | 
 | 	seqcount_raw_spinlock_t	seq; | 
 | 	struct timekeeper	timekeeper; | 
 | } tk_core ____cacheline_aligned = { | 
 | 	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock), | 
 | }; | 
 |  | 
 | static struct timekeeper shadow_timekeeper; | 
 |  | 
 | /* flag for if timekeeping is suspended */ | 
 | int __read_mostly timekeeping_suspended; | 
 |  | 
 | /** | 
 |  * struct tk_fast - NMI safe timekeeper | 
 |  * @seq:	Sequence counter for protecting updates. The lowest bit | 
 |  *		is the index for the tk_read_base array | 
 |  * @base:	tk_read_base array. Access is indexed by the lowest bit of | 
 |  *		@seq. | 
 |  * | 
 |  * See @update_fast_timekeeper() below. | 
 |  */ | 
 | struct tk_fast { | 
 | 	seqcount_latch_t	seq; | 
 | 	struct tk_read_base	base[2]; | 
 | }; | 
 |  | 
 | /* Suspend-time cycles value for halted fast timekeeper. */ | 
 | static u64 cycles_at_suspend; | 
 |  | 
 | static u64 dummy_clock_read(struct clocksource *cs) | 
 | { | 
 | 	if (timekeeping_suspended) | 
 | 		return cycles_at_suspend; | 
 | 	return local_clock(); | 
 | } | 
 |  | 
 | static struct clocksource dummy_clock = { | 
 | 	.read = dummy_clock_read, | 
 | }; | 
 |  | 
 | /* | 
 |  * Boot time initialization which allows local_clock() to be utilized | 
 |  * during early boot when clocksources are not available. local_clock() | 
 |  * returns nanoseconds already so no conversion is required, hence mult=1 | 
 |  * and shift=0. When the first proper clocksource is installed then | 
 |  * the fast time keepers are updated with the correct values. | 
 |  */ | 
 | #define FAST_TK_INIT						\ | 
 | 	{							\ | 
 | 		.clock		= &dummy_clock,			\ | 
 | 		.mask		= CLOCKSOURCE_MASK(64),		\ | 
 | 		.mult		= 1,				\ | 
 | 		.shift		= 0,				\ | 
 | 	} | 
 |  | 
 | static struct tk_fast tk_fast_mono ____cacheline_aligned = { | 
 | 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), | 
 | 	.base[0] = FAST_TK_INIT, | 
 | 	.base[1] = FAST_TK_INIT, | 
 | }; | 
 |  | 
 | static struct tk_fast tk_fast_raw  ____cacheline_aligned = { | 
 | 	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), | 
 | 	.base[0] = FAST_TK_INIT, | 
 | 	.base[1] = FAST_TK_INIT, | 
 | }; | 
 |  | 
 | static inline void tk_normalize_xtime(struct timekeeper *tk) | 
 | { | 
 | 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { | 
 | 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; | 
 | 		tk->xtime_sec++; | 
 | 	} | 
 | 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { | 
 | 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; | 
 | 		tk->raw_sec++; | 
 | 	} | 
 | } | 
 |  | 
 | static inline struct timespec64 tk_xtime(const struct timekeeper *tk) | 
 | { | 
 | 	struct timespec64 ts; | 
 |  | 
 | 	ts.tv_sec = tk->xtime_sec; | 
 | 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); | 
 | 	return ts; | 
 | } | 
 |  | 
 | static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) | 
 | { | 
 | 	tk->xtime_sec = ts->tv_sec; | 
 | 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; | 
 | } | 
 |  | 
 | static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) | 
 | { | 
 | 	tk->xtime_sec += ts->tv_sec; | 
 | 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; | 
 | 	tk_normalize_xtime(tk); | 
 | } | 
 |  | 
 | static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) | 
 | { | 
 | 	struct timespec64 tmp; | 
 |  | 
 | 	/* | 
 | 	 * Verify consistency of: offset_real = -wall_to_monotonic | 
 | 	 * before modifying anything | 
 | 	 */ | 
 | 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, | 
 | 					-tk->wall_to_monotonic.tv_nsec); | 
 | 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); | 
 | 	tk->wall_to_monotonic = wtm; | 
 | 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); | 
 | 	tk->offs_real = timespec64_to_ktime(tmp); | 
 | 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)); | 
 | } | 
 |  | 
 | static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) | 
 | { | 
 | 	tk->offs_boot = ktime_add(tk->offs_boot, delta); | 
 | 	/* | 
 | 	 * Timespec representation for VDSO update to avoid 64bit division | 
 | 	 * on every update. | 
 | 	 */ | 
 | 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); | 
 | } | 
 |  | 
 | /* | 
 |  * tk_clock_read - atomic clocksource read() helper | 
 |  * | 
 |  * This helper is necessary to use in the read paths because, while the | 
 |  * seqcount ensures we don't return a bad value while structures are updated, | 
 |  * it doesn't protect from potential crashes. There is the possibility that | 
 |  * the tkr's clocksource may change between the read reference, and the | 
 |  * clock reference passed to the read function.  This can cause crashes if | 
 |  * the wrong clocksource is passed to the wrong read function. | 
 |  * This isn't necessary to use when holding the timekeeper_lock or doing | 
 |  * a read of the fast-timekeeper tkrs (which is protected by its own locking | 
 |  * and update logic). | 
 |  */ | 
 | static inline u64 tk_clock_read(const struct tk_read_base *tkr) | 
 | { | 
 | 	struct clocksource *clock = READ_ONCE(tkr->clock); | 
 |  | 
 | 	return clock->read(clock); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_TIMEKEEPING | 
 | #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ | 
 |  | 
 | static void timekeeping_check_update(struct timekeeper *tk, u64 offset) | 
 | { | 
 |  | 
 | 	u64 max_cycles = tk->tkr_mono.clock->max_cycles; | 
 | 	const char *name = tk->tkr_mono.clock->name; | 
 |  | 
 | 	if (offset > max_cycles) { | 
 | 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", | 
 | 				offset, name, max_cycles); | 
 | 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); | 
 | 	} else { | 
 | 		if (offset > (max_cycles >> 1)) { | 
 | 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", | 
 | 					offset, name, max_cycles >> 1); | 
 | 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (tk->underflow_seen) { | 
 | 		if (jiffies - tk->last_warning > WARNING_FREQ) { | 
 | 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); | 
 | 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n"); | 
 | 			printk_deferred("         Your kernel is probably still fine.\n"); | 
 | 			tk->last_warning = jiffies; | 
 | 		} | 
 | 		tk->underflow_seen = 0; | 
 | 	} | 
 |  | 
 | 	if (tk->overflow_seen) { | 
 | 		if (jiffies - tk->last_warning > WARNING_FREQ) { | 
 | 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); | 
 | 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n"); | 
 | 			printk_deferred("         Your kernel is probably still fine.\n"); | 
 | 			tk->last_warning = jiffies; | 
 | 		} | 
 | 		tk->overflow_seen = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	u64 now, last, mask, max, delta; | 
 | 	unsigned int seq; | 
 |  | 
 | 	/* | 
 | 	 * Since we're called holding a seqcount, the data may shift | 
 | 	 * under us while we're doing the calculation. This can cause | 
 | 	 * false positives, since we'd note a problem but throw the | 
 | 	 * results away. So nest another seqcount here to atomically | 
 | 	 * grab the points we are checking with. | 
 | 	 */ | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		now = tk_clock_read(tkr); | 
 | 		last = tkr->cycle_last; | 
 | 		mask = tkr->mask; | 
 | 		max = tkr->clock->max_cycles; | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	delta = clocksource_delta(now, last, mask); | 
 |  | 
 | 	/* | 
 | 	 * Try to catch underflows by checking if we are seeing small | 
 | 	 * mask-relative negative values. | 
 | 	 */ | 
 | 	if (unlikely((~delta & mask) < (mask >> 3))) { | 
 | 		tk->underflow_seen = 1; | 
 | 		delta = 0; | 
 | 	} | 
 |  | 
 | 	/* Cap delta value to the max_cycles values to avoid mult overflows */ | 
 | 	if (unlikely(delta > max)) { | 
 | 		tk->overflow_seen = 1; | 
 | 		delta = tkr->clock->max_cycles; | 
 | 	} | 
 |  | 
 | 	return delta; | 
 | } | 
 | #else | 
 | static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) | 
 | { | 
 | } | 
 | static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr) | 
 | { | 
 | 	u64 cycle_now, delta; | 
 |  | 
 | 	/* read clocksource */ | 
 | 	cycle_now = tk_clock_read(tkr); | 
 |  | 
 | 	/* calculate the delta since the last update_wall_time */ | 
 | 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask); | 
 |  | 
 | 	return delta; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * tk_setup_internals - Set up internals to use clocksource clock. | 
 |  * | 
 |  * @tk:		The target timekeeper to setup. | 
 |  * @clock:		Pointer to clocksource. | 
 |  * | 
 |  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment | 
 |  * pair and interval request. | 
 |  * | 
 |  * Unless you're the timekeeping code, you should not be using this! | 
 |  */ | 
 | static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) | 
 | { | 
 | 	u64 interval; | 
 | 	u64 tmp, ntpinterval; | 
 | 	struct clocksource *old_clock; | 
 |  | 
 | 	++tk->cs_was_changed_seq; | 
 | 	old_clock = tk->tkr_mono.clock; | 
 | 	tk->tkr_mono.clock = clock; | 
 | 	tk->tkr_mono.mask = clock->mask; | 
 | 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); | 
 |  | 
 | 	tk->tkr_raw.clock = clock; | 
 | 	tk->tkr_raw.mask = clock->mask; | 
 | 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; | 
 |  | 
 | 	/* Do the ns -> cycle conversion first, using original mult */ | 
 | 	tmp = NTP_INTERVAL_LENGTH; | 
 | 	tmp <<= clock->shift; | 
 | 	ntpinterval = tmp; | 
 | 	tmp += clock->mult/2; | 
 | 	do_div(tmp, clock->mult); | 
 | 	if (tmp == 0) | 
 | 		tmp = 1; | 
 |  | 
 | 	interval = (u64) tmp; | 
 | 	tk->cycle_interval = interval; | 
 |  | 
 | 	/* Go back from cycles -> shifted ns */ | 
 | 	tk->xtime_interval = interval * clock->mult; | 
 | 	tk->xtime_remainder = ntpinterval - tk->xtime_interval; | 
 | 	tk->raw_interval = interval * clock->mult; | 
 |  | 
 | 	 /* if changing clocks, convert xtime_nsec shift units */ | 
 | 	if (old_clock) { | 
