| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Common boot and setup code for both 32-bit and 64-bit. |
| * Extracted from arch/powerpc/kernel/setup_64.c. |
| * |
| * Copyright (C) 2001 PPC64 Team, IBM Corp |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/export.h> |
| #include <linux/panic_notifier.h> |
| #include <linux/string.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/reboot.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/platform_device.h> |
| #include <linux/printk.h> |
| #include <linux/seq_file.h> |
| #include <linux/ioport.h> |
| #include <linux/console.h> |
| #include <linux/screen_info.h> |
| #include <linux/root_dev.h> |
| #include <linux/cpu.h> |
| #include <linux/unistd.h> |
| #include <linux/seq_buf.h> |
| #include <linux/serial.h> |
| #include <linux/serial_8250.h> |
| #include <linux/percpu.h> |
| #include <linux/memblock.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_fdt.h> |
| #include <linux/of_platform.h> |
| #include <linux/hugetlb.h> |
| #include <linux/pgtable.h> |
| #include <asm/io.h> |
| #include <asm/paca.h> |
| #include <asm/processor.h> |
| #include <asm/vdso_datapage.h> |
| #include <asm/smp.h> |
| #include <asm/elf.h> |
| #include <asm/machdep.h> |
| #include <asm/time.h> |
| #include <asm/cputable.h> |
| #include <asm/sections.h> |
| #include <asm/firmware.h> |
| #include <asm/btext.h> |
| #include <asm/nvram.h> |
| #include <asm/setup.h> |
| #include <asm/rtas.h> |
| #include <asm/iommu.h> |
| #include <asm/serial.h> |
| #include <asm/cache.h> |
| #include <asm/page.h> |
| #include <asm/mmu.h> |
| #include <asm/xmon.h> |
| #include <asm/cputhreads.h> |
| #include <mm/mmu_decl.h> |
| #include <asm/archrandom.h> |
| #include <asm/fadump.h> |
| #include <asm/udbg.h> |
| #include <asm/hugetlb.h> |
| #include <asm/livepatch.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cpu_has_feature.h> |
| #include <asm/kasan.h> |
| #include <asm/mce.h> |
| |
| #include "setup.h" |
| |
| #ifdef DEBUG |
| #define DBG(fmt...) udbg_printf(fmt) |
| #else |
| #define DBG(fmt...) |
| #endif |
| |
| /* The main machine-dep calls structure |
| */ |
| struct machdep_calls ppc_md; |
| EXPORT_SYMBOL(ppc_md); |
| struct machdep_calls *machine_id; |
| EXPORT_SYMBOL(machine_id); |
| |
| int boot_cpuid = -1; |
| EXPORT_SYMBOL_GPL(boot_cpuid); |
| |
| /* |
| * These are used in binfmt_elf.c to put aux entries on the stack |
| * for each elf executable being started. |
| */ |
| int dcache_bsize; |
| int icache_bsize; |
| |
| /* |
| * This still seems to be needed... -- paulus |
| */ |
| struct screen_info screen_info = { |
| .orig_x = 0, |
| .orig_y = 25, |
| .orig_video_cols = 80, |
| .orig_video_lines = 25, |
| .orig_video_isVGA = 1, |
| .orig_video_points = 16 |
| }; |
| #if defined(CONFIG_FB_VGA16_MODULE) |
| EXPORT_SYMBOL(screen_info); |
| #endif |
| |
| /* Variables required to store legacy IO irq routing */ |
| int of_i8042_kbd_irq; |
| EXPORT_SYMBOL_GPL(of_i8042_kbd_irq); |
| int of_i8042_aux_irq; |
| EXPORT_SYMBOL_GPL(of_i8042_aux_irq); |
| |
| #ifdef __DO_IRQ_CANON |
| /* XXX should go elsewhere eventually */ |
| int ppc_do_canonicalize_irqs; |
| EXPORT_SYMBOL(ppc_do_canonicalize_irqs); |
| #endif |
| |
| #ifdef CONFIG_CRASH_CORE |
| /* This keeps a track of which one is the crashing cpu. */ |
| int crashing_cpu = -1; |
| #endif |
| |
| /* also used by kexec */ |
| void machine_shutdown(void) |
| { |
| /* |
| * if fadump is active, cleanup the fadump registration before we |
