| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| * Copyright (C) 1996 Paul Mackerras |
| * |
| * Derived from "arch/i386/mm/init.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * Dave Engebretsen <engebret@us.ibm.com> |
| * Rework for PPC64 port. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/stddef.h> |
| #include <linux/vmalloc.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/highmem.h> |
| #include <linux/idr.h> |
| #include <linux/nodemask.h> |
| #include <linux/module.h> |
| #include <linux/poison.h> |
| #include <linux/memblock.h> |
| #include <linux/hugetlb.h> |
| #include <linux/slab.h> |
| #include <linux/of_fdt.h> |
| #include <linux/libfdt.h> |
| #include <linux/memremap.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/page.h> |
| #include <asm/prom.h> |
| #include <asm/rtas.h> |
| #include <asm/io.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mmu.h> |
| #include <linux/uaccess.h> |
| #include <asm/smp.h> |
| #include <asm/machdep.h> |
| #include <asm/tlb.h> |
| #include <asm/eeh.h> |
| #include <asm/processor.h> |
| #include <asm/mmzone.h> |
| #include <asm/cputable.h> |
| #include <asm/sections.h> |
| #include <asm/iommu.h> |
| #include <asm/vdso.h> |
| #include <asm/hugetlb.h> |
| |
| #include <mm/mmu_decl.h> |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| /* |
| * Given an address within the vmemmap, determine the page that |
| * represents the start of the subsection it is within. Note that we have to |
| * do this by hand as the proffered address may not be correctly aligned. |
| * Subtraction of non-aligned pointers produces undefined results. |
| */ |
| static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr) |
| { |
| unsigned long start_pfn; |
| unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap)); |
| |
| /* Return the pfn of the start of the section. */ |
| start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK; |
| return pfn_to_page(start_pfn); |
| } |
| |
| /* |
| * Since memory is added in sub-section chunks, before creating a new vmemmap |
| * mapping, the kernel should check whether there is an existing memmap mapping |
| * covering the new subsection added. This is needed because kernel can map |
| * vmemmap area using 16MB pages which will cover a memory range of 16G. Such |
| * a range covers multiple subsections (2M) |
| * |
| * If any subsection in the 16G range mapped by vmemmap is valid we consider the |
| * vmemmap populated (There is a page table entry already present). We can't do |
| * a page table lookup here because with the hash translation we don't keep |
| * vmemmap details in linux page table. |
| */ |
| static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size) |
| { |
| struct page *start; |
| unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size; |
| start = vmemmap_subsection_start(vmemmap_addr); |
| |
| for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION) |
| /* |
| * pfn valid check here is intended to really check |
| * whether we have any subsection already initialized |
| * in this range. |
| */ |
| if (pfn_valid(page_to_pfn(start))) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* |
| * vmemmap virtual address space management does not have a traditional page |
| * table to track which virtual struct pages are backed by physical mapping. |
| * The virtual to physical mappings are tracked in a simple linked list |
| * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at |
| * all times where as the 'next' list maintains the available |
| * vmemmap_backing structures which have been deleted from the |
| * 'vmemmap_global' list during system runtime (memory hotplug remove |
| * operation). The freed 'vmemmap_backing' structures are reused later when |
| * new requests come in without allocating fresh memory. This pointer also |
| * tracks the allocated 'vmemmap_backing' structures as we allocate one |
| * full page memory at a time when we dont have any. |
| */ |
| struct vmemmap_backing *vmemmap_list; |
| static struct vmemmap_backing *next; |
| |
| /* |
| * The same pointer 'next' tracks individual chunks inside the allocated |
| * full page during the boot time and again tracks the freed nodes during |
| * runtime. It is racy but it does not happen as they are separated by the |
| * boot process. Will create problem if some how we have memory hotplug |
| * operation during boot !! |
| */ |
| static int num_left; |
| static int num_freed; |
| |
| static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node) |
| { |
| struct vmemmap_backing *vmem_back; |
| /* get from freed entries first */ |
| if (num_freed) { |
| num_freed--; |
| vmem_back = next; |
| next = next->list; |
| |
| return vmem_back; |
| } |
| |
| /* allocate a page when required and hand out chunks */ |
| if (!num_left) { |
| next = vmemmap_alloc_block(PAGE_SIZE, node); |
| if (unlikely(!next)) { |
| WARN_ON(1); |
| return NULL; |
| } |
| num_left = PAGE_SIZE / sizeof(struct vmemmap_backing); |
| } |
| |
| num_left--; |
| |
| return next++; |
| } |
| |
| static __meminit int vmemmap_list_populate(unsigned long phys, |