 | 		int shift_change = clock->shift - old_clock->shift; | 
 | 		if (shift_change < 0) { | 
 | 			tk->tkr_mono.xtime_nsec >>= -shift_change; | 
 | 			tk->tkr_raw.xtime_nsec >>= -shift_change; | 
 | 		} else { | 
 | 			tk->tkr_mono.xtime_nsec <<= shift_change; | 
 | 			tk->tkr_raw.xtime_nsec <<= shift_change; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	tk->tkr_mono.shift = clock->shift; | 
 | 	tk->tkr_raw.shift = clock->shift; | 
 |  | 
 | 	tk->ntp_error = 0; | 
 | 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; | 
 | 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift; | 
 |  | 
 | 	/* | 
 | 	 * The timekeeper keeps its own mult values for the currently | 
 | 	 * active clocksource. These value will be adjusted via NTP | 
 | 	 * to counteract clock drifting. | 
 | 	 */ | 
 | 	tk->tkr_mono.mult = clock->mult; | 
 | 	tk->tkr_raw.mult = clock->mult; | 
 | 	tk->ntp_err_mult = 0; | 
 | 	tk->skip_second_overflow = 0; | 
 | } | 
 |  | 
 | /* Timekeeper helper functions. */ | 
 |  | 
 | static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta) | 
 | { | 
 | 	u64 nsec; | 
 |  | 
 | 	nsec = delta * tkr->mult + tkr->xtime_nsec; | 
 | 	nsec >>= tkr->shift; | 
 |  | 
 | 	return nsec; | 
 | } | 
 |  | 
 | static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) | 
 | { | 
 | 	u64 delta; | 
 |  | 
 | 	delta = timekeeping_get_delta(tkr); | 
 | 	return timekeeping_delta_to_ns(tkr, delta); | 
 | } | 
 |  | 
 | static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) | 
 | { | 
 | 	u64 delta; | 
 |  | 
 | 	/* calculate the delta since the last update_wall_time */ | 
 | 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); | 
 | 	return timekeeping_delta_to_ns(tkr, delta); | 
 | } | 
 |  | 
 | /** | 
 |  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. | 
 |  * @tkr: Timekeeping readout base from which we take the update | 
 |  * @tkf: Pointer to NMI safe timekeeper | 
 |  * | 
 |  * We want to use this from any context including NMI and tracing / | 
 |  * instrumenting the timekeeping code itself. | 
 |  * | 
 |  * Employ the latch technique; see @raw_write_seqcount_latch. | 
 |  * | 
 |  * So if a NMI hits the update of base[0] then it will use base[1] | 
 |  * which is still consistent. In the worst case this can result is a | 
 |  * slightly wrong timestamp (a few nanoseconds). See | 
 |  * @ktime_get_mono_fast_ns. | 
 |  */ | 
 | static void update_fast_timekeeper(const struct tk_read_base *tkr, | 
 | 				   struct tk_fast *tkf) | 
 | { | 
 | 	struct tk_read_base *base = tkf->base; | 
 |  | 
 | 	/* Force readers off to base[1] */ | 
 | 	raw_write_seqcount_latch(&tkf->seq); | 
 |  | 
 | 	/* Update base[0] */ | 
 | 	memcpy(base, tkr, sizeof(*base)); | 
 |  | 
 | 	/* Force readers back to base[0] */ | 
 | 	raw_write_seqcount_latch(&tkf->seq); | 
 |  | 
 | 	/* Update base[1] */ | 
 | 	memcpy(base + 1, base, sizeof(*base)); | 
 | } | 
 |  | 
 | static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr) | 
 | { | 
 | 	u64 delta, cycles = tk_clock_read(tkr); | 
 |  | 
 | 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask); | 
 | 	return timekeeping_delta_to_ns(tkr, delta); | 
 | } | 
 |  | 
 | static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) | 
 | { | 
 | 	struct tk_read_base *tkr; | 
 | 	unsigned int seq; | 
 | 	u64 now; | 
 |  | 
 | 	do { | 
 | 		seq = raw_read_seqcount_latch(&tkf->seq); | 
 | 		tkr = tkf->base + (seq & 0x01); | 
 | 		now = ktime_to_ns(tkr->base); | 
 | 		now += fast_tk_get_delta_ns(tkr); | 
 | 	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); | 
 |  | 
 | 	return now; | 
 | } | 
 |  | 
 | /** | 
 |  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic | 
 |  * | 
 |  * This timestamp is not guaranteed to be monotonic across an update. | 
 |  * The timestamp is calculated by: | 
 |  * | 
 |  *	now = base_mono + clock_delta * slope | 
 |  * | 
 |  * So if the update lowers the slope, readers who are forced to the | 
 |  * not yet updated second array are still using the old steeper slope. | 
 |  * | 
 |  * tmono | 
 |  * ^ | 
 |  * |    o  n | 
 |  * |   o n | 
 |  * |  u | 
 |  * | o | 
 |  * |o | 
 |  * |12345678---> reader order | 
 |  * | 
 |  * o = old slope | 
 |  * u = update | 
 |  * n = new slope | 
 |  * | 
 |  * So reader 6 will observe time going backwards versus reader 5. | 
 |  * | 
 |  * While other CPUs are likely to be able to observe that, the only way | 
 |  * for a CPU local observation is when an NMI hits in the middle of | 
 |  * the update. Timestamps taken from that NMI context might be ahead | 
 |  * of the following timestamps. Callers need to be aware of that and | 
 |  * deal with it. | 
 |  */ | 
 | u64 notrace ktime_get_mono_fast_ns(void) | 
 | { | 
 | 	return __ktime_get_fast_ns(&tk_fast_mono); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); | 
 |  | 
 | /** | 
 |  * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw | 
 |  * | 
 |  * Contrary to ktime_get_mono_fast_ns() this is always correct because the | 
 |  * conversion factor is not affected by NTP/PTP correction. | 
 |  */ | 
 | u64 notrace ktime_get_raw_fast_ns(void) | 
 | { | 
 | 	return __ktime_get_fast_ns(&tk_fast_raw); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); | 
 |  | 
 | /** | 
 |  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. | 
 |  * | 
 |  * To keep it NMI safe since we're accessing from tracing, we're not using a | 
 |  * separate timekeeper with updates to monotonic clock and boot offset | 
 |  * protected with seqcounts. This has the following minor side effects: | 
 |  * | 
 |  * (1) Its possible that a timestamp be taken after the boot offset is updated | 
 |  * but before the timekeeper is updated. If this happens, the new boot offset | 
 |  * is added to the old timekeeping making the clock appear to update slightly | 
 |  * earlier: | 
 |  *    CPU 0                                        CPU 1 | 
 |  *    timekeeping_inject_sleeptime64() | 
 |  *    __timekeeping_inject_sleeptime(tk, delta); | 
 |  *                                                 timestamp(); | 
 |  *    timekeeping_update(tk, TK_CLEAR_NTP...); | 
 |  * | 
 |  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be | 
 |  * partially updated.  Since the tk->offs_boot update is a rare event, this | 
 |  * should be a rare occurrence which postprocessing should be able to handle. | 
 |  * | 
 |  * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() | 
 |  * apply as well. | 
 |  */ | 
 | u64 notrace ktime_get_boot_fast_ns(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); | 
 |  | 
 | /** | 
 |  * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. | 
 |  * | 
 |  * The same limitations as described for ktime_get_boot_fast_ns() apply. The | 
 |  * mono time and the TAI offset are not read atomically which may yield wrong | 
 |  * readouts. However, an update of the TAI offset is an rare event e.g., caused | 
 |  * by settime or adjtimex with an offset. The user of this function has to deal | 
 |  * with the possibility of wrong timestamps in post processing. | 
 |  */ | 
 | u64 notrace ktime_get_tai_fast_ns(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); | 
 |  | 
 | static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) | 
 | { | 
 | 	struct tk_read_base *tkr; | 
 | 	u64 basem, baser, delta; | 
 | 	unsigned int seq; | 
 |  | 
 | 	do { | 
 | 		seq = raw_read_seqcount_latch(&tkf->seq); | 
 | 		tkr = tkf->base + (seq & 0x01); | 
 | 		basem = ktime_to_ns(tkr->base); | 
 | 		baser = ktime_to_ns(tkr->base_real); | 
 | 		delta = fast_tk_get_delta_ns(tkr); | 
 | 	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); | 
 |  | 
 | 	if (mono) | 
 | 		*mono = basem + delta; | 
 | 	return baser + delta; | 
 | } | 
 |  | 
 | /** | 
 |  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. | 
 |  * | 
 |  * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. | 
 |  */ | 
 | u64 ktime_get_real_fast_ns(void) | 
 | { | 
 | 	return __ktime_get_real_fast(&tk_fast_mono, NULL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); | 
 |  | 
 | /** | 
 |  * ktime_get_fast_timestamps: - NMI safe timestamps | 
 |  * @snapshot:	Pointer to timestamp storage | 
 |  * | 
 |  * Stores clock monotonic, boottime and realtime timestamps. | 
 |  * | 
 |  * Boot time is a racy access on 32bit systems if the sleep time injection | 
 |  * happens late during resume and not in timekeeping_resume(). That could | 
 |  * be avoided by expanding struct tk_read_base with boot offset for 32bit | 
 |  * and adding more overhead to the update. As this is a hard to observe | 
 |  * once per resume event which can be filtered with reasonable effort using | 
 |  * the accurate mono/real timestamps, it's probably not worth the trouble. | 
 |  * | 
 |  * Aside of that it might be possible on 32 and 64 bit to observe the | 
 |  * following when the sleep time injection happens late: | 
 |  * | 
 |  * CPU 0				CPU 1 | 
 |  * timekeeping_resume() | 
 |  * ktime_get_fast_timestamps() | 
 |  *	mono, real = __ktime_get_real_fast() | 
 |  *					inject_sleep_time() | 
 |  *					   update boot offset | 
 |  *	boot = mono + bootoffset; | 
 |  * | 
 |  * That means that boot time already has the sleep time adjustment, but | 
 |  * real time does not. On the next readout both are in sync again. | 
 |  * | 
 |  * Preventing this for 64bit is not really feasible without destroying the | 
 |  * careful cache layout of the timekeeper because the sequence count and | 
 |  * struct tk_read_base would then need two cache lines instead of one. | 
 |  * | 
 |  * Access to the time keeper clock source is disabled across the innermost | 
 |  * steps of suspend/resume. The accessors still work, but the timestamps | 
 |  * are frozen until time keeping is resumed which happens very early. | 
 |  * | 
 |  * For regular suspend/resume there is no observable difference vs. sched | 
 |  * clock, but it might affect some of the nasty low level debug printks. | 