| * shutdown. |
| */ |
| fadump_cleanup(); |
| |
| if (ppc_md.machine_shutdown) |
| ppc_md.machine_shutdown(); |
| } |
| |
| static void machine_hang(void) |
| { |
| pr_emerg("System Halted, OK to turn off power\n"); |
| local_irq_disable(); |
| while (1) |
| ; |
| } |
| |
| void machine_restart(char *cmd) |
| { |
| machine_shutdown(); |
| if (ppc_md.restart) |
| ppc_md.restart(cmd); |
| |
| smp_send_stop(); |
| |
| do_kernel_restart(cmd); |
| mdelay(1000); |
| |
| machine_hang(); |
| } |
| |
| void machine_power_off(void) |
| { |
| machine_shutdown(); |
| do_kernel_power_off(); |
| smp_send_stop(); |
| machine_hang(); |
| } |
| /* Used by the G5 thermal driver */ |
| EXPORT_SYMBOL_GPL(machine_power_off); |
| |
| void (*pm_power_off)(void); |
| EXPORT_SYMBOL_GPL(pm_power_off); |
| |
| size_t __must_check arch_get_random_seed_longs(unsigned long *v, size_t max_longs) |
| { |
| if (max_longs && ppc_md.get_random_seed && ppc_md.get_random_seed(v)) |
| return 1; |
| return 0; |
| } |
| EXPORT_SYMBOL(arch_get_random_seed_longs); |
| |
| void machine_halt(void) |
| { |
| machine_shutdown(); |
| if (ppc_md.halt) |
| ppc_md.halt(); |
| |
| smp_send_stop(); |
| machine_hang(); |
| } |
| |
| #ifdef CONFIG_SMP |
| DEFINE_PER_CPU(unsigned int, cpu_pvr); |
| #endif |
| |
| static void show_cpuinfo_summary(struct seq_file *m) |
| { |
| struct device_node *root; |
| const char *model = NULL; |
| unsigned long bogosum = 0; |
| int i; |
| |
| if (IS_ENABLED(CONFIG_SMP) && IS_ENABLED(CONFIG_PPC32)) { |
| for_each_online_cpu(i) |
| bogosum += loops_per_jiffy; |
| seq_printf(m, "total bogomips\t: %lu.%02lu\n", |
| bogosum / (500000 / HZ), bogosum / (5000 / HZ) % 100); |
| } |
| seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq); |
| if (ppc_md.name) |
| seq_printf(m, "platform\t: %s\n", ppc_md.name); |
| root = of_find_node_by_path("/"); |
| if (root) |
| model = of_get_property(root, "model", NULL); |
| if (model) |
| seq_printf(m, "model\t\t: %s\n", model); |
| of_node_put(root); |
| |
| if (ppc_md.show_cpuinfo != NULL) |
| ppc_md.show_cpuinfo(m); |
| |
| /* Display the amount of memory */ |
| if (IS_ENABLED(CONFIG_PPC32)) |
| seq_printf(m, "Memory\t\t: %d MB\n", |
| (unsigned int)(total_memory / (1024 * 1024))); |
| } |
| |
| static int show_cpuinfo(struct seq_file *m, void *v) |
| { |
| unsigned long cpu_id = (unsigned long)v - 1; |
| unsigned int pvr; |
| unsigned long proc_freq; |
| unsigned short maj; |
| unsigned short min; |
| |
| #ifdef CONFIG_SMP |
| pvr = per_cpu(cpu_pvr, cpu_id); |
| #else |
| pvr = mfspr(SPRN_PVR); |
| #endif |
| maj = (pvr >> 8) & 0xFF; |
| min = pvr & 0xFF; |
| |
| seq_printf(m, "processor\t: %lu\ncpu\t\t: ", cpu_id); |
| |
| if (cur_cpu_spec->pvr_mask && cur_cpu_spec->cpu_name) |
| seq_puts(m, cur_cpu_spec->cpu_name); |
| else |
| seq_printf(m, "unknown (%08x)", pvr); |
| |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| seq_puts(m, ", altivec supported"); |
| |
| seq_putc(m, '\n'); |
| |
| #ifdef CONFIG_TAU |
| if (cpu_has_feature(CPU_FTR_TAU)) { |
| if (IS_ENABLED(CONFIG_TAU_AVERAGE)) { |
| /* more straightforward, but potentially misleading */ |
| seq_printf(m, "temperature \t: %u C (uncalibrated)\n", |
| cpu_temp(cpu_id)); |
| } else { |
| /* show the actual temp sensor range */ |
| u32 temp; |
| temp = cpu_temp_both(cpu_id); |
| seq_printf(m, "temperature \t: %u-%u C (uncalibrated)\n", |
| temp & 0xff, temp >> 16); |
| } |
| } |