| unsigned long start, |
| int node) |
| { |
| struct vmemmap_backing *vmem_back; |
| |
| vmem_back = vmemmap_list_alloc(node); |
| if (unlikely(!vmem_back)) { |
| pr_debug("vmemap list allocation failed\n"); |
| return -ENOMEM; |
| } |
| |
| vmem_back->phys = phys; |
| vmem_back->virt_addr = start; |
| vmem_back->list = vmemmap_list; |
| |
| vmemmap_list = vmem_back; |
| return 0; |
| } |
| |
| static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start, |
| unsigned long page_size) |
| { |
| unsigned long nr_pfn = page_size / sizeof(struct page); |
| unsigned long start_pfn = page_to_pfn((struct page *)start); |
| |
| if ((start_pfn + nr_pfn) > altmap->end_pfn) |
| return true; |
| |
| if (start_pfn < altmap->base_pfn) |
| return true; |
| |
| return false; |
| } |
| |
| int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, |
| struct vmem_altmap *altmap) |
| { |
| bool altmap_alloc; |
| unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; |
| |
| /* Align to the page size of the linear mapping. */ |
| start = ALIGN_DOWN(start, page_size); |
| |
| pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node); |
| |
| for (; start < end; start += page_size) { |
| void *p = NULL; |
| int rc; |
| |
| /* |
| * This vmemmap range is backing different subsections. If any |
| * of that subsection is marked valid, that means we already |
| * have initialized a page table covering this range and hence |
| * the vmemmap range is populated. |
| */ |
| if (vmemmap_populated(start, page_size)) |
| continue; |
| |
| /* |
| * Allocate from the altmap first if we have one. This may |
| * fail due to alignment issues when using 16MB hugepages, so |
| * fall back to system memory if the altmap allocation fail. |
| */ |
| if (altmap && !altmap_cross_boundary(altmap, start, page_size)) { |
| p = vmemmap_alloc_block_buf(page_size, node, altmap); |
| if (!p) |
| pr_debug("altmap block allocation failed, falling back to system memory"); |
| else |
| altmap_alloc = true; |
| } |
| if (!p) { |
| p = vmemmap_alloc_block_buf(page_size, node, NULL); |
| altmap_alloc = false; |
| } |
| if (!p) |
| return -ENOMEM; |
| |
| if (vmemmap_list_populate(__pa(p), start, node)) { |
| /* |
| * If we don't populate vmemap list, we don't have |
| * the ability to free the allocated vmemmap |
| * pages in section_deactivate. Hence free them |
| * here. |
| */ |
| int nr_pfns = page_size >> PAGE_SHIFT; |
| unsigned long page_order = get_order(page_size); |
| |
| if (altmap_alloc) |
| vmem_altmap_free(altmap, nr_pfns); |
| else |
| free_pages((unsigned long)p, page_order); |
| return -ENOMEM; |
| } |
| |
| pr_debug(" * %016lx..%016lx allocated at %p\n", |
| start, start + page_size, p); |
| |
| rc = vmemmap_create_mapping(start, page_size, __pa(p)); |
| if (rc < 0) { |
| pr_warn("%s: Unable to create vmemmap mapping: %d\n", |
| __func__, rc); |
| return -EFAULT; |
| } |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static unsigned long vmemmap_list_free(unsigned long start) |
| { |
| struct vmemmap_backing *vmem_back, *vmem_back_prev; |
| |
| vmem_back_prev = vmem_back = vmemmap_list; |
| |
| /* look for it with prev pointer recorded */ |
| for (; vmem_back; vmem_back = vmem_back->list) { |
| if (vmem_back->virt_addr == start) |
| break; |
| vmem_back_prev = vmem_back; |
| } |
| |
| if (unlikely(!vmem_back)) |
| return 0; |
| |
| /* remove it from vmemmap_list */ |
| if (vmem_back == vmemmap_list) /* remove head */ |
| vmemmap_list = vmem_back->list; |
| else |
| vmem_back_prev->list = vmem_back->list; |
| |
| /* next point to this freed entry */ |
| vmem_back->list = next; |
| next = vmem_back; |
| num_freed++; |
| |
| return vmem_back->phys; |
| } |
| |
| void __ref vmemmap_free(unsigned long start, unsigned long end, |
| struct vmem_altmap *altmap) |
| { |
| unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; |
| unsigned long page_order = get_order(page_size); |
| unsigned long alt_start = ~0, alt_end = ~0; |
| unsigned long base_pfn; |
| |
| start = ALIGN_DOWN(start, page_size); |
| if (altmap) { |
| alt_start = altmap->base_pfn; |
| alt_end = altmap->base_pfn + altmap->reserve + |
| altmap->free + altmap->alloc + altmap->align; |
| } |
| |
| pr_debug("vmemmap_free %lx...%lx\n", start, end); |
| |
| for (; start < end; start += page_size) { |
| unsigned long nr_pages, addr; |
| struct page *page; |
| |
| /* |
| * We have already marked the subsection we are trying to remove |
| * invalid. So if we want to remove the vmemmap range, we |
| * need to make sure there is no subsection marked valid |
| * in this range. |
| */ |
| if (vmemmap_populated(start, page_size)) |
| continue; |
| |
| addr = vmemmap_list_free(start); |
| if (!addr) |
| continue; |
| |
| page = pfn_to_page(addr >> PAGE_SHIFT); |
| nr_pages = 1 << page_order; |
| base_pfn = PHYS_PFN(addr); |
| |
| if (base_pfn >= alt_start && base_pfn < alt_end) { |
| vmem_altmap_free(altmap, nr_pages); |
| } else if (PageReserved(page)) { |
| /* allocated from bootmem */ |
| if (page_size < PAGE_SIZE) { |
| /* |
| * this shouldn't happen, but if it is |