 |  * | 
 |  * OTOH, access to sched clock is not guaranteed across suspend/resume on | 
 |  * all systems either so it depends on the hardware in use. | 
 |  * | 
 |  * If that turns out to be a real problem then this could be mitigated by | 
 |  * using sched clock in a similar way as during early boot. But it's not as | 
 |  * trivial as on early boot because it needs some careful protection | 
 |  * against the clock monotonic timestamp jumping backwards on resume. | 
 |  */ | 
 | void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); | 
 | 	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); | 
 | } | 
 |  | 
 | /** | 
 |  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. | 
 |  * @tk: Timekeeper to snapshot. | 
 |  * | 
 |  * It generally is unsafe to access the clocksource after timekeeping has been | 
 |  * suspended, so take a snapshot of the readout base of @tk and use it as the | 
 |  * fast timekeeper's readout base while suspended.  It will return the same | 
 |  * number of cycles every time until timekeeping is resumed at which time the | 
 |  * proper readout base for the fast timekeeper will be restored automatically. | 
 |  */ | 
 | static void halt_fast_timekeeper(const struct timekeeper *tk) | 
 | { | 
 | 	static struct tk_read_base tkr_dummy; | 
 | 	const struct tk_read_base *tkr = &tk->tkr_mono; | 
 |  | 
 | 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); | 
 | 	cycles_at_suspend = tk_clock_read(tkr); | 
 | 	tkr_dummy.clock = &dummy_clock; | 
 | 	tkr_dummy.base_real = tkr->base + tk->offs_real; | 
 | 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); | 
 |  | 
 | 	tkr = &tk->tkr_raw; | 
 | 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); | 
 | 	tkr_dummy.clock = &dummy_clock; | 
 | 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); | 
 | } | 
 |  | 
 | static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); | 
 |  | 
 | static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) | 
 | { | 
 | 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); | 
 | } | 
 |  | 
 | /** | 
 |  * pvclock_gtod_register_notifier - register a pvclock timedata update listener | 
 |  * @nb: Pointer to the notifier block to register | 
 |  */ | 
 | int pvclock_gtod_register_notifier(struct notifier_block *nb) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); | 
 | 	update_pvclock_gtod(tk, true); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); | 
 |  | 
 | /** | 
 |  * pvclock_gtod_unregister_notifier - unregister a pvclock | 
 |  * timedata update listener | 
 |  * @nb: Pointer to the notifier block to unregister | 
 |  */ | 
 | int pvclock_gtod_unregister_notifier(struct notifier_block *nb) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); | 
 |  | 
 | /* | 
 |  * tk_update_leap_state - helper to update the next_leap_ktime | 
 |  */ | 
 | static inline void tk_update_leap_state(struct timekeeper *tk) | 
 | { | 
 | 	tk->next_leap_ktime = ntp_get_next_leap(); | 
 | 	if (tk->next_leap_ktime != KTIME_MAX) | 
 | 		/* Convert to monotonic time */ | 
 | 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); | 
 | } | 
 |  | 
 | /* | 
 |  * Update the ktime_t based scalar nsec members of the timekeeper | 
 |  */ | 
 | static inline void tk_update_ktime_data(struct timekeeper *tk) | 
 | { | 
 | 	u64 seconds; | 
 | 	u32 nsec; | 
 |  | 
 | 	/* | 
 | 	 * The xtime based monotonic readout is: | 
 | 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); | 
 | 	 * The ktime based monotonic readout is: | 
 | 	 *	nsec = base_mono + now(); | 
 | 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec | 
 | 	 */ | 
 | 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); | 
 | 	nsec = (u32) tk->wall_to_monotonic.tv_nsec; | 
 | 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); | 
 |  | 
 | 	/* | 
 | 	 * The sum of the nanoseconds portions of xtime and | 
 | 	 * wall_to_monotonic can be greater/equal one second. Take | 
 | 	 * this into account before updating tk->ktime_sec. | 
 | 	 */ | 
 | 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); | 
 | 	if (nsec >= NSEC_PER_SEC) | 
 | 		seconds++; | 
 | 	tk->ktime_sec = seconds; | 
 |  | 
 | 	/* Update the monotonic raw base */ | 
 | 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); | 
 | } | 
 |  | 
 | /* must hold timekeeper_lock */ | 
 | static void timekeeping_update(struct timekeeper *tk, unsigned int action) | 
 | { | 
 | 	if (action & TK_CLEAR_NTP) { | 
 | 		tk->ntp_error = 0; | 
 | 		ntp_clear(); | 
 | 	} | 
 |  | 
 | 	tk_update_leap_state(tk); | 
 | 	tk_update_ktime_data(tk); | 
 |  | 
 | 	update_vsyscall(tk); | 
 | 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); | 
 |  | 
 | 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; | 
 | 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); | 
 | 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw); | 
 |  | 
 | 	if (action & TK_CLOCK_WAS_SET) | 
 | 		tk->clock_was_set_seq++; | 
 | 	/* | 
 | 	 * The mirroring of the data to the shadow-timekeeper needs | 
 | 	 * to happen last here to ensure we don't over-write the | 
 | 	 * timekeeper structure on the next update with stale data | 
 | 	 */ | 
 | 	if (action & TK_MIRROR) | 
 | 		memcpy(&shadow_timekeeper, &tk_core.timekeeper, | 
 | 		       sizeof(tk_core.timekeeper)); | 
 | } | 
 |  | 
 | /** | 
 |  * timekeeping_forward_now - update clock to the current time | 
 |  * @tk:		Pointer to the timekeeper to update | 
 |  * | 
 |  * Forward the current clock to update its state since the last call to | 
 |  * update_wall_time(). This is useful before significant clock changes, | 
 |  * as it avoids having to deal with this time offset explicitly. | 
 |  */ | 
 | static void timekeeping_forward_now(struct timekeeper *tk) | 
 | { | 
 | 	u64 cycle_now, delta; | 
 |  | 
 | 	cycle_now = tk_clock_read(&tk->tkr_mono); | 
 | 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); | 
 | 	tk->tkr_mono.cycle_last = cycle_now; | 
 | 	tk->tkr_raw.cycle_last  = cycle_now; | 
 |  | 
 | 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult; | 
 | 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult; | 
 |  | 
 | 	tk_normalize_xtime(tk); | 
 | } | 
 |  | 
 | /** | 
 |  * ktime_get_real_ts64 - Returns the time of day in a timespec64. | 
 |  * @ts:		pointer to the timespec to be set | 
 |  * | 
 |  * Returns the time of day in a timespec64 (WARN if suspended). | 
 |  */ | 
 | void ktime_get_real_ts64(struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	u64 nsecs; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		ts->tv_sec = tk->xtime_sec; | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	ts->tv_nsec = 0; | 
 | 	timespec64_add_ns(ts, nsecs); | 
 | } | 
 | EXPORT_SYMBOL(ktime_get_real_ts64); | 
 |  | 
 | ktime_t ktime_get(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	ktime_t base; | 
 | 	u64 nsecs; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		base = tk->tkr_mono.base; | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ktime_add_ns(base, nsecs); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get); | 
 |  | 
 | u32 ktime_get_resolution_ns(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	u32 nsecs; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return nsecs; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); | 
 |  | 
 | static ktime_t *offsets[TK_OFFS_MAX] = { | 
 | 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real, | 
 | 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot, | 
 | 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai, | 
 | }; | 
 |  | 
 | ktime_t ktime_get_with_offset(enum tk_offsets offs) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	ktime_t base, *offset = offsets[offs]; | 
 | 	u64 nsecs; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		base = ktime_add(tk->tkr_mono.base, *offset); | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ktime_add_ns(base, nsecs); | 
 |  | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_with_offset); | 
 |  | 
 | ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	ktime_t base, *offset = offsets[offs]; | 
 | 	u64 nsecs; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		base = ktime_add(tk->tkr_mono.base, *offset); | 
 | 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ktime_add_ns(base, nsecs); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); | 
 |  | 
 | /** | 
 |  * ktime_mono_to_any() - convert monotonic time to any other time | 
 |  * @tmono:	time to convert. | 
 |  * @offs:	which offset to use | 
 |  */ | 
 | ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) | 
 | { | 
 | 	ktime_t *offset = offsets[offs]; | 
 | 	unsigned int seq; | 
 | 	ktime_t tconv; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		tconv = ktime_add(tmono, *offset); | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return tconv; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_mono_to_any); | 
 |  | 
 | /** | 
 |  * ktime_get_raw - Returns the raw monotonic time in ktime_t format | 
 |  */ | 
 | ktime_t ktime_get_raw(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	ktime_t base; | 
 | 	u64 nsecs; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		base = tk->tkr_raw.base; | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_raw); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ktime_add_ns(base, nsecs); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_raw); | 
 |  | 
 | /** | 
 |  * ktime_get_ts64 - get the monotonic clock in timespec64 format | 
 |  * @ts:		pointer to timespec variable | 
 |  * | 
 |  * The function calculates the monotonic clock from the realtime | 
 |  * clock and the wall_to_monotonic offset and stores the result | 
 |  * in normalized timespec64 format in the variable pointed to by @ts. | 
 |  */ | 
 | void ktime_get_ts64(struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct timespec64 tomono; | 