| #endif /* CONFIG_TAU */ |
| |
| /* |
| * Platforms that have variable clock rates, should implement |
| * the method ppc_md.get_proc_freq() that reports the clock |
| * rate of a given cpu. The rest can use ppc_proc_freq to |
| * report the clock rate that is same across all cpus. |
| */ |
| if (ppc_md.get_proc_freq) |
| proc_freq = ppc_md.get_proc_freq(cpu_id); |
| else |
| proc_freq = ppc_proc_freq; |
| |
| if (proc_freq) |
| seq_printf(m, "clock\t\t: %lu.%06luMHz\n", |
| proc_freq / 1000000, proc_freq % 1000000); |
| |
| /* If we are a Freescale core do a simple check so |
| * we don't have to keep adding cases in the future */ |
| if (PVR_VER(pvr) & 0x8000) { |
| switch (PVR_VER(pvr)) { |
| case 0x8000: /* 7441/7450/7451, Voyager */ |
| case 0x8001: /* 7445/7455, Apollo 6 */ |
| case 0x8002: /* 7447/7457, Apollo 7 */ |
| case 0x8003: /* 7447A, Apollo 7 PM */ |
| case 0x8004: /* 7448, Apollo 8 */ |
| case 0x800c: /* 7410, Nitro */ |
| maj = ((pvr >> 8) & 0xF); |
| min = PVR_MIN(pvr); |
| break; |
| default: /* e500/book-e */ |
| maj = PVR_MAJ(pvr); |
| min = PVR_MIN(pvr); |
| break; |
| } |
| } else { |
| switch (PVR_VER(pvr)) { |
| case 0x1008: /* 740P/750P ?? */ |
| maj = ((pvr >> 8) & 0xFF) - 1; |
| min = pvr & 0xFF; |
| break; |
| case 0x004e: /* POWER9 bits 12-15 give chip type */ |
| case 0x0080: /* POWER10 bit 12 gives SMT8/4 */ |
| maj = (pvr >> 8) & 0x0F; |
| min = pvr & 0xFF; |
| break; |
| default: |
| maj = (pvr >> 8) & 0xFF; |
| min = pvr & 0xFF; |
| break; |
| } |
| } |
| |
| seq_printf(m, "revision\t: %hd.%hd (pvr %04x %04x)\n", |
| maj, min, PVR_VER(pvr), PVR_REV(pvr)); |
| |
| if (IS_ENABLED(CONFIG_PPC32)) |
| seq_printf(m, "bogomips\t: %lu.%02lu\n", loops_per_jiffy / (500000 / HZ), |
| (loops_per_jiffy / (5000 / HZ)) % 100); |
| |
| seq_putc(m, '\n'); |
| |
| /* If this is the last cpu, print the summary */ |
| if (cpumask_next(cpu_id, cpu_online_mask) >= nr_cpu_ids) |
| show_cpuinfo_summary(m); |
| |
| return 0; |
| } |
| |
| static void *c_start(struct seq_file *m, loff_t *pos) |
| { |
| if (*pos == 0) /* just in case, cpu 0 is not the first */ |
| *pos = cpumask_first(cpu_online_mask); |
| else |
| *pos = cpumask_next(*pos - 1, cpu_online_mask); |
| if ((*pos) < nr_cpu_ids) |
| return (void *)(unsigned long)(*pos + 1); |
| return NULL; |
| } |
| |
| static void *c_next(struct seq_file *m, void *v, loff_t *pos) |
| { |
| (*pos)++; |
| return c_start(m, pos); |
| } |
| |
| static void c_stop(struct seq_file *m, void *v) |
| { |
| } |
| |
| const struct seq_operations cpuinfo_op = { |
| .start = c_start, |
| .next = c_next, |
| .stop = c_stop, |
| .show = show_cpuinfo, |
| }; |
| |
| void __init check_for_initrd(void) |
| { |
| #ifdef CONFIG_BLK_DEV_INITRD |
| DBG(" -> check_for_initrd() initrd_start=0x%lx initrd_end=0x%lx\n", |
| initrd_start, initrd_end); |
| |
| /* If we were passed an initrd, set the ROOT_DEV properly if the values |
| * look sensible. If not, clear initrd reference. |
| */ |
| if (is_kernel_addr(initrd_start) && is_kernel_addr(initrd_end) && |
| initrd_end > initrd_start) |
| ROOT_DEV = Root_RAM0; |
| else |
| initrd_start = initrd_end = 0; |
| |
| if (initrd_start) |
| pr_info("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end); |
| |
| DBG(" <- check_for_initrd()\n"); |
| #endif /* CONFIG_BLK_DEV_INITRD */ |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| int threads_per_core, threads_per_subcore, threads_shift __read_mostly; |