| * the case, leave the memory there |
| */ |
| WARN_ON_ONCE(1); |
| } else { |
| while (nr_pages--) |
| free_reserved_page(page++); |
| } |
| } else { |
| free_pages((unsigned long)(__va(addr)), page_order); |
| } |
| |
| vmemmap_remove_mapping(start, page_size); |
| } |
| } |
| #endif |
| void register_page_bootmem_memmap(unsigned long section_nr, |
| struct page *start_page, unsigned long size) |
| { |
| } |
| |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| unsigned int mmu_lpid_bits; |
| #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE |
| EXPORT_SYMBOL_GPL(mmu_lpid_bits); |
| #endif |
| unsigned int mmu_pid_bits; |
| |
| static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT); |
| |
| static int __init parse_disable_radix(char *p) |
| { |
| bool val; |
| |
| if (!p) |
| val = true; |
| else if (kstrtobool(p, &val)) |
| return -EINVAL; |
| |
| disable_radix = val; |
| |
| return 0; |
| } |
| early_param("disable_radix", parse_disable_radix); |
| |
| /* |
| * If we're running under a hypervisor, we need to check the contents of |
| * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do |
| * radix. If not, we clear the radix feature bit so we fall back to hash. |
| */ |
| static void __init early_check_vec5(void) |
| { |
| unsigned long root, chosen; |
| int size; |
| const u8 *vec5; |
| u8 mmu_supported; |
| |
| root = of_get_flat_dt_root(); |
| chosen = of_get_flat_dt_subnode_by_name(root, "chosen"); |
| if (chosen == -FDT_ERR_NOTFOUND) { |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; |
| return; |
| } |
| vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size); |
| if (!vec5) { |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; |
| return; |
| } |
| if (size <= OV5_INDX(OV5_MMU_SUPPORT)) { |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; |
| return; |
| } |
| |
| /* Check for supported configuration */ |
| mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] & |
| OV5_FEAT(OV5_MMU_SUPPORT); |
| if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) { |
| /* Hypervisor only supports radix - check enabled && GTSE */ |
| if (!early_radix_enabled()) { |
| pr_warn("WARNING: Ignoring cmdline option disable_radix\n"); |
| } |
| if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] & |
| OV5_FEAT(OV5_RADIX_GTSE))) { |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE; |
| } else |
| cur_cpu_spec->mmu_features |= MMU_FTR_GTSE; |
| /* Do radix anyway - the hypervisor said we had to */ |
| cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX; |
| } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) { |
| /* Hypervisor only supports hash - disable radix */ |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE; |
| } |
| } |
| |
| static int __init dt_scan_mmu_pid_width(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| int size = 0; |
| const __be32 *prop; |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| /* Find MMU LPID, PID register size */ |
| prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size); |
| if (prop && size == 4) |
| mmu_lpid_bits = be32_to_cpup(prop); |
| |
| prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size); |
| if (prop && size == 4) |
| mmu_pid_bits = be32_to_cpup(prop); |
| |
| if (!mmu_pid_bits && !mmu_lpid_bits) |
| return 0; |
| |
| return 1; |
| } |
| |
| void __init mmu_early_init_devtree(void) |
| { |
| bool hvmode = !!(mfmsr() & MSR_HV); |
| |
| /* Disable radix mode based on kernel command line. */ |
| if (disable_radix) { |
| if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU)) |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; |
| else |
| pr_warn("WARNING: Ignoring cmdline option disable_radix\n"); |
| } |
| |
| of_scan_flat_dt(dt_scan_mmu_pid_width, NULL); |
| if (hvmode && !mmu_lpid_bits) { |
| if (early_cpu_has_feature(CPU_FTR_ARCH_207S)) |
| mmu_lpid_bits = 12; /* POWER8-10 */ |
| else |
| mmu_lpid_bits = 10; /* POWER7 */ |
| } |
| if (!mmu_pid_bits) { |
| if (early_cpu_has_feature(CPU_FTR_ARCH_300)) |
| mmu_pid_bits = 20; /* POWER9-10 */ |
| } |
| |
| /* |
| * Check /chosen/ibm,architecture-vec-5 if running as a guest. |
| * When running bare-metal, we can use radix if we like |
| * even though the ibm,architecture-vec-5 property created by |
| * skiboot doesn't have the necessary bits set. |
| */ |
| if (!hvmode) |
| early_check_vec5(); |
| |
| if (early_radix_enabled()) { |
| radix__early_init_devtree(); |
| |
| /* |
| * We have finalized the translation we are going to use by now. |
| * Radix mode is not limited by RMA / VRMA addressing. |
| * Hence don't limit memblock allocations. |
| */ |
| ppc64_rma_size = ULONG_MAX; |
| memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); |
| } else |
| hash__early_init_devtree(); |
| |
| if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE)) |
| hugetlbpage_init_defaultsize(); |
| |
| if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) && |
| !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX)) |
| panic("kernel does not support any MMU type offered by platform"); |
| } |
| #endif /* CONFIG_PPC_BOOK3S_64 */ |