 | 	unsigned int seq; | 
 | 	u64 nsec; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		ts->tv_sec = tk->xtime_sec; | 
 | 		nsec = timekeeping_get_ns(&tk->tkr_mono); | 
 | 		tomono = tk->wall_to_monotonic; | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	ts->tv_sec += tomono.tv_sec; | 
 | 	ts->tv_nsec = 0; | 
 | 	timespec64_add_ns(ts, nsec + tomono.tv_nsec); | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_ts64); | 
 |  | 
 | /** | 
 |  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC | 
 |  * | 
 |  * Returns the seconds portion of CLOCK_MONOTONIC with a single non | 
 |  * serialized read. tk->ktime_sec is of type 'unsigned long' so this | 
 |  * works on both 32 and 64 bit systems. On 32 bit systems the readout | 
 |  * covers ~136 years of uptime which should be enough to prevent | 
 |  * premature wrap arounds. | 
 |  */ | 
 | time64_t ktime_get_seconds(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	WARN_ON(timekeeping_suspended); | 
 | 	return tk->ktime_sec; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_seconds); | 
 |  | 
 | /** | 
 |  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME | 
 |  * | 
 |  * Returns the wall clock seconds since 1970. | 
 |  * | 
 |  * For 64bit systems the fast access to tk->xtime_sec is preserved. On | 
 |  * 32bit systems the access must be protected with the sequence | 
 |  * counter to provide "atomic" access to the 64bit tk->xtime_sec | 
 |  * value. | 
 |  */ | 
 | time64_t ktime_get_real_seconds(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	time64_t seconds; | 
 | 	unsigned int seq; | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_64BIT)) | 
 | 		return tk->xtime_sec; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		seconds = tk->xtime_sec; | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return seconds; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_real_seconds); | 
 |  | 
 | /** | 
 |  * __ktime_get_real_seconds - The same as ktime_get_real_seconds | 
 |  * but without the sequence counter protect. This internal function | 
 |  * is called just when timekeeping lock is already held. | 
 |  */ | 
 | noinstr time64_t __ktime_get_real_seconds(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	return tk->xtime_sec; | 
 | } | 
 |  | 
 | /** | 
 |  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter | 
 |  * @systime_snapshot:	pointer to struct receiving the system time snapshot | 
 |  */ | 
 | void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	u32 mono_mult, mono_shift; | 
 | 	unsigned int seq; | 
 | 	ktime_t base_raw; | 
 | 	ktime_t base_real; | 
 | 	ktime_t base_boot; | 
 | 	u64 nsec_raw; | 
 | 	u64 nsec_real; | 
 | 	u64 now; | 
 |  | 
 | 	WARN_ON_ONCE(timekeeping_suspended); | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		now = tk_clock_read(&tk->tkr_mono); | 
 | 		systime_snapshot->cs_id = tk->tkr_mono.clock->id; | 
 | 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; | 
 | 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; | 
 | 		base_real = ktime_add(tk->tkr_mono.base, | 
 | 				      tk_core.timekeeper.offs_real); | 
 | 		base_boot = ktime_add(tk->tkr_mono.base, | 
 | 				      tk_core.timekeeper.offs_boot); | 
 | 		base_raw = tk->tkr_raw.base; | 
 | 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); | 
 | 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now); | 
 | 		mono_mult = tk->tkr_mono.mult; | 
 | 		mono_shift = tk->tkr_mono.shift; | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	systime_snapshot->cycles = now; | 
 | 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real); | 
 | 	systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); | 
 | 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); | 
 | 	systime_snapshot->mono_shift = mono_shift; | 
 | 	systime_snapshot->mono_mult = mono_mult; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ktime_get_snapshot); | 
 |  | 
 | /* Scale base by mult/div checking for overflow */ | 
 | static int scale64_check_overflow(u64 mult, u64 div, u64 *base) | 
 | { | 
 | 	u64 tmp, rem; | 
 |  | 
 | 	tmp = div64_u64_rem(*base, div, &rem); | 
 |  | 
 | 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || | 
 | 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) | 
 | 		return -EOVERFLOW; | 
 | 	tmp *= mult; | 
 |  | 
 | 	rem = div64_u64(rem * mult, div); | 
 | 	*base = tmp + rem; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval | 
 |  * @history:			Snapshot representing start of history | 
 |  * @partial_history_cycles:	Cycle offset into history (fractional part) | 
 |  * @total_history_cycles:	Total history length in cycles | 
 |  * @discontinuity:		True indicates clock was set on history period | 
 |  * @ts:				Cross timestamp that should be adjusted using | 
 |  *	partial/total ratio | 
 |  * | 
 |  * Helper function used by get_device_system_crosststamp() to correct the | 
 |  * crosstimestamp corresponding to the start of the current interval to the | 
 |  * system counter value (timestamp point) provided by the driver. The | 
 |  * total_history_* quantities are the total history starting at the provided | 
 |  * reference point and ending at the start of the current interval. The cycle | 
 |  * count between the driver timestamp point and the start of the current | 
 |  * interval is partial_history_cycles. | 
 |  */ | 
 | static int adjust_historical_crosststamp(struct system_time_snapshot *history, | 
 | 					 u64 partial_history_cycles, | 
 | 					 u64 total_history_cycles, | 
 | 					 bool discontinuity, | 
 | 					 struct system_device_crosststamp *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	u64 corr_raw, corr_real; | 
 | 	bool interp_forward; | 
 | 	int ret; | 
 |  | 
 | 	if (total_history_cycles == 0 || partial_history_cycles == 0) | 
 | 		return 0; | 
 |  | 
 | 	/* Interpolate shortest distance from beginning or end of history */ | 
 | 	interp_forward = partial_history_cycles > total_history_cycles / 2; | 
 | 	partial_history_cycles = interp_forward ? | 
 | 		total_history_cycles - partial_history_cycles : | 
 | 		partial_history_cycles; | 
 |  | 
 | 	/* | 
 | 	 * Scale the monotonic raw time delta by: | 
 | 	 *	partial_history_cycles / total_history_cycles | 
 | 	 */ | 
 | 	corr_raw = (u64)ktime_to_ns( | 
 | 		ktime_sub(ts->sys_monoraw, history->raw)); | 
 | 	ret = scale64_check_overflow(partial_history_cycles, | 
 | 				     total_history_cycles, &corr_raw); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * If there is a discontinuity in the history, scale monotonic raw | 
 | 	 *	correction by: | 
 | 	 *	mult(real)/mult(raw) yielding the realtime correction | 
 | 	 * Otherwise, calculate the realtime correction similar to monotonic | 
 | 	 *	raw calculation | 
 | 	 */ | 
 | 	if (discontinuity) { | 
 | 		corr_real = mul_u64_u32_div | 
 | 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); | 
 | 	} else { | 
 | 		corr_real = (u64)ktime_to_ns( | 
 | 			ktime_sub(ts->sys_realtime, history->real)); | 
 | 		ret = scale64_check_overflow(partial_history_cycles, | 
 | 					     total_history_cycles, &corr_real); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	/* Fixup monotonic raw and real time time values */ | 
 | 	if (interp_forward) { | 
 | 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); | 
 | 		ts->sys_realtime = ktime_add_ns(history->real, corr_real); | 
 | 	} else { | 
 | 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); | 
 | 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * timestamp_in_interval - true if ts is chronologically in [start, end] | 
 |  * | 
 |  * True if ts occurs chronologically at or after start, and before or at end. | 
 |  */ | 
 | static bool timestamp_in_interval(u64 start, u64 end, u64 ts) | 
 | { | 
 | 	if (ts >= start && ts <= end) | 
 | 		return true; | 
 | 	if (start > end && (ts >= start || ts <= end)) | 
 | 		return true; | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * get_device_system_crosststamp - Synchronously capture system/device timestamp | 
 |  * @get_time_fn:	Callback to get simultaneous device time and | 
 |  *	system counter from the device driver | 
 |  * @ctx:		Context passed to get_time_fn() | 
 |  * @history_begin:	Historical reference point used to interpolate system | 
 |  *	time when counter provided by the driver is before the current interval | 
 |  * @xtstamp:		Receives simultaneously captured system and device time | 
 |  * | 
 |  * Reads a timestamp from a device and correlates it to system time | 
 |  */ | 
 | int get_device_system_crosststamp(int (*get_time_fn) | 
 | 				  (ktime_t *device_time, | 
 | 				   struct system_counterval_t *sys_counterval, | 
 | 				   void *ctx), | 
 | 				  void *ctx, | 
 | 				  struct system_time_snapshot *history_begin, | 
 | 				  struct system_device_crosststamp *xtstamp) | 
 | { | 
 | 	struct system_counterval_t system_counterval; | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	u64 cycles, now, interval_start; | 
 | 	unsigned int clock_was_set_seq = 0; | 
 | 	ktime_t base_real, base_raw; | 
 | 	u64 nsec_real, nsec_raw; | 
 | 	u8 cs_was_changed_seq; | 
 | 	unsigned int seq; | 
 | 	bool do_interp; | 
 | 	int ret; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		/* | 
 | 		 * Try to synchronously capture device time and a system | 
 | 		 * counter value calling back into the device driver | 
 | 		 */ | 
 | 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		/* | 
 | 		 * Verify that the clocksource associated with the captured | 
 | 		 * system counter value is the same as the currently installed | 
 | 		 * timekeeper clocksource | 
 | 		 */ | 
 | 		if (tk->tkr_mono.clock != system_counterval.cs) | 
 | 			return -ENODEV; | 
 | 		cycles = system_counterval.cycles; | 
 |  | 
 | 		/* | 
 | 		 * Check whether the system counter value provided by the | 
 | 		 * device driver is on the current timekeeping interval. | 
 | 		 */ | 