| cpumask_t threads_core_mask __read_mostly; |
| EXPORT_SYMBOL_GPL(threads_per_core); |
| EXPORT_SYMBOL_GPL(threads_per_subcore); |
| EXPORT_SYMBOL_GPL(threads_shift); |
| EXPORT_SYMBOL_GPL(threads_core_mask); |
| |
| static void __init cpu_init_thread_core_maps(int tpc) |
| { |
| int i; |
| |
| threads_per_core = tpc; |
| threads_per_subcore = tpc; |
| cpumask_clear(&threads_core_mask); |
| |
| /* This implementation only supports power of 2 number of threads |
| * for simplicity and performance |
| */ |
| threads_shift = ilog2(tpc); |
| BUG_ON(tpc != (1 << threads_shift)); |
| |
| for (i = 0; i < tpc; i++) |
| cpumask_set_cpu(i, &threads_core_mask); |
| |
| printk(KERN_INFO "CPU maps initialized for %d thread%s per core\n", |
| tpc, tpc > 1 ? "s" : ""); |
| printk(KERN_DEBUG " (thread shift is %d)\n", threads_shift); |
| } |
| |
| |
| u32 *cpu_to_phys_id = NULL; |
| |
| /** |
| * setup_cpu_maps - initialize the following cpu maps: |
| * cpu_possible_mask |
| * cpu_present_mask |
| * |
| * Having the possible map set up early allows us to restrict allocations |
| * of things like irqstacks to nr_cpu_ids rather than NR_CPUS. |
| * |
| * We do not initialize the online map here; cpus set their own bits in |
| * cpu_online_mask as they come up. |
| * |
| * This function is valid only for Open Firmware systems. finish_device_tree |
| * must be called before using this. |
| * |
| * While we're here, we may as well set the "physical" cpu ids in the paca. |
| * |
| * NOTE: This must match the parsing done in early_init_dt_scan_cpus. |
| */ |
| void __init smp_setup_cpu_maps(void) |
| { |
| struct device_node *dn; |
| int cpu = 0; |
| int nthreads = 1; |
| |
| DBG("smp_setup_cpu_maps()\n"); |
| |
| cpu_to_phys_id = memblock_alloc(nr_cpu_ids * sizeof(u32), |
| __alignof__(u32)); |
| if (!cpu_to_phys_id) |
| panic("%s: Failed to allocate %zu bytes align=0x%zx\n", |
| __func__, nr_cpu_ids * sizeof(u32), __alignof__(u32)); |
| |
| for_each_node_by_type(dn, "cpu") { |
| const __be32 *intserv; |
| __be32 cpu_be; |
| int j, len; |
| |
| DBG(" * %pOF...\n", dn); |
| |
| intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s", |
| &len); |
| if (intserv) { |
| DBG(" ibm,ppc-interrupt-server#s -> %lu threads\n", |
| (len / sizeof(int))); |
| } else { |
| DBG(" no ibm,ppc-interrupt-server#s -> 1 thread\n"); |
| intserv = of_get_property(dn, "reg", &len); |
| if (!intserv) { |
| cpu_be = cpu_to_be32(cpu); |
| /* XXX: what is this? uninitialized?? */ |
| intserv = &cpu_be; /* assume logical == phys */ |
| len = 4; |
| } |
| } |
| |
| nthreads = len / sizeof(int); |
| |
| for (j = 0; j < nthreads && cpu < nr_cpu_ids; j++) { |
| bool avail; |
| |
| DBG(" thread %d -> cpu %d (hard id %d)\n", |
| j, cpu, be32_to_cpu(intserv[j])); |
| |
| avail = of_device_is_available(dn); |
| if (!avail) |
| avail = !of_property_match_string(dn, |
| "enable-method", "spin-table"); |
| |
| set_cpu_present(cpu, avail); |
| set_cpu_possible(cpu, true); |
| cpu_to_phys_id[cpu] = be32_to_cpu(intserv[j]); |
| cpu++; |
| } |
| |
| if (cpu >= nr_cpu_ids) { |
| of_node_put(dn); |
| break; |
| } |
| } |
| |
| /* If no SMT supported, nthreads is forced to 1 */ |
| if (!cpu_has_feature(CPU_FTR_SMT)) { |
| DBG(" SMT disabled ! nthreads forced to 1\n"); |
| nthreads = 1; |
| } |
| |
| #ifdef CONFIG_PPC64 |
| /* |
| * On pSeries LPAR, we need to know how many cpus |
| * could possibly be added to this partition. |
| */ |
| if (firmware_has_feature(FW_FEATURE_LPAR) && |
| (dn = of_find_node_by_path("/rtas"))) { |
| int num_addr_cell, num_size_cell, maxcpus; |
| const __be32 *ireg; |
| |
| num_addr_cell = of_n_addr_cells(dn); |
| num_size_cell = of_n_size_cells(dn); |
| |
| ireg = of_get_property(dn, "ibm,lrdr-capacity", NULL); |
| |
| if (!ireg) |
| goto out; |
| |
| maxcpus = be32_to_cpup(ireg + num_addr_cell + num_size_cell); |
| |
| /* Double maxcpus for processors which have SMT capability */ |
| if (cpu_has_feature(CPU_FTR_SMT)) |
| maxcpus *= nthreads; |
| |
| if (maxcpus > nr_cpu_ids) { |
| printk(KERN_WARNING |
| "Partition configured for %d cpus, " |
| "operating system maximum is %u.\n", |
| maxcpus, nr_cpu_ids); |
| maxcpus = nr_cpu_ids; |
| } else |
| printk(KERN_INFO "Partition configured for %d cpus.\n", |
| maxcpus); |
| |
| for (cpu = 0; cpu < maxcpus; cpu++) |
| set_cpu_possible(cpu, true); |
| out: |
| of_node_put(dn); |
| } |
| vdso_data->processorCount = num_present_cpus(); |
| #endif /* CONFIG_PPC64 */ |
| |
| /* Initialize CPU <=> thread mapping/ |
| * |
| * WARNING: We assume that the number of threads is the same for |
| * every CPU in the system. If that is not the case, then some code |
| * here will have to be reworked |
| */ |
| cpu_init_thread_core_maps(nthreads); |
| |
| /* Now that possible cpus are set, set nr_cpu_ids for later use */ |
| setup_nr_cpu_ids(); |
| |
| free_unused_pacas(); |
| } |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_PCSPKR_PLATFORM |
| static __init int add_pcspkr(void) |
| { |
| struct device_node *np; |
| struct platform_device *pd; |
| int ret; |
| |
| np = of_find_compatible_node(NULL, NULL, "pnpPNP,100"); |
| of_node_put(np); |
| if (!np) |
| return -ENODEV; |
| |
| pd = platform_device_alloc("pcspkr", -1); |
| if (!pd) |
| return -ENOMEM; |
| |
| ret = platform_device_add(pd); |
| if (ret) |
| platform_device_put(pd); |
| |
| return ret; |
| } |
| device_initcall(add_pcspkr); |
| #endif /* CONFIG_PCSPKR_PLATFORM */ |
| |
| static char ppc_hw_desc_buf[128] __initdata; |
| |
| struct seq_buf ppc_hw_desc __initdata = { |
| .buffer = ppc_hw_desc_buf, |
| .size = sizeof(ppc_hw_desc_buf), |
| .len = 0, |
| .readpos = 0, |
| }; |
| |
| static __init void probe_machine(void) |
| { |
| extern struct machdep_calls __machine_desc_start; |
| extern struct machdep_calls __machine_desc_end; |
| unsigned int i; |
| |
| /* |
| * Iterate all ppc_md structures until we find the proper |
| * one for the current machine type |
| */ |
| DBG("Probing machine type ...\n"); |
| |
| /* |
| * Check ppc_md is empty, if not we have a bug, ie, we setup an |
| * entry before probe_machine() which will be overwritten |
| */ |
| for (i = 0; i < (sizeof(ppc_md) / sizeof(void *)); i++) { |
| if (((void **)&ppc_md)[i]) { |
| printk(KERN_ERR "Entry %d in ppc_md non empty before" |
| " machine probe !\n", i); |
| } |
| } |
| |
| for (machine_id = &__machine_desc_start; |
| machine_id < &__machine_desc_end; |
| machine_id++) { |
| DBG(" %s ...", machine_id->name); |
| memcpy(&ppc_md, machine_id, sizeof(struct machdep_calls)); |
| if (ppc_md.probe()) { |
| DBG(" match !\n"); |
| break; |
| } |
| DBG("\n"); |
| } |
| /* What can we do if we didn't find ? */ |
| if (machine_id >= &__machine_desc_end) { |
| pr_err("No suitable machine description found !\n"); |
| for (;;); |
| } |
| |
| // Append the machine name to other info we've gathered |
| seq_buf_puts(&ppc_hw_desc, ppc_md.name); |
| |