 | 		now = tk_clock_read(&tk->tkr_mono); | 
 | 		interval_start = tk->tkr_mono.cycle_last; | 
 | 		if (!timestamp_in_interval(interval_start, now, cycles)) { | 
 | 			clock_was_set_seq = tk->clock_was_set_seq; | 
 | 			cs_was_changed_seq = tk->cs_was_changed_seq; | 
 | 			cycles = interval_start; | 
 | 			do_interp = true; | 
 | 		} else { | 
 | 			do_interp = false; | 
 | 		} | 
 |  | 
 | 		base_real = ktime_add(tk->tkr_mono.base, | 
 | 				      tk_core.timekeeper.offs_real); | 
 | 		base_raw = tk->tkr_raw.base; | 
 |  | 
 | 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); | 
 | 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); | 
 | 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); | 
 |  | 
 | 	/* | 
 | 	 * Interpolate if necessary, adjusting back from the start of the | 
 | 	 * current interval | 
 | 	 */ | 
 | 	if (do_interp) { | 
 | 		u64 partial_history_cycles, total_history_cycles; | 
 | 		bool discontinuity; | 
 |  | 
 | 		/* | 
 | 		 * Check that the counter value is not before the provided | 
 | 		 * history reference and that the history doesn't cross a | 
 | 		 * clocksource change | 
 | 		 */ | 
 | 		if (!history_begin || | 
 | 		    !timestamp_in_interval(history_begin->cycles, | 
 | 					   cycles, system_counterval.cycles) || | 
 | 		    history_begin->cs_was_changed_seq != cs_was_changed_seq) | 
 | 			return -EINVAL; | 
 | 		partial_history_cycles = cycles - system_counterval.cycles; | 
 | 		total_history_cycles = cycles - history_begin->cycles; | 
 | 		discontinuity = | 
 | 			history_begin->clock_was_set_seq != clock_was_set_seq; | 
 |  | 
 | 		ret = adjust_historical_crosststamp(history_begin, | 
 | 						    partial_history_cycles, | 
 | 						    total_history_cycles, | 
 | 						    discontinuity, xtstamp); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_device_system_crosststamp); | 
 |  | 
 | /** | 
 |  * do_settimeofday64 - Sets the time of day. | 
 |  * @ts:     pointer to the timespec64 variable containing the new time | 
 |  * | 
 |  * Sets the time of day to the new time and update NTP and notify hrtimers | 
 |  */ | 
 | int do_settimeofday64(const struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct timespec64 ts_delta, xt; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!timespec64_valid_settod(ts)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	timekeeping_forward_now(tk); | 
 |  | 
 | 	xt = tk_xtime(tk); | 
 | 	ts_delta = timespec64_sub(*ts, xt); | 
 |  | 
 | 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { | 
 | 		ret = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); | 
 |  | 
 | 	tk_set_xtime(tk, ts); | 
 | out: | 
 | 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	/* Signal hrtimers about time change */ | 
 | 	clock_was_set(CLOCK_SET_WALL); | 
 |  | 
 | 	if (!ret) { | 
 | 		audit_tk_injoffset(ts_delta); | 
 | 		add_device_randomness(ts, sizeof(*ts)); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(do_settimeofday64); | 
 |  | 
 | /** | 
 |  * timekeeping_inject_offset - Adds or subtracts from the current time. | 
 |  * @ts:		Pointer to the timespec variable containing the offset | 
 |  * | 
 |  * Adds or subtracts an offset value from the current time. | 
 |  */ | 
 | static int timekeeping_inject_offset(const struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long flags; | 
 | 	struct timespec64 tmp; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) | 
 | 		return -EINVAL; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	timekeeping_forward_now(tk); | 
 |  | 
 | 	/* Make sure the proposed value is valid */ | 
 | 	tmp = timespec64_add(tk_xtime(tk), *ts); | 
 | 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || | 
 | 	    !timespec64_valid_settod(&tmp)) { | 
 | 		ret = -EINVAL; | 
 | 		goto error; | 
 | 	} | 
 |  | 
 | 	tk_xtime_add(tk, ts); | 
 | 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); | 
 |  | 
 | error: /* even if we error out, we forwarded the time, so call update */ | 
 | 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	/* Signal hrtimers about time change */ | 
 | 	clock_was_set(CLOCK_SET_WALL); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Indicates if there is an offset between the system clock and the hardware | 
 |  * clock/persistent clock/rtc. | 
 |  */ | 
 | int persistent_clock_is_local; | 
 |  | 
 | /* | 
 |  * Adjust the time obtained from the CMOS to be UTC time instead of | 
 |  * local time. | 
 |  * | 
 |  * This is ugly, but preferable to the alternatives.  Otherwise we | 
 |  * would either need to write a program to do it in /etc/rc (and risk | 
 |  * confusion if the program gets run more than once; it would also be | 
 |  * hard to make the program warp the clock precisely n hours)  or | 
 |  * compile in the timezone information into the kernel.  Bad, bad.... | 
 |  * | 
 |  *						- TYT, 1992-01-01 | 
 |  * | 
 |  * The best thing to do is to keep the CMOS clock in universal time (UTC) | 
 |  * as real UNIX machines always do it. This avoids all headaches about | 
 |  * daylight saving times and warping kernel clocks. | 
 |  */ | 
 | void timekeeping_warp_clock(void) | 
 | { | 
 | 	if (sys_tz.tz_minuteswest != 0) { | 
 | 		struct timespec64 adjust; | 
 |  | 
 | 		persistent_clock_is_local = 1; | 
 | 		adjust.tv_sec = sys_tz.tz_minuteswest * 60; | 
 | 		adjust.tv_nsec = 0; | 
 | 		timekeeping_inject_offset(&adjust); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic | 
 |  */ | 
 | static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) | 
 | { | 
 | 	tk->tai_offset = tai_offset; | 
 | 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); | 
 | } | 
 |  | 
 | /* | 
 |  * change_clocksource - Swaps clocksources if a new one is available | 
 |  * | 
 |  * Accumulates current time interval and initializes new clocksource | 
 |  */ | 
 | static int change_clocksource(void *data) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct clocksource *new, *old = NULL; | 
 | 	unsigned long flags; | 
 | 	bool change = false; | 
 |  | 
 | 	new = (struct clocksource *) data; | 
 |  | 
 | 	/* | 
 | 	 * If the cs is in module, get a module reference. Succeeds | 
 | 	 * for built-in code (owner == NULL) as well. | 
 | 	 */ | 
 | 	if (try_module_get(new->owner)) { | 
 | 		if (!new->enable || new->enable(new) == 0) | 
 | 			change = true; | 
 | 		else | 
 | 			module_put(new->owner); | 
 | 	} | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	timekeeping_forward_now(tk); | 
 |  | 
 | 	if (change) { | 
 | 		old = tk->tkr_mono.clock; | 
 | 		tk_setup_internals(tk, new); | 
 | 	} | 
 |  | 
 | 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	if (old) { | 
 | 		if (old->disable) | 
 | 			old->disable(old); | 
 |  | 
 | 		module_put(old->owner); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * timekeeping_notify - Install a new clock source | 
 |  * @clock:		pointer to the clock source | 
 |  * | 
 |  * This function is called from clocksource.c after a new, better clock | 
 |  * source has been registered. The caller holds the clocksource_mutex. | 
 |  */ | 
 | int timekeeping_notify(struct clocksource *clock) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 |  | 
 | 	if (tk->tkr_mono.clock == clock) | 
 | 		return 0; | 
 | 	stop_machine(change_clocksource, clock, NULL); | 
 | 	tick_clock_notify(); | 
 | 	return tk->tkr_mono.clock == clock ? 0 : -1; | 
 | } | 
 |  | 
 | /** | 
 |  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec | 
 |  * @ts:		pointer to the timespec64 to be set | 
 |  * | 
 |  * Returns the raw monotonic time (completely un-modified by ntp) | 
 |  */ | 
 | void ktime_get_raw_ts64(struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	u64 nsecs; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 | 		ts->tv_sec = tk->raw_sec; | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_raw); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	ts->tv_nsec = 0; | 
 | 	timespec64_add_ns(ts, nsecs); | 
 | } | 
 | EXPORT_SYMBOL(ktime_get_raw_ts64); | 
 |  | 
 |  | 
 | /** | 
 |  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres | 
 |  */ | 
 | int timekeeping_valid_for_hres(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	int ret; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * timekeeping_max_deferment - Returns max time the clocksource can be deferred | 
 |  */ | 
 | u64 timekeeping_max_deferment(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	u64 ret; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		ret = tk->tkr_mono.clock->max_idle_ns; | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * read_persistent_clock64 -  Return time from the persistent clock. | 
 |  * @ts: Pointer to the storage for the readout value | 
 |  * | 
 |  * Weak dummy function for arches that do not yet support it. | 
 |  * Reads the time from the battery backed persistent clock. | 
 |  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | 
 |  * | 
 |  *  XXX - Do be sure to remove it once all arches implement it. | 
 |  */ | 
 | void __weak read_persistent_clock64(struct timespec64 *ts) | 
 | { | 
 | 	ts->tv_sec = 0; | 
 | 	ts->tv_nsec = 0; | 
 | } | 
 |  | 
 | /** | 
 |  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset | 
 |  *                                        from the boot. | 
 |  * @wall_time:	  current time as returned by persistent clock | 
 |  * @boot_offset:  offset that is defined as wall_time - boot_time | 
 |  * | 
 |  * Weak dummy function for arches that do not yet support it. | 
 |  * | 
 |  * The default function calculates offset based on the current value of | 
 |  * local_clock(). This way architectures that support sched_clock() but don't | 
 |  * support dedicated boot time clock will provide the best estimate of the | 
 |  * boot time. | 
 |  */ | 
 | void __weak __init | 
 | read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, | 
 | 				     struct timespec64 *boot_offset) | 
 | { | 