| // Set the generic hardware description shown in oopses |
| dump_stack_set_arch_desc(ppc_hw_desc.buffer); |
| |
| pr_info("Hardware name: %s\n", ppc_hw_desc.buffer); |
| } |
| |
| /* Match a class of boards, not a specific device configuration. */ |
| int check_legacy_ioport(unsigned long base_port) |
| { |
| struct device_node *parent, *np = NULL; |
| int ret = -ENODEV; |
| |
| switch(base_port) { |
| case I8042_DATA_REG: |
| if (!(np = of_find_compatible_node(NULL, NULL, "pnpPNP,303"))) |
| np = of_find_compatible_node(NULL, NULL, "pnpPNP,f03"); |
| if (np) { |
| parent = of_get_parent(np); |
| |
| of_i8042_kbd_irq = irq_of_parse_and_map(parent, 0); |
| if (!of_i8042_kbd_irq) |
| of_i8042_kbd_irq = 1; |
| |
| of_i8042_aux_irq = irq_of_parse_and_map(parent, 1); |
| if (!of_i8042_aux_irq) |
| of_i8042_aux_irq = 12; |
| |
| of_node_put(np); |
| np = parent; |
| break; |
| } |
| np = of_find_node_by_type(NULL, "8042"); |
| /* Pegasos has no device_type on its 8042 node, look for the |
| * name instead */ |
| if (!np) |
| np = of_find_node_by_name(NULL, "8042"); |
| if (np) { |
| of_i8042_kbd_irq = 1; |
| of_i8042_aux_irq = 12; |
| } |
| break; |
| case FDC_BASE: /* FDC1 */ |
| np = of_find_node_by_type(NULL, "fdc"); |
| break; |
| default: |
| /* ipmi is supposed to fail here */ |
| break; |
| } |
| if (!np) |
| return ret; |
| parent = of_get_parent(np); |
| if (parent) { |
| if (of_node_is_type(parent, "isa")) |
| ret = 0; |
| of_node_put(parent); |
| } |
| of_node_put(np); |
| return ret; |
| } |
| EXPORT_SYMBOL(check_legacy_ioport); |
| |
| /* |
| * Panic notifiers setup |
| * |
| * We have 3 notifiers for powerpc, each one from a different "nature": |
| * |
| * - ppc_panic_fadump_handler() is a hypervisor notifier, which hard-disables |
| * IRQs and deal with the Firmware-Assisted dump, when it is configured; |
| * should run early in the panic path. |
| * |
| * - dump_kernel_offset() is an informative notifier, just showing the KASLR |
| * offset if we have RANDOMIZE_BASE set. |
| * |
| * - ppc_panic_platform_handler() is a low-level handler that's registered |
| * only if the platform wishes to perform final actions in the panic path, |
| * hence it should run late and might not even return. Currently, only |
| * pseries and ps3 platforms register callbacks. |
| */ |
| static int ppc_panic_fadump_handler(struct notifier_block *this, |
| unsigned long event, void *ptr) |
| { |
| /* |
| * panic does a local_irq_disable, but we really |
| * want interrupts to be hard disabled. |
| */ |
| hard_irq_disable(); |
| |
| /* |
| * If firmware-assisted dump has been registered then trigger |
| * its callback and let the firmware handles everything else. |
| */ |
| crash_fadump(NULL, ptr); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static int dump_kernel_offset(struct notifier_block *self, unsigned long v, |
| void *p) |
| { |
| pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n", |
| kaslr_offset(), KERNELBASE); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static int ppc_panic_platform_handler(struct notifier_block *this, |
| unsigned long event, void *ptr) |
| { |
| /* |
| * This handler is only registered if we have a panic callback |
| * on ppc_md, hence NULL check is not needed. |
| * Also, it may not return, so it runs really late on panic path. |
| */ |
| ppc_md.panic(ptr); |
| |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block ppc_fadump_block = { |
| .notifier_call = ppc_panic_fadump_handler, |
| .priority = INT_MAX, /* run early, to notify the firmware ASAP */ |
| }; |
| |
| static struct notifier_block kernel_offset_notifier = { |
| .notifier_call = dump_kernel_offset, |
| }; |
| |
| static struct notifier_block ppc_panic_block = { |
| .notifier_call = ppc_panic_platform_handler, |
| .priority = INT_MIN, /* may not return; must be done last */ |
| }; |
| |
| void __init setup_panic(void) |
| { |
| /* Hard-disables IRQs + deal with FW-assisted dump (fadump) */ |
| atomic_notifier_chain_register(&panic_notifier_list, |
| &ppc_fadump_block); |
| |
| if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0) |
| atomic_notifier_chain_register(&panic_notifier_list, |
| &kernel_offset_notifier); |
| |
| /* Low-level platform-specific routines that should run on panic */ |
| if (ppc_md.panic) |
| atomic_notifier_chain_register(&panic_notifier_list, |
| &ppc_panic_block); |
| } |
| |
| #ifdef CONFIG_CHECK_CACHE_COHERENCY |
| /* |
| * For platforms that have configurable cache-coherency. This function |
| * checks that the cache coherency setting of the kernel matches the setting |
| * left by the firmware, as indicated in the device tree. Since a mismatch |
| * will eventually result in DMA failures, we print * and error and call |
| * BUG() in that case. |
| */ |
| |
| #define KERNEL_COHERENCY (!IS_ENABLED(CONFIG_NOT_COHERENT_CACHE)) |
| |
| static int __init check_cache_coherency(void) |
| { |
| struct device_node *np; |
| const void *prop; |
| bool devtree_coherency; |
| |
| np = of_find_node_by_path("/"); |
| prop = of_get_property(np, "coherency-off", NULL); |
| of_node_put(np); |
| |
| devtree_coherency = prop ? false : true; |
| |
| if (devtree_coherency != KERNEL_COHERENCY) { |
| printk(KERN_ERR |
| "kernel coherency:%s != device tree_coherency:%s\n", |
| KERNEL_COHERENCY ? "on" : "off", |
| devtree_coherency ? "on" : "off"); |
| BUG(); |
| } |
| |
| return 0; |
| } |
| |
| late_initcall(check_cache_coherency); |
| #endif /* CONFIG_CHECK_CACHE_COHERENCY */ |
| |
| void ppc_printk_progress(char *s, unsigned short hex) |
| { |
| pr_info("%s\n", s); |
| } |
| |
| static __init void print_system_info(void) |
| { |
| pr_info("-----------------------------------------------------\n"); |
| pr_info("phys_mem_size = 0x%llx\n", |
| (unsigned long long)memblock_phys_mem_size()); |
| |
| pr_info("dcache_bsize = 0x%x\n", dcache_bsize); |
| pr_info("icache_bsize = 0x%x\n", icache_bsize); |
| |
| pr_info("cpu_features = 0x%016lx\n", cur_cpu_spec->cpu_features); |
| pr_info(" possible = 0x%016lx\n", |
| (unsigned long)CPU_FTRS_POSSIBLE); |
| pr_info(" always = 0x%016lx\n", |
| (unsigned long)CPU_FTRS_ALWAYS); |
| pr_info("cpu_user_features = 0x%08x 0x%08x\n", |
| cur_cpu_spec->cpu_user_features, |
| cur_cpu_spec->cpu_user_features2); |
| pr_info("mmu_features = 0x%08x\n", cur_cpu_spec->mmu_features); |
| #ifdef CONFIG_PPC64 |
| pr_info("firmware_features = 0x%016lx\n", powerpc_firmware_features); |
| #ifdef CONFIG_PPC_BOOK3S |
| pr_info("vmalloc start = 0x%lx\n", KERN_VIRT_START); |
| pr_info("IO start = 0x%lx\n", KERN_IO_START); |
| pr_info("vmemmap start = 0x%lx\n", (unsigned long)vmemmap); |
| #endif |
| #endif |
| |
| if (!early_radix_enabled()) |
| print_system_hash_info(); |
| |
| if (PHYSICAL_START > 0) |
| pr_info("physical_start = 0x%llx\n", |
| (unsigned long long)PHYSICAL_START); |
| pr_info("-----------------------------------------------------\n"); |
| } |
| |