 | 	read_persistent_clock64(wall_time); | 
 | 	*boot_offset = ns_to_timespec64(local_clock()); | 
 | } | 
 |  | 
 | /* | 
 |  * Flag reflecting whether timekeeping_resume() has injected sleeptime. | 
 |  * | 
 |  * The flag starts of false and is only set when a suspend reaches | 
 |  * timekeeping_suspend(), timekeeping_resume() sets it to false when the | 
 |  * timekeeper clocksource is not stopping across suspend and has been | 
 |  * used to update sleep time. If the timekeeper clocksource has stopped | 
 |  * then the flag stays true and is used by the RTC resume code to decide | 
 |  * whether sleeptime must be injected and if so the flag gets false then. | 
 |  * | 
 |  * If a suspend fails before reaching timekeeping_resume() then the flag | 
 |  * stays false and prevents erroneous sleeptime injection. | 
 |  */ | 
 | static bool suspend_timing_needed; | 
 |  | 
 | /* Flag for if there is a persistent clock on this platform */ | 
 | static bool persistent_clock_exists; | 
 |  | 
 | /* | 
 |  * timekeeping_init - Initializes the clocksource and common timekeeping values | 
 |  */ | 
 | void __init timekeeping_init(void) | 
 | { | 
 | 	struct timespec64 wall_time, boot_offset, wall_to_mono; | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct clocksource *clock; | 
 | 	unsigned long flags; | 
 |  | 
 | 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); | 
 | 	if (timespec64_valid_settod(&wall_time) && | 
 | 	    timespec64_to_ns(&wall_time) > 0) { | 
 | 		persistent_clock_exists = true; | 
 | 	} else if (timespec64_to_ns(&wall_time) != 0) { | 
 | 		pr_warn("Persistent clock returned invalid value"); | 
 | 		wall_time = (struct timespec64){0}; | 
 | 	} | 
 |  | 
 | 	if (timespec64_compare(&wall_time, &boot_offset) < 0) | 
 | 		boot_offset = (struct timespec64){0}; | 
 |  | 
 | 	/* | 
 | 	 * We want set wall_to_mono, so the following is true: | 
 | 	 * wall time + wall_to_mono = boot time | 
 | 	 */ | 
 | 	wall_to_mono = timespec64_sub(boot_offset, wall_time); | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 | 	ntp_init(); | 
 |  | 
 | 	clock = clocksource_default_clock(); | 
 | 	if (clock->enable) | 
 | 		clock->enable(clock); | 
 | 	tk_setup_internals(tk, clock); | 
 |  | 
 | 	tk_set_xtime(tk, &wall_time); | 
 | 	tk->raw_sec = 0; | 
 |  | 
 | 	tk_set_wall_to_mono(tk, wall_to_mono); | 
 |  | 
 | 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 | } | 
 |  | 
 | /* time in seconds when suspend began for persistent clock */ | 
 | static struct timespec64 timekeeping_suspend_time; | 
 |  | 
 | /** | 
 |  * __timekeeping_inject_sleeptime - Internal function to add sleep interval | 
 |  * @tk:		Pointer to the timekeeper to be updated | 
 |  * @delta:	Pointer to the delta value in timespec64 format | 
 |  * | 
 |  * Takes a timespec offset measuring a suspend interval and properly | 
 |  * adds the sleep offset to the timekeeping variables. | 
 |  */ | 
 | static void __timekeeping_inject_sleeptime(struct timekeeper *tk, | 
 | 					   const struct timespec64 *delta) | 
 | { | 
 | 	if (!timespec64_valid_strict(delta)) { | 
 | 		printk_deferred(KERN_WARNING | 
 | 				"__timekeeping_inject_sleeptime: Invalid " | 
 | 				"sleep delta value!\n"); | 
 | 		return; | 
 | 	} | 
 | 	tk_xtime_add(tk, delta); | 
 | 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); | 
 | 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); | 
 | 	tk_debug_account_sleep_time(delta); | 
 | } | 
 |  | 
 | #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) | 
 | /* | 
 |  * We have three kinds of time sources to use for sleep time | 
 |  * injection, the preference order is: | 
 |  * 1) non-stop clocksource | 
 |  * 2) persistent clock (ie: RTC accessible when irqs are off) | 
 |  * 3) RTC | 
 |  * | 
 |  * 1) and 2) are used by timekeeping, 3) by RTC subsystem. | 
 |  * If system has neither 1) nor 2), 3) will be used finally. | 
 |  * | 
 |  * | 
 |  * If timekeeping has injected sleeptime via either 1) or 2), | 
 |  * 3) becomes needless, so in this case we don't need to call | 
 |  * rtc_resume(), and this is what timekeeping_rtc_skipresume() | 
 |  * means. | 
 |  */ | 
 | bool timekeeping_rtc_skipresume(void) | 
 | { | 
 | 	return !suspend_timing_needed; | 
 | } | 
 |  | 
 | /* | 
 |  * 1) can be determined whether to use or not only when doing | 
 |  * timekeeping_resume() which is invoked after rtc_suspend(), | 
 |  * so we can't skip rtc_suspend() surely if system has 1). | 
 |  * | 
 |  * But if system has 2), 2) will definitely be used, so in this | 
 |  * case we don't need to call rtc_suspend(), and this is what | 
 |  * timekeeping_rtc_skipsuspend() means. | 
 |  */ | 
 | bool timekeeping_rtc_skipsuspend(void) | 
 | { | 
 | 	return persistent_clock_exists; | 
 | } | 
 |  | 
 | /** | 
 |  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values | 
 |  * @delta: pointer to a timespec64 delta value | 
 |  * | 
 |  * This hook is for architectures that cannot support read_persistent_clock64 | 
 |  * because their RTC/persistent clock is only accessible when irqs are enabled. | 
 |  * and also don't have an effective nonstop clocksource. | 
 |  * | 
 |  * This function should only be called by rtc_resume(), and allows | 
 |  * a suspend offset to be injected into the timekeeping values. | 
 |  */ | 
 | void timekeeping_inject_sleeptime64(const struct timespec64 *delta) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	suspend_timing_needed = false; | 
 |  | 
 | 	timekeeping_forward_now(tk); | 
 |  | 
 | 	__timekeeping_inject_sleeptime(tk, delta); | 
 |  | 
 | 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	/* Signal hrtimers about time change */ | 
 | 	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * timekeeping_resume - Resumes the generic timekeeping subsystem. | 
 |  */ | 
 | void timekeeping_resume(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct clocksource *clock = tk->tkr_mono.clock; | 
 | 	unsigned long flags; | 
 | 	struct timespec64 ts_new, ts_delta; | 
 | 	u64 cycle_now, nsec; | 
 | 	bool inject_sleeptime = false; | 
 |  | 
 | 	read_persistent_clock64(&ts_new); | 
 |  | 
 | 	clockevents_resume(); | 
 | 	clocksource_resume(); | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	/* | 
 | 	 * After system resumes, we need to calculate the suspended time and | 
 | 	 * compensate it for the OS time. There are 3 sources that could be | 
 | 	 * used: Nonstop clocksource during suspend, persistent clock and rtc | 
 | 	 * device. | 
 | 	 * | 
 | 	 * One specific platform may have 1 or 2 or all of them, and the | 
 | 	 * preference will be: | 
 | 	 *	suspend-nonstop clocksource -> persistent clock -> rtc | 
 | 	 * The less preferred source will only be tried if there is no better | 
 | 	 * usable source. The rtc part is handled separately in rtc core code. | 
 | 	 */ | 
 | 	cycle_now = tk_clock_read(&tk->tkr_mono); | 
 | 	nsec = clocksource_stop_suspend_timing(clock, cycle_now); | 
 | 	if (nsec > 0) { | 
 | 		ts_delta = ns_to_timespec64(nsec); | 
 | 		inject_sleeptime = true; | 
 | 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { | 
 | 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); | 
 | 		inject_sleeptime = true; | 
 | 	} | 
 |  | 
 | 	if (inject_sleeptime) { | 
 | 		suspend_timing_needed = false; | 
 | 		__timekeeping_inject_sleeptime(tk, &ts_delta); | 
 | 	} | 
 |  | 
 | 	/* Re-base the last cycle value */ | 
 | 	tk->tkr_mono.cycle_last = cycle_now; | 
 | 	tk->tkr_raw.cycle_last  = cycle_now; | 
 |  | 
 | 	tk->ntp_error = 0; | 
 | 	timekeeping_suspended = 0; | 
 | 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	touch_softlockup_watchdog(); | 
 |  | 
 | 	/* Resume the clockevent device(s) and hrtimers */ | 
 | 	tick_resume(); | 
 | 	/* Notify timerfd as resume is equivalent to clock_was_set() */ | 
 | 	timerfd_resume(); | 
 | } | 
 |  | 
 | int timekeeping_suspend(void) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned long flags; | 
 | 	struct timespec64		delta, delta_delta; | 
 | 	static struct timespec64	old_delta; | 
 | 	struct clocksource *curr_clock; | 
 | 	u64 cycle_now; | 
 |  | 
 | 	read_persistent_clock64(&timekeeping_suspend_time); | 
 |  | 
 | 	/* | 
 | 	 * On some systems the persistent_clock can not be detected at | 
 | 	 * timekeeping_init by its return value, so if we see a valid | 
 | 	 * value returned, update the persistent_clock_exists flag. | 
 | 	 */ | 
 | 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) | 
 | 		persistent_clock_exists = true; | 
 |  | 
 | 	suspend_timing_needed = true; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 | 	timekeeping_forward_now(tk); | 
 | 	timekeeping_suspended = 1; | 
 |  | 
 | 	/* | 
 | 	 * Since we've called forward_now, cycle_last stores the value | 
 | 	 * just read from the current clocksource. Save this to potentially | 
 | 	 * use in suspend timing. | 
 | 	 */ | 
 | 	curr_clock = tk->tkr_mono.clock; | 
 | 	cycle_now = tk->tkr_mono.cycle_last; | 
 | 	clocksource_start_suspend_timing(curr_clock, cycle_now); | 
 |  | 
 | 	if (persistent_clock_exists) { | 
 | 		/* | 
 | 		 * To avoid drift caused by repeated suspend/resumes, | 
 | 		 * which each can add ~1 second drift error, | 
 | 		 * try to compensate so the difference in system time | 
 | 		 * and persistent_clock time stays close to constant. | 
 | 		 */ | 
 | 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); | 
 | 		delta_delta = timespec64_sub(delta, old_delta); | 
 | 		if (abs(delta_delta.tv_sec) >= 2) { | 
 | 			/* | 
 | 			 * if delta_delta is too large, assume time correction | 
 | 			 * has occurred and set old_delta to the current delta. | 
 | 			 */ | 
 | 			old_delta = delta; | 
 | 		} else { | 
 | 			/* Otherwise try to adjust old_system to compensate */ | 
 | 			timekeeping_suspend_time = | 
 | 				timespec64_add(timekeeping_suspend_time, delta_delta); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	timekeeping_update(tk, TK_MIRROR); | 