| #ifdef CONFIG_SMP |
| static void __init smp_setup_pacas(void) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| if (cpu == smp_processor_id()) |
| continue; |
| allocate_paca(cpu); |
| set_hard_smp_processor_id(cpu, cpu_to_phys_id[cpu]); |
| } |
| |
| memblock_free(cpu_to_phys_id, nr_cpu_ids * sizeof(u32)); |
| cpu_to_phys_id = NULL; |
| } |
| #endif |
| |
| /* |
| * Called into from start_kernel this initializes memblock, which is used |
| * to manage page allocation until mem_init is called. |
| */ |
| void __init setup_arch(char **cmdline_p) |
| { |
| kasan_init(); |
| |
| *cmdline_p = boot_command_line; |
| |
| /* Set a half-reasonable default so udelay does something sensible */ |
| loops_per_jiffy = 500000000 / HZ; |
| |
| /* Unflatten the device-tree passed by prom_init or kexec */ |
| unflatten_device_tree(); |
| |
| /* |
| * Initialize cache line/block info from device-tree (on ppc64) or |
| * just cputable (on ppc32). |
| */ |
| initialize_cache_info(); |
| |
| /* Initialize RTAS if available. */ |
| rtas_initialize(); |
| |
| /* Check if we have an initrd provided via the device-tree. */ |
| check_for_initrd(); |
| |
| /* Probe the machine type, establish ppc_md. */ |
| probe_machine(); |
| |
| /* Setup panic notifier if requested by the platform. */ |
| setup_panic(); |
| |
| /* |
| * Configure ppc_md.power_save (ppc32 only, 64-bit machines do |
| * it from their respective probe() function. |
| */ |
| setup_power_save(); |
| |
| /* Discover standard serial ports. */ |
| find_legacy_serial_ports(); |
| |
| /* Register early console with the printk subsystem. */ |
| register_early_udbg_console(); |
| |
| /* Setup the various CPU maps based on the device-tree. */ |
| smp_setup_cpu_maps(); |
| |
| /* Initialize xmon. */ |
| xmon_setup(); |
| |
| /* Check the SMT related command line arguments (ppc64). */ |
| check_smt_enabled(); |
| |
| /* Parse memory topology */ |
| mem_topology_setup(); |
| |
| /* |
| * Release secondary cpus out of their spinloops at 0x60 now that |
| * we can map physical -> logical CPU ids. |
| * |
| * Freescale Book3e parts spin in a loop provided by firmware, |
| * so smp_release_cpus() does nothing for them. |
| */ |
| #ifdef CONFIG_SMP |
| smp_setup_pacas(); |
| |
| /* On BookE, setup per-core TLB data structures. */ |
| setup_tlb_core_data(); |
| #endif |
| |
| /* Print various info about the machine that has been gathered so far. */ |
| print_system_info(); |
| |
| klp_init_thread_info(&init_task); |
| |
| setup_initial_init_mm(_stext, _etext, _edata, _end); |
| |
| mm_iommu_init(&init_mm); |
| irqstack_early_init(); |
| exc_lvl_early_init(); |
| emergency_stack_init(); |
| |
| mce_init(); |
| smp_release_cpus(); |
| |
| initmem_init(); |
| |
| /* |
| * Reserve large chunks of memory for use by CMA for KVM and hugetlb. These must |
| * be called after initmem_init(), so that pageblock_order is initialised. |
| */ |
| kvm_cma_reserve(); |
| gigantic_hugetlb_cma_reserve(); |
| |
| early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); |
| |
| if (ppc_md.setup_arch) |
| ppc_md.setup_arch(); |
| |
| setup_barrier_nospec(); |
| setup_spectre_v2(); |
| |
| paging_init(); |
| |
| /* Initialize the MMU context management stuff. */ |
| mmu_context_init(); |
| |
| /* Interrupt code needs to be 64K-aligned. */ |
| if (IS_ENABLED(CONFIG_PPC64) && (unsigned long)_stext & 0xffff) |
| panic("Kernelbase not 64K-aligned (0x%lx)!\n", |
| (unsigned long)_stext); |
| } |