 | 	halt_fast_timekeeper(tk); | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	tick_suspend(); | 
 | 	clocksource_suspend(); | 
 | 	clockevents_suspend(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* sysfs resume/suspend bits for timekeeping */ | 
 | static struct syscore_ops timekeeping_syscore_ops = { | 
 | 	.resume		= timekeeping_resume, | 
 | 	.suspend	= timekeeping_suspend, | 
 | }; | 
 |  | 
 | static int __init timekeeping_init_ops(void) | 
 | { | 
 | 	register_syscore_ops(&timekeeping_syscore_ops); | 
 | 	return 0; | 
 | } | 
 | device_initcall(timekeeping_init_ops); | 
 |  | 
 | /* | 
 |  * Apply a multiplier adjustment to the timekeeper | 
 |  */ | 
 | static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, | 
 | 							 s64 offset, | 
 | 							 s32 mult_adj) | 
 | { | 
 | 	s64 interval = tk->cycle_interval; | 
 |  | 
 | 	if (mult_adj == 0) { | 
 | 		return; | 
 | 	} else if (mult_adj == -1) { | 
 | 		interval = -interval; | 
 | 		offset = -offset; | 
 | 	} else if (mult_adj != 1) { | 
 | 		interval *= mult_adj; | 
 | 		offset *= mult_adj; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * So the following can be confusing. | 
 | 	 * | 
 | 	 * To keep things simple, lets assume mult_adj == 1 for now. | 
 | 	 * | 
 | 	 * When mult_adj != 1, remember that the interval and offset values | 
 | 	 * have been appropriately scaled so the math is the same. | 
 | 	 * | 
 | 	 * The basic idea here is that we're increasing the multiplier | 
 | 	 * by one, this causes the xtime_interval to be incremented by | 
 | 	 * one cycle_interval. This is because: | 
 | 	 *	xtime_interval = cycle_interval * mult | 
 | 	 * So if mult is being incremented by one: | 
 | 	 *	xtime_interval = cycle_interval * (mult + 1) | 
 | 	 * Its the same as: | 
 | 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval | 
 | 	 * Which can be shortened to: | 
 | 	 *	xtime_interval += cycle_interval | 
 | 	 * | 
 | 	 * So offset stores the non-accumulated cycles. Thus the current | 
 | 	 * time (in shifted nanoseconds) is: | 
 | 	 *	now = (offset * adj) + xtime_nsec | 
 | 	 * Now, even though we're adjusting the clock frequency, we have | 
 | 	 * to keep time consistent. In other words, we can't jump back | 
 | 	 * in time, and we also want to avoid jumping forward in time. | 
 | 	 * | 
 | 	 * So given the same offset value, we need the time to be the same | 
 | 	 * both before and after the freq adjustment. | 
 | 	 *	now = (offset * adj_1) + xtime_nsec_1 | 
 | 	 *	now = (offset * adj_2) + xtime_nsec_2 | 
 | 	 * So: | 
 | 	 *	(offset * adj_1) + xtime_nsec_1 = | 
 | 	 *		(offset * adj_2) + xtime_nsec_2 | 
 | 	 * And we know: | 
 | 	 *	adj_2 = adj_1 + 1 | 
 | 	 * So: | 
 | 	 *	(offset * adj_1) + xtime_nsec_1 = | 
 | 	 *		(offset * (adj_1+1)) + xtime_nsec_2 | 
 | 	 *	(offset * adj_1) + xtime_nsec_1 = | 
 | 	 *		(offset * adj_1) + offset + xtime_nsec_2 | 
 | 	 * Canceling the sides: | 
 | 	 *	xtime_nsec_1 = offset + xtime_nsec_2 | 
 | 	 * Which gives us: | 
 | 	 *	xtime_nsec_2 = xtime_nsec_1 - offset | 
 | 	 * Which simplifies to: | 
 | 	 *	xtime_nsec -= offset | 
 | 	 */ | 
 | 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { | 
 | 		/* NTP adjustment caused clocksource mult overflow */ | 
 | 		WARN_ON_ONCE(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	tk->tkr_mono.mult += mult_adj; | 
 | 	tk->xtime_interval += interval; | 
 | 	tk->tkr_mono.xtime_nsec -= offset; | 
 | } | 
 |  | 
 | /* | 
 |  * Adjust the timekeeper's multiplier to the correct frequency | 
 |  * and also to reduce the accumulated error value. | 
 |  */ | 
 | static void timekeeping_adjust(struct timekeeper *tk, s64 offset) | 
 | { | 
 | 	u32 mult; | 
 |  | 
 | 	/* | 
 | 	 * Determine the multiplier from the current NTP tick length. | 
 | 	 * Avoid expensive division when the tick length doesn't change. | 
 | 	 */ | 
 | 	if (likely(tk->ntp_tick == ntp_tick_length())) { | 
 | 		mult = tk->tkr_mono.mult - tk->ntp_err_mult; | 
 | 	} else { | 
 | 		tk->ntp_tick = ntp_tick_length(); | 
 | 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - | 
 | 				 tk->xtime_remainder, tk->cycle_interval); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the clock is behind the NTP time, increase the multiplier by 1 | 
 | 	 * to catch up with it. If it's ahead and there was a remainder in the | 
 | 	 * tick division, the clock will slow down. Otherwise it will stay | 
 | 	 * ahead until the tick length changes to a non-divisible value. | 
 | 	 */ | 
 | 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; | 
 | 	mult += tk->ntp_err_mult; | 
 |  | 
 | 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); | 
 |  | 
 | 	if (unlikely(tk->tkr_mono.clock->maxadj && | 
 | 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) | 
 | 			> tk->tkr_mono.clock->maxadj))) { | 
 | 		printk_once(KERN_WARNING | 
 | 			"Adjusting %s more than 11%% (%ld vs %ld)\n", | 
 | 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, | 
 | 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * It may be possible that when we entered this function, xtime_nsec | 
 | 	 * was very small.  Further, if we're slightly speeding the clocksource | 
 | 	 * in the code above, its possible the required corrective factor to | 
 | 	 * xtime_nsec could cause it to underflow. | 
 | 	 * | 
 | 	 * Now, since we have already accumulated the second and the NTP | 
 | 	 * subsystem has been notified via second_overflow(), we need to skip | 
 | 	 * the next update. | 
 | 	 */ | 
 | 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { | 
 | 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << | 
 | 							tk->tkr_mono.shift; | 
 | 		tk->xtime_sec--; | 
 | 		tk->skip_second_overflow = 1; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * accumulate_nsecs_to_secs - Accumulates nsecs into secs | 
 |  * | 
 |  * Helper function that accumulates the nsecs greater than a second | 
 |  * from the xtime_nsec field to the xtime_secs field. | 
 |  * It also calls into the NTP code to handle leapsecond processing. | 
 |  */ | 
 | static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) | 
 | { | 
 | 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; | 
 | 	unsigned int clock_set = 0; | 
 |  | 
 | 	while (tk->tkr_mono.xtime_nsec >= nsecps) { | 
 | 		int leap; | 
 |  | 
 | 		tk->tkr_mono.xtime_nsec -= nsecps; | 
 | 		tk->xtime_sec++; | 
 |  | 
 | 		/* | 
 | 		 * Skip NTP update if this second was accumulated before, | 
 | 		 * i.e. xtime_nsec underflowed in timekeeping_adjust() | 
 | 		 */ | 
 | 		if (unlikely(tk->skip_second_overflow)) { | 
 | 			tk->skip_second_overflow = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		/* Figure out if its a leap sec and apply if needed */ | 
 | 		leap = second_overflow(tk->xtime_sec); | 
 | 		if (unlikely(leap)) { | 
 | 			struct timespec64 ts; | 
 |  | 
 | 			tk->xtime_sec += leap; | 
 |  | 
 | 			ts.tv_sec = leap; | 
 | 			ts.tv_nsec = 0; | 
 | 			tk_set_wall_to_mono(tk, | 
 | 				timespec64_sub(tk->wall_to_monotonic, ts)); | 
 |  | 
 | 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap); | 
 |  | 
 | 			clock_set = TK_CLOCK_WAS_SET; | 
 | 		} | 
 | 	} | 
 | 	return clock_set; | 
 | } | 
 |  | 
 | /* | 
 |  * logarithmic_accumulation - shifted accumulation of cycles | 
 |  * | 
 |  * This functions accumulates a shifted interval of cycles into | 
 |  * a shifted interval nanoseconds. Allows for O(log) accumulation | 
 |  * loop. | 
 |  * | 
 |  * Returns the unconsumed cycles. | 
 |  */ | 
 | static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, | 
 | 				    u32 shift, unsigned int *clock_set) | 
 | { | 
 | 	u64 interval = tk->cycle_interval << shift; | 
 | 	u64 snsec_per_sec; | 
 |  | 
 | 	/* If the offset is smaller than a shifted interval, do nothing */ | 
 | 	if (offset < interval) | 
 | 		return offset; | 
 |  | 
 | 	/* Accumulate one shifted interval */ | 
 | 	offset -= interval; | 
 | 	tk->tkr_mono.cycle_last += interval; | 
 | 	tk->tkr_raw.cycle_last  += interval; | 
 |  | 
 | 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; | 
 | 	*clock_set |= accumulate_nsecs_to_secs(tk); | 
 |  | 
 | 	/* Accumulate raw time */ | 
 | 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; | 
 | 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; | 
 | 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { | 
 | 		tk->tkr_raw.xtime_nsec -= snsec_per_sec; | 
 | 		tk->raw_sec++; | 
 | 	} | 
 |  | 
 | 	/* Accumulate error between NTP and clock interval */ | 
 | 	tk->ntp_error += tk->ntp_tick << shift; | 
 | 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << | 
 | 						(tk->ntp_error_shift + shift); | 
 |  | 
 | 	return offset; | 
 | } | 
 |  | 
 | /* | 
 |  * timekeeping_advance - Updates the timekeeper to the current time and | 
 |  * current NTP tick length | 
 |  */ | 
 | static bool timekeeping_advance(enum timekeeping_adv_mode mode) | 
 | { | 
 | 	struct timekeeper *real_tk = &tk_core.timekeeper; | 
 | 	struct timekeeper *tk = &shadow_timekeeper; | 
 | 	u64 offset; | 
 | 	int shift = 0, maxshift; | 
 | 	unsigned int clock_set = 0; | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 |  | 
 | 	/* Make sure we're fully resumed: */ | 
 | 	if (unlikely(timekeeping_suspended)) | 
 | 		goto out; | 
 |  | 
 | 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), | 
 | 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask); | 
 |  | 
 | 	/* Check if there's really nothing to do */ | 
 | 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) | 
 | 		goto out; | 
 |  | 
 | 	/* Do some additional sanity checking */ | 
 | 	timekeeping_check_update(tk, offset); | 
 |  | 
 | 	/* | 
 | 	 * With NO_HZ we may have to accumulate many cycle_intervals | 
 | 	 * (think "ticks") worth of time at once. To do this efficiently, | 
 | 	 * we calculate the largest doubling multiple of cycle_intervals | 
 | 	 * that is smaller than the offset.  We then accumulate that | 
 | 	 * chunk in one go, and then try to consume the next smaller | 
 | 	 * doubled multiple. | 
 | 	 */ | 
 | 	shift = ilog2(offset) - ilog2(tk->cycle_interval); | 
 | 	shift = max(0, shift); | 
 | 	/* Bound shift to one less than what overflows tick_length */ | 
 | 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; | 
 | 	shift = min(shift, maxshift); | 
 | 	while (offset >= tk->cycle_interval) { | 
 | 		offset = logarithmic_accumulation(tk, offset, shift, | 
 | 							&clock_set); | 
 | 		if (offset < tk->cycle_interval<<shift) | 
 | 			shift--; | 
 | 	} | 
 |  | 
 | 	/* Adjust the multiplier to correct NTP error */ | 
 | 	timekeeping_adjust(tk, offset); | 
 |  | 
 | 	/* | 
 | 	 * Finally, make sure that after the rounding | 
 | 	 * xtime_nsec isn't larger than NSEC_PER_SEC | 
 | 	 */ | 
 | 	clock_set |= accumulate_nsecs_to_secs(tk); | 
 |  | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 | 	/* | 
 | 	 * Update the real timekeeper. | 
 | 	 * | 
 | 	 * We could avoid this memcpy by switching pointers, but that | 
 | 	 * requires changes to all other timekeeper usage sites as | 
 | 	 * well, i.e. move the timekeeper pointer getter into the | 
 | 	 * spinlocked/seqcount protected sections. And we trade this | 
 | 	 * memcpy under the tk_core.seq against one before we start | 
 | 	 * updating. | 
 | 	 */ | 
 | 	timekeeping_update(tk, clock_set); | 
 | 	memcpy(real_tk, tk, sizeof(*tk)); | 
 | 	/* The memcpy must come last. Do not put anything here! */ | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | out: | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	return !!clock_set; | 
 | } | 
 |  | 
 | /** | 
 |  * update_wall_time - Uses the current clocksource to increment the wall time | 
 |  * | 
 |  */ | 
 | void update_wall_time(void) | 
 | { | 
 | 	if (timekeeping_advance(TK_ADV_TICK)) | 
 | 		clock_was_set_delayed(); | 
 | } | 
 |  | 
 | /** | 
 |  * getboottime64 - Return the real time of system boot. | 
 |  * @ts:		pointer to the timespec64 to be set | 
 |  * | 
 |  * Returns the wall-time of boot in a timespec64. | 
 |  * | 
 |  * This is based on the wall_to_monotonic offset and the total suspend | 
 |  * time. Calls to settimeofday will affect the value returned (which | 
 |  * basically means that however wrong your real time clock is at boot time, | 
 |  * you get the right time here). | 
 |  */ | 
 | void getboottime64(struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); | 
 |  | 
 | 	*ts = ktime_to_timespec64(t); | 
 | } | 
 | EXPORT_SYMBOL_GPL(getboottime64); | 
 |  | 
 | void ktime_get_coarse_real_ts64(struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		*ts = tk_xtime(tk); | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 | } | 
 | EXPORT_SYMBOL(ktime_get_coarse_real_ts64); | 
 |  | 
 | void ktime_get_coarse_ts64(struct timespec64 *ts) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct timespec64 now, mono; | 
 | 	unsigned int seq; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		now = tk_xtime(tk); | 
 | 		mono = tk->wall_to_monotonic; | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, | 
 | 				now.tv_nsec + mono.tv_nsec); | 
 | } | 
 | EXPORT_SYMBOL(ktime_get_coarse_ts64); | 
 |  | 
 | /* | 
 |  * Must hold jiffies_lock | 
 |  */ | 
 | void do_timer(unsigned long ticks) | 
 | { | 
 | 	jiffies_64 += ticks; | 
 | 	calc_global_load(); | 
 | } | 
 |  | 
 | /** | 
 |  * ktime_get_update_offsets_now - hrtimer helper | 
 |  * @cwsseq:	pointer to check and store the clock was set sequence number | 
 |  * @offs_real:	pointer to storage for monotonic -> realtime offset | 
 |  * @offs_boot:	pointer to storage for monotonic -> boottime offset | 
 |  * @offs_tai:	pointer to storage for monotonic -> clock tai offset | 
 |  * | 
 |  * Returns current monotonic time and updates the offsets if the | 
 |  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are | 
 |  * different. | 
 |  * | 
 |  * Called from hrtimer_interrupt() or retrigger_next_event() | 
 |  */ | 
 | ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, | 
 | 				     ktime_t *offs_boot, ktime_t *offs_tai) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	unsigned int seq; | 
 | 	ktime_t base; | 
 | 	u64 nsecs; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 		base = tk->tkr_mono.base; | 
 | 		nsecs = timekeeping_get_ns(&tk->tkr_mono); | 
 | 		base = ktime_add_ns(base, nsecs); | 
 |  | 
 | 		if (*cwsseq != tk->clock_was_set_seq) { | 
 | 			*cwsseq = tk->clock_was_set_seq; | 
 | 			*offs_real = tk->offs_real; | 
 | 			*offs_boot = tk->offs_boot; | 
 | 			*offs_tai = tk->offs_tai; | 
 | 		} | 
 |  | 
 | 		/* Handle leapsecond insertion adjustments */ | 
 | 		if (unlikely(base >= tk->next_leap_ktime)) | 
 | 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); | 
 |  | 
 | 	} while (read_seqcount_retry(&tk_core.seq, seq)); | 
 |  | 
 | 	return base; | 
 | } | 
 |  | 
 | /* | 
 |  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex | 
 |  */ | 
 | static int timekeeping_validate_timex(const struct __kernel_timex *txc) | 
 | { | 
 | 	if (txc->modes & ADJ_ADJTIME) { | 
 | 		/* singleshot must not be used with any other mode bits */ | 
 | 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) | 
 | 			return -EINVAL; | 
 | 		if (!(txc->modes & ADJ_OFFSET_READONLY) && | 
 | 		    !capable(CAP_SYS_TIME)) | 
 | 			return -EPERM; | 
 | 	} else { | 
 | 		/* In order to modify anything, you gotta be super-user! */ | 
 | 		if (txc->modes && !capable(CAP_SYS_TIME)) | 
 | 			return -EPERM; | 
 | 		/* | 
 | 		 * if the quartz is off by more than 10% then | 
 | 		 * something is VERY wrong! | 
 | 		 */ | 
 | 		if (txc->modes & ADJ_TICK && | 
 | 		    (txc->tick <  900000/USER_HZ || | 
 | 		     txc->tick > 1100000/USER_HZ)) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (txc->modes & ADJ_SETOFFSET) { | 
 | 		/* In order to inject time, you gotta be super-user! */ | 
 | 		if (!capable(CAP_SYS_TIME)) | 
 | 			return -EPERM; | 
 |  | 
 | 		/* | 
 | 		 * Validate if a timespec/timeval used to inject a time | 
 | 		 * offset is valid.  Offsets can be positive or negative, so | 
 | 		 * we don't check tv_sec. The value of the timeval/timespec | 
 | 		 * is the sum of its fields,but *NOTE*: | 
 | 		 * The field tv_usec/tv_nsec must always be non-negative and | 
 | 		 * we can't have more nanoseconds/microseconds than a second. | 
 | 		 */ | 
 | 		if (txc->time.tv_usec < 0) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (txc->modes & ADJ_NANO) { | 
 | 			if (txc->time.tv_usec >= NSEC_PER_SEC) | 
 | 				return -EINVAL; | 
 | 		} else { | 
 | 			if (txc->time.tv_usec >= USEC_PER_SEC) | 
 | 				return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check for potential multiplication overflows that can | 
 | 	 * only happen on 64-bit systems: | 
 | 	 */ | 
 | 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { | 
 | 		if (LLONG_MIN / PPM_SCALE > txc->freq) | 
 | 			return -EINVAL; | 
 | 		if (LLONG_MAX / PPM_SCALE < txc->freq) | 
 | 			return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * random_get_entropy_fallback - Returns the raw clock source value, | 
 |  * used by random.c for platforms with no valid random_get_entropy(). | 
 |  */ | 
 | unsigned long random_get_entropy_fallback(void) | 
 | { | 
 | 	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; | 
 | 	struct clocksource *clock = READ_ONCE(tkr->clock); | 
 |  | 
 | 	if (unlikely(timekeeping_suspended || !clock)) | 
 | 		return 0; | 
 | 	return clock->read(clock); | 
 | } | 
 | EXPORT_SYMBOL_GPL(random_get_entropy_fallback); | 
 |  | 
 | /** | 
 |  * do_adjtimex() - Accessor function to NTP __do_adjtimex function | 
 |  */ | 
 | int do_adjtimex(struct __kernel_timex *txc) | 
 | { | 
 | 	struct timekeeper *tk = &tk_core.timekeeper; | 
 | 	struct audit_ntp_data ad; | 
 | 	bool clock_set = false; | 
 | 	struct timespec64 ts; | 
 | 	unsigned long flags; | 
 | 	s32 orig_tai, tai; | 
 | 	int ret; | 
 |  | 
 | 	/* Validate the data before disabling interrupts */ | 
 | 	ret = timekeeping_validate_timex(txc); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	add_device_randomness(txc, sizeof(*txc)); | 
 |  | 
 | 	if (txc->modes & ADJ_SETOFFSET) { | 
 | 		struct timespec64 delta; | 
 | 		delta.tv_sec  = txc->time.tv_sec; | 
 | 		delta.tv_nsec = txc->time.tv_usec; | 
 | 		if (!(txc->modes & ADJ_NANO)) | 
 | 			delta.tv_nsec *= 1000; | 
 | 		ret = timekeeping_inject_offset(&delta); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		audit_tk_injoffset(delta); | 
 | 	} | 
 |  | 
 | 	audit_ntp_init(&ad); | 
 |  | 
 | 	ktime_get_real_ts64(&ts); | 
 | 	add_device_randomness(&ts, sizeof(ts)); | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	orig_tai = tai = tk->tai_offset; | 
 | 	ret = __do_adjtimex(txc, &ts, &tai, &ad); | 
 |  | 
 | 	if (tai != orig_tai) { | 
 | 		__timekeeping_set_tai_offset(tk, tai); | 
 | 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); | 
 | 		clock_set = true; | 
 | 	} | 
 | 	tk_update_leap_state(tk); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 |  | 
 | 	audit_ntp_log(&ad); | 
 |  | 
 | 	/* Update the multiplier immediately if frequency was set directly */ | 
 | 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) | 
 | 		clock_set |= timekeeping_advance(TK_ADV_FREQ); | 
 |  | 
 | 	if (clock_set) | 
 | 		clock_was_set(CLOCK_SET_WALL); | 
 |  | 
 | 	ntp_notify_cmos_timer(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NTP_PPS | 
 | /** | 
 |  * hardpps() - Accessor function to NTP __hardpps function | 
 |  */ | 
 | void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	raw_spin_lock_irqsave(&timekeeper_lock, flags); | 
 | 	write_seqcount_begin(&tk_core.seq); | 
 |  | 
 | 	__hardpps(phase_ts, raw_ts); | 
 |  | 
 | 	write_seqcount_end(&tk_core.seq); | 
 | 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags); | 
 | } | 
 | EXPORT_SYMBOL(hardpps); | 
 | #endif /* CONFIG_NTP_PPS */